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Abstract: Circulating tumor cells (CTCs) are tumor cells shed from the primary tumor into circulation,
with clusters of CTCs responsible for cancer metastases. CTC detection and isolation from the
bloodstream are based on properties distinguishing CTCs from normal blood cells. Current CTC
detection techniques can be divided into two main categories: label dependent, which depends upon
antibodies that selectively bind cell surface antigens present on CTCs, or label-independent detection,
which is detection based on the size, deformability, and biophysical properties of CTCs. CTCs may
play significant roles in cancer screening, diagnosis, treatment navigation, including prognostication
and precision medicine, and surveillance. In cancer screening, capturing and evaluating CTCs from
peripheral blood could be a strategy to detect cancer at its earliest stage. Cancer diagnosis using liquid
biopsy could also have tremendous benefits. Full utilization of CTCs in the clinical management of
malignancies may be feasible in the near future; however, several challenges still exist. CTC assays
currently lack adequate sensitivity, especially in early-stage solid malignancies, due to low numbers
of detectable CTCs. As assays improve and more trials evaluate the clinical utility of CTC detection
in guiding therapies, we anticipate increased use in cancer management.
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1. Introduction

Cancer has emerged as the leading cause of death in the United States and the
world. It is projected that 1,958,310 new cancer cases will be diagnosed—and more than
600,000 Americans will die from cancer—in 2023 [1–3]. However, in contrast with other
leading causes of death, cancer-related mortality continues to decline. From 1991 to 2020,
there was an overall reduction in cancer death by 33% [3]. Many factors, including effective
cancer screening, better diagnostic tools, the advancement of surgical and radiation tech-
niques, as well as emerging systemic treatments, including chemotherapy, immunotherapy,
and targeted therapies, are believed to be the reason behind the decrease in cancer-related
mortality. The ability to detect cancer as early as possible, personalize cancer treatments,
and effective strategies to prevent or reduce the risk of metastasis will be key in further
reducing cancer-related mortality.

Most solid tumor diagnoses are established based on radiographic findings, physical
examination, or direct visualization and confirmed by pathologic findings with tissue
biopsy. An alternative method to detect cancer is a liquid biopsy. Circulating tumor cells
(CTCs) and circulating tumor DNA (ctDNA) are the two main biomarkers detected in
liquid biopsies. Although CTCs and ctDNA were identified in 1869 and 1948, respectively,
they were not utilized until recently [4].

CTCs are tumor cells that are shed from the primary tumor into circulation, and
clusters are responsible for cancer metastases [5]. CTCs evaluation may play an integral
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role in cancer management in the future. In this review, we discuss CTC detection as-
says and current evidence regarding the implementation of the detection of CTCs into
clinical practice.

This article reviewed the potential utilization of CTCs in solid tumors, including cancer
screening and diagnostic, treatment guidance, and cancer surveillance. We reviewed and
compiled the pertinent past and ongoing studies on CTCs and solid tumors that will have
impacts on the future direction of CTC application.

2. How Are CTCs Being Detected and Isolated?

Detection and isolation of CTCs from the bloodstream are based on properties that dis-
tinguish CTCs from normal blood cells. Current CTC detection techniques can be divided
into two main categories: label-dependent or label-independent detection (Table 1) [6].

Table 1. CTC isolation techniques.

CTC Isolation
Technique Method Advantages Disadvantages

Label dependent
isolation

Antibody conjugation
to magnetic

nanoparticles

Antibody linked to
magnetic nanoparticles to
isolate CTCs expressing
specific marker

One assay with FDA
approval; can use
different antibodies to
isolate different
populations of cells

Low sensitivity;
down-regulation of
EpCAM markers during
metastatic transformation
can limit sensitivity

Microfluidics

Controlled flow in
microchip to enhance
CTC binding to antibody
coated microchip walls

High sensitivity with
high cell viability

Only able to process
small sample volumes

Label independent
isolation

Filtration

Size-based separation
with purification to
isolate CTCs from other
blood cells

Isolation regardless of
surface marker
expression

Requires large volumes;
poor purity; pore clogging

Microfluidics (not
dependent on

antibodies)

Flow through microchip
to separate CTCs based
on geometric properties

High sensitivity with
high cell viability

Only able to process
small sample volumes

Density gradient
separation

Centrifugation to
separate CTCs from
blood cells based
on density

Efficient process; cell
viability after isolation

Loss of cells (varying
density when cells
clump); often requires
further isolation due to
contamination with other
blood cells

Imaging
Fiber optic array laser
scanning to visually
detect CTCs

Enumeration of CTCs Lacking precision

Dielectrophoresis
Application of
non-uniform electric field
to isolate cells

High recovery rate
and viability

Low purity of the
isolated sample

Inertial focusing
Fluid inertia at high flow
rates to isolate
cell populations

Recovery of viable cells Requirement of
pre-processing of sample

Abbreviations: CTC: circulating tumor cell; EpCAM: epithelial cell adhesion molecule.

