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Abstract: Background: Three-Dimensional Virtual Planning (3DVP) has been proven to be effective for
limiting intra-articular screw penetration and improving the quality of reduction for numerous frac-
tures. However, the value of 3DVP for patients with tibial plateau fractures has yet to be determined.
Purposes: The research question of this study is: Can Computed Tomography Micromotion Analysis
(CTMA) provide a reliable quantification of the difference between 3DVP and the postoperative
reduction on CT for tibial plateau fractures? Methods: Nine consecutive adult patients who received
surgical treatment for a tibial plateau fracture and received pre- and postoperative CT scans were
included from a level I trauma center in the Netherlands. The preoperative CT scans of the patients
were uploaded in a 3DVP software. In this software, fracture fragments were reduced and the
reduction was saved as a 3D file (STL). The quality of the reduction from the 3DVP software was
compared with the postoperative results using CT Micromotion Analysis (CTMA). In this analysis,
the translation of the largest intra-articular fragment was calculated by aligning the postoperative
CT with the 3DVP. Coordinates and measurement points were defined in the X, Y, and Z axes. The
combined values of X and Y were used to define the intra-articular gap. The Z-axis was defined as the
line from cranial to caudal and was used to define intra-articular step-off. Results: The intra-articular
step-off was 2.4 mm (Range 0.5–4.6). Moreover, the mean translation of the X-axis and Y-axis, which
was defined as the intra-articular gap, was 4.2 mm (Range 0.6–10.7). Conclusions: 3DVP provides
excellent insight into the fracture and its fragments. Utilizing the largest intra-articular fragment, it is
feasible to quantify the difference between 3DVP and a postoperative CT using CTMA. A prospective
study to further analyze the use of 3DVP in terms of intra-articular reduction and surgical and
patient-related outcomes has been started by our team.

Keywords: tibial plateau fractures; Three-Dimensional Virtual Planning; quantification of measurements

1. Introduction

Thorough understanding of fractures and fracture lines is important to define treat-
ment strategies in orthopaedic trauma. The tibial plateau is one of the key weight-bearing
areas of the body; it is exposed to forces five times the body’s weight [1]. Since tibial plateau
fractures are always intra-articular fractures and are technically complex fractures to treat,
surgeons continue to search for different and innovative ways to address and treat these
fractures [2–5].

Radiographs were primarily used to diagnose tibial plateau fractures and to prepare
for surgical treatment. With advancements in Computed Tomography (CT), a more thor-
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ough view is provided for the diagnosis and treatment of fractures in general [6]. The
indications for surgical treatment of tibial plateau fractures vary between a step-off and/or
gap between 3–10 mm [3,7–9]. Recently, the study by Vaartjes et al. [7] found that patients
who were treated non-surgically with a step-off or gap between 2–4 mm have similar
patient-related outcomes compared to patients with a step-off or gap < 2 mm. Their study
also concludes that a step-off > 4 mm was associated with more knee symptoms and a
lower QOL during follow-up.

The use of 3D-assisted surgery, such as 3D printed models and 3D virtual planning, is
a current topic of research in orthopaedic surgery. 3D Virtual Planning (3DVP) software has
been developed to provide a multidimensional view of fractures, where the fracture and
its fragments can be visualized using advanced bone segmentation. After segmentation,
the fragments can be reduced, and implant material can be positioned. The insights
3DVP allows into the fracture and its fragments aim to improve fracture reduction during
definitive surgery, shorten operation time and decrease complications such as intra-articular
screw penetration [3,5,10–13]. The systematic review by Assink et al. [12] shows a reduction
in operation time, a decrease in the amount of blood loss and also shows a reduction in the
number of fluoroscopies required for 3D assisted surgery. Even though the aforementioned
studies show promising results, 3D-assisted surgery does take extra time and effort in a
surgeons’ work schedule. Therefore, it is vital to assess whether the time and effort required
to perform 3D assisted surgery is offset by the quality of the postoperative reduction.