Label-dependent isolation methods depend upon antibodies that selectively bind cell
surface antigens present in CTCs. Unlike blood cells, CTCs express epithelial markers,
including epithelial cell adhesion molecules (EpCAM) and cytokeratin (CK) [7,8]. Specific
techniques utilizing this principle include antibody conjugation to magnetic nanoparticles
and microfluidics [9,10]. Although the phenotypic and functional definitions of CTCs vary
between multiple studies, it is widely accepted that CTCs lack CD45 and express EpCAM
and CK [11]. The cytokeratin expression pattern may differ in various cancer types and
will typically mimic the expression pattern in tissue biopsy specimens; moreover, it may
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change as patients receive treatment or have progression. CellSearch is one main technology
utilizing antibody conjugation to magnetic nanoparticles to isolate CTCs, and among the
multiple kits produced, one has received Food and Drug Administration (FDA) approval.
This technology depends upon the binding of anti-EpCAM-ferrofluid to epithelial CTCs
with subsequent isolation of labeled cells via magnets [9]. Although EpCAM is universally
expressed by CTCs, the expression may change after cancer progression or during cancer
treatment. Therefore, this assay is limited by low sensitivity and the downregulation
of epithelial markers on the cell surface as tumor cells become malignant and undergo
epithelial to mesenchymal transformation [9,12]. Microfluidics depends upon controlled
fluid flow which allows for optimization of cell contact with the walls of a microchip,
which have a relatively high surface area and are coated with antibodies for CTC isolation,
allowing for the binding of cell surface antigens to the chip walls, while other cells continue
to move through the microchip [10]. This assay allows for high sensitivity while maintaining
high cell viability; however, it is limited by its ability to process only small sample volumes.

Label-independent detection can isolate CTCs not based on cell surface markers but
rather on the size, deformability, and biophysical properties of CTCs [6,13]. Methods for
isolation include filtration, microfluidics (not dependent on antibodies), density gradient
separation, imaging, dielectrophoresis, and inertial focusing [6]. Filtration is dependent
upon the fact that CTCs are larger than blood cells, and this technique utilizes membranes
with varying pore sizes for the isolation of CTCs [14]. Microfluidics can also be used
in the case of size-based separation as well, depending upon the geometry of the CTCs,
to allow for the isolation of CTCs from blood cells [10]. Density gradient separation
utilizes centrifugation to isolate CTCs from other blood cells, although this assay may be
limited by CTCs loss as aggregates form altering density [6,15]. Fiber-optic array laser-
scanning technology is a visualization technique that uses high-speed scanning, allowing
for the localization of CTCs [16]. Dielectrophoresis uses a non-uniform electric field to
polarize cells, allowing tumor cell isolation [13]. Inertial focusing utilizes a complex process
involving fluid inertia in microchannels to allow for the focusing of cell populations and
collection [6]. Overall, these techniques represent alternative methods to CTCs isolation
that do not depend on the recognition of epithelial cell surface markers but rather on
differing properties of CTCs to separate them from blood cells.

3. Cancer Screening

Current cancer screening methods utilize radiographic technology (mammogram and
CT), direct visualization (colonoscopy), stool DNA (Cologuard), and cancer cell analysis
(pap smear). However, capturing and evaluating CTCs from peripheral blood could be a
strategy to detect cancer at its earliest stage. As demonstrated by Barriere et al. in their
analysis of de-differentiated CTCs in early-stage breast cancer, CTCs were detected in
39% of the cohort, suggesting that CTCs are detected early in oncogenesis, prior to the
development of metastatic disease, which suggests a role for screening for early-stage
malignancies [17].