To the best of the author’s knowledge, there is no literature providing quantification
for the comparison of 3DVP software to the postoperative CT scan for patients with tibial
plateau fractures. Therefore, the research question of this study is: Can CTMA provide a
feasible overview of the differences between 3D virtual planning and the postoperative
reduction on CT for tibial plateau fractures?

2. Materials and Methods
2.1. Patient Inclusion

This study was approved by the Medical Ethical Committee (METC) of the Radboud
University Medical Center (Ethics approval number: 2021-8231, METC Oost-Nederland).
The procedures adhere to the tenets of the Declaration of Helsinki (64 October 2013).
Twelve consecutive patients with a tibial plateau fracture who received a preoperative
CT scan underwent surgical fixation for <14 days and received a postoperative CT scan
according to protocol were included from a level 1 trauma center in the Netherlands
(Radboud University Medical Centre, Nijmegen). Patients were excluded when they
received previous knee surgery on the fractured knee or had pre- or postoperative CT scans
of insufficient quality (Figure 1).
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Figure 1. Overview of Study Methods.

2.2. 3D Virtual Planning (3DVP)

The preoperative and postoperative CT scans from all included patients were collected
from the hospital’s Electronic Patient Files and were anonymized. The preoperative, axial
CT images (Bone setting, slice thickness 0.5 mm) were uploaded on a laptop provided
by the 3DVP software developer (Sectra AB © ‘3D trauma for Orthopaedics’, Linköping,
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Sweden). The software converts axial CT slices into a 3D virtual model that can be freely
rotated. The femur, patella and fibula were first marked and removed, creating a model
of only the tibia (Figure 2A). All fracture fragments were then segmented, so that each
fragment was displayed with a separate color (Figure 2B). The fracture fragments were
reduced and after a satisfactory reduction, the implant material was placed (Figure 2C,D).
All fractures were first segmented and reduced by four researchers (NG, BE, JV, DA) and the
final reduction and placement of implants was analyzed and approved by an experienced
trauma surgeon (EH).
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Figure 2. Example of 3D Virtual Reduction: (A) Creating a 3D model of the tibia (B) Segmentation of
each fracture fragment (C) Reduction of fracture fragments (D) Placement of implant material.

2.3. Analysis of Postoperative CT vs. 3D Virtual Planning

Computed Tomography Micromotion Analysis (CTMA, version 23.1, Sectra AB ©,
Linköping, Sweden) is an interactive software tool developed to detect micromotion be-
tween objects such as bones or implants [14,15]. The postoperative CT scan and 3D virtual
planning were uploaded into the CTMA software. CTMA requires users to pick a ‘reference
body’ and a ‘moving body’. The tibial shaft was used as the reference body and the largest
intra-articular fragment of the fracture was used as the ‘moving body’. For bilateral frac-
tures, the two largest intra-articular fragments were analyzed to create an overview of the
articular surface on both the lateral and medial side. The ‘reference bodies’ and ‘moving
bodies’ were aligned and coordinates and measurement points were defined in the X, Y,
and Z-axes. The combined values of X and Y were used to define intra-articular gap. The
Z-axis was defined as the line from cranial to caudal and was used to define intra-articular
step-off. The point of measurement was placed at the center of the joint surface of the
largest intra-articular fragments (Figure 3).

Furthermore, a visual comparison of the intra-operative vs. 3DVP was created for all
patients. Videos S1 and S2 present an overview of one patient, where blue represents the
virtual reduction and orange represents the reduction of the postoperative CT scan. The
measured fragment of this patient was the largest fragment on the medial side.

We reviewed the use of CTMA to analyze the migration of fracture fragments, for
this analysis has not been used before analyzing fracture fragments. Measurements were
performed twice by the same certified software user to minimize measurement errors. To
limit recall bias, the time in between two measurements was two weeks. Furthermore, the
intra-observer agreement was calculated for these measurements. In accordance with the
divisions of Koo et al. [16], the intra-observer agreement of ≤0.50 was categorized as poor,
0.51–0.75 as moderate, 0.76–0.90 as good and >0.90 as excellent.
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3. Results
3.1. Patient Demographics

Twelve patients received a preoperative CT scan as well as a postoperative CT
scan < 14 days after their tibial plateau surgery. For three of the identified patients, the CT
images were created by a 3D C-arm in the operating theatres. The quality of this imaging
method was insufficient to create a 3DVP and therefore, these patients were excluded. We
aimed to include both unicondylar and bicondylar fractures to assess the quality of our
quantification for patients who received dual plating. Fortunately, we were able to include
six unicondylar fractures and three bicondylar fractures. Patient demographics can be
found in Table 1.

Table 1. Patient Demographics.

Patient Demographics Total (n = 9)

Gender
Male 4

Female 5
Age (Range) 45.8 (20–69)

Schatzker Classification
Schatzker I 0
Schatzker II 3
Schatzker III 0
Schatzker IV 3
Schatzker V 0
Schatzker VI 3

Side
Left 4

Right 5
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3.2. 3D Virtual Reduction vs. Surgical Reduction: Analysis of Largest Intra-Articular Fragment

The mean translation on the Z-axis, which was defined as the intra-articular step-off,
was 2.4 mm (Range 0.5–4.6). Moreover, the mean translation of the X-axes and Y-axes, which
was defined as the intra-articular gap, was 4.2 mm (Range 0.6–10.7). The mean translation
per patient can be found in Table 2. The differences between the postoperative CT and 3DVP
for the patient with the greatest differences and the smallest differences were visualized,
where the 3DVP is blue and the post-operative reduction is orange (Videos S1 and S2). The
patient with the largest differences comparing 3DVP to the postoperative CT was a patient
with a large depressed medial fragment, which was classified as a Schatzker 4 (Video S1).
The patient with the smallest differences was a patient with a lateral split fragment that
was classified as a Schatzker 2 (Video S2). The intra-observer agreement for the CTMA
measurements was >0.93 and was categorized as excellent.

Table 2. Overview of differences between the largest intra-articular fragments on postoperative
CT vs. 3DVP.

Patient Gap (XY) Step-off (Z)

1 7.0 1.5

2 1.5 0.5

3 10.7 4.6

4 1.4 1.8

5 3.3 1.7

6 3.3 2.0

7 5.7 4.4

8 6.7 3.1

9 0.6 1.5

Mean 4.2 2.3

Range 0.6–10.7 0.5–4.6

4. Discussion

The aim of this study was to assess the feasibility of CTMA to provide an overview
of the differences between 3DVP and the postoperative reduction on CT for patients with
tibial plateau fractures. This study shows that a reasonable comparison between 3DVP and
a postoperative CT can be created using CTMA for patients with both unicondylar and
bicondylar tibial plateau fractures.

4.1. Interpretation of Results

In this study, we used CTMA to compare the reduction of the largest intra-articular
fragments of 3DVP and the postoperative CT-scan. The mean values show that there were
certain differences between 3DVP and the postoperative CT. For example, the intra-articular
step-off was less than the intra-articular gap. The effect of intra-articular step-off and gaps
on long-term patient related outcomes has been a subject of interest in literature [7,17–19].
Since intra-articular step-off and gaps are underestimated on X-rays and even on CT, Assink
et. al. created a 3D quantification for measurement of intra-articular step-off and gaps
for tibial plateau fractures. Their study showed that patients with a larger intra-articular
surface of the tibial plateau fracture on a preoperative CT suffer from poorer long-term
patient-related outcomes [20]. However, this quantification was based on the preoperative
CT scan. This gap in knowledge has been overcome by a study by Rosteius et al. [21].
Their study showed that a step-off of approximately 2.9 mm and a gap size of 6.6 mm on
postoperative CT scans result in acceptable patient-related outcomes. Comparing these
results to the differences of respectively 2.4 mm for step-off and 4.2 for gaps, we can
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conclude that CTMAanalysis can be used to compare 3DVP and the postoperative CT in
terms of step-off and gap and can provide a feasible comparison.

Moreover, the intra-observer agreement was calculated for the CTMA measurements
to review the use of CTMA for the migration of fracture fragments. We were aware of
possible difficulties regarding the measurements of the bilateral fractures in this analysis
due to extensive scattering on the postoperative CT scans because of dual plating. The
quality of 3D C-arm imaging was not sufficient for this analysis, however, the reductions
could be visualized adequately with the use of SEMAR techniques on a postoperative CT
scan to remove scattering of the implant materials. With an intra-observer agreement of
>0.93 for the measurements, we can conclude that the measurements were reproducible
and accurate.

In clinical practice, CTMA analysis could provide surgeons with a quantification of
their operative results after tibial plateau surgery. Intra-operative guidance of CTMA is not
yet possible in clinical setting. However, integrating CTMA in a mixed-reality platform,
could be beneficial for surgeons. Further research on this integration is now pending in our
clinic. Moreover, the use of 3DVP in clinical practice to assess outcomes such as differences
in operation time, number of fluoroscopies, surgeon’s satisfaction and patient-related
outcomes would be a topic of great interest to researchers. To assess the quality of reduction
using 3DVP and to assess the additional value using 3DVP for tibial plateau surgery and
patient-related outcomes, a prospective study has begun.

4.2. Study Limitations

First and foremost, the number of included patients was restricted due to the limited
availability of postoperative CT scans for patients with tibial plateau fractures. When
analyzing the Schatzker classification of the included patients in this study, 33% were
classified as a Schatzker 2, 33% were classified as a Schatzker 4 and 33% were classified as a
Schatzker 6. It was noted that Schatzker 4 and Schatzker 6 have a greater representation
for our study compared to the incidence reported in literature, where the incidence varies
between 12–25% and 8–23% respectively [22–25]. This is in line with our hypothesis that
a surgeon would be more interested in the postoperative reduction for a more complex
fracture. For the purposes of our study, this could represent an overestimation of the
differences between postoperative CT and 3DVP. Our study shows that regardless of the
severity of the tibial plateau fracture, a feasible comparison can be provided using CTMA,
despite the relatively small number of analyzed patients. Moreover, we believe that it was
relevant to include a representation of both unicondylar and bicondylar fractures, which
was achieved with three bicondylar fractures and six unicondylar fractures.

Secondly, when using 3DVP, all fracture fragments are excellently visualized and can
be freely moved within the virtual space, without restrictions of soft tissue. However, due
to the presence of soft tissue, the smaller fracture fragments are usually left untouched
during surgery. Additionally, the 3DVP software allows fragments to be placed on top of
each other to create the reduction, without a notification from the 3DVP software, whereas
this would not be feasible during surgical fixation.

Thirdly, the comparison between 3DVP and postop CT was calculated based on an
axes system with X, Y and Z-values. We defined the Z-value as an accurate representation
of the step-off and calculated the squared mean of X and Y as a representation of the gap.
Ideally, these measurements would have included the complete surface of the tibial plateau,
for example, the quantitative measurements that were proposed by Assink et al. [20]. Our
measurements were based on one central measurement point of the largest intra-articular
fragments, which we believe was appropriately representative to create the comparison
that answered our research question.

5. Conclusions

3DVP gives an excellent insight into the fracture and its fragments. Utilizing CTMA, it
is possible to quantify the differences between 3DVP and a postoperative CT based on the
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largest intra-articular fragment. A prospective study to further analyze the use of 3DVP in
terms of intra-articular reduction and surgical and patient-related outcomes has begun.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm13050788/s1, Video S1: Overview of one patients’ differences
between postoperative CT and 3DVP—plateau view; Video S2: Overview of one patients’ differences
between postoperative CT and 3DVP—AP view.
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