At this time, much of our understanding of CTC detection for cancer screening has
been studied in the context of lung cancer [18]. An early study published in 2014 evaluated
CTC detection in conjunction with low-dose computed tomography (LDCT) for patients
with chronic obstructive pulmonary disease (COPD) and found that in 168 patients, CTCs
were detected in 3%. Of these patients, LDCT detected lung nodules within four years,
which were surgically resected, and all were found to be lung cancer [19]. These initial re-
sults were promising; however, a subsequent prospective cohort study including 614 adults
with COPD eligible for lung cancer screening analyzed CTCs via the size method and
found that at baseline screening, CTCs detection was only 26.3% sensitive for the detection
of lung cancer [20]. Therefore, while current methodologies have not proved to be clinically
effective in lung cancer screening, hope remains that as technological advances improve
the sensitivity of these assays, CTC detection may play a role in lung cancer screening [21].
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Multiple additional studies have evaluated the role of CTCs assays in cancer screening.
In the ICELLATE2 study, 3388 participants without known cancer who had risk factors for
cancer development underwent screening for the presence of CTCs, among which 3% had
at least 1 CTCs identified in their blood sample, which the authors note is comparable to
rates of cancer in the general population [22]. However, rates of malignancy in each group
were not reported. In an observational study including 542 patients, of which 277 had a
known cancer diagnosis, including a wide range of solid and hematologic malignancies, as
well as 265 with risk factors for malignancy but no known cancer diagnosis, CTCs were
detected via isolation by size in 100% of patients with cancer and 50% of patients without
known malignancy [23]. Of those without known malignancy who had CTCs detected, 20%
were found to have an early-stage malignancy via follow-up studies within the following
six months.

Additional studies have combined CTC assays in conjunction with conventional
cancer screening mechanisms. One study evaluating CTC detection in combination with a
prostate-specific antigen (PSA) for the detection of prostate cancer included 20 men with a
known diagnosis of prostate cancer, of which 100% were CTCs and PSA positive. Among
27 men undergoing screening for prostate cancer, 20 had both CTCs and PSA positivity,
with prostate cancer detected via prostate specific-membrane antigen positron emission
tomography (PSMA-PET) in 20/20 [24].

In the near future, it is plausible that the detection of CTCs in peripheral blood may
be incorporated into cancer screening. However, at this time, study results are mixed
but demonstrate a need for improved sensitivity prior to the mainstream application of
CTCs detection for cancer screening. Additionally, more robust studies will be needed to
determine a meaningful level of CTCs in the blood, as not all detected CTCs will develop
into clinically meaningful cancer.

4. Cancer Diagnosis

The current standard to diagnose a solid tumor is through tissue biopsy. However,
tissue biopsy techniques face different challenges due to their invasiveness, cost, time, and
sampling challenges due to tissue heterogeneity, sample contamination, and the presence
of necrotic, fibrotic, and normal tissue [25]. Liquid biopsy is achieved via the sampling of
blood or other body fluid to detect malignant cells (CTCs) and tumor DNA (ctDNA). Since
blood is directly in contact with most solid tumors, liquid biopsy primarily involves blood
sampling [26].

The use of CTCs detection for cancer diagnosis has been most extensively studied in
lung cancer. In a study evaluating CTC isolation by size method in 60 patients with lung
malignancy and 17 with benign lung lesions, malignant circulating cells were detected in
90% of patients with malignancy and 5% without malignancy [27]. In 72% of patients with
lung malignancy who had CTCs detected, the cells allowed for a specific histologic diagno-
sis. An additional study evaluating the diagnostic utility of CTCs for lung cancer enrolled
75 patients with pulmonary nodules concerning for malignancy, with CTCs detected in a
3 mL sample of blood in 47/67 diagnosed with malignancy (including 69% of primary lung
cancers and 75% of lung metastases from extrapulmonary malignancy), and in 0/8 patients
with benign lesions [28]. Overall, this study reported a sensitivity of 70% and specificity of
100%, although this was a relatively small sample size.

The diagnostic application of CTCs has been evaluated in other malignancies. In the
case of breast cancer, a study enrolled 130 patients with breast cancer, 236 with benign
breast disease confirmed by biopsy, and 29 healthy volunteer controls—with CTCs detected
in 85% with breast cancer, 16% with benign breast disease, and 3% of controls [29]. When a
CTC cutoff value of 2CTCs/4 mL blood was set, sensitivity was 75.56%, and specificity was
95.4%. In the case of prostate cancer, a study including 155 treatment-naive patients with
prostate cancer and 98 patients who had not undergone biopsy for suspicion of prostate
cancer, utilizing PSA, CTCs positivity, and a 12-gene panel via RNA extracted from CTCs,
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they were able to predict clinically significant prostate cancer with an area under the curve
(AUC) of 0.927 [30].

Overall, liquid biopsy does have its advantages, as it is minimally invasive and has the
possibility to detect tumors at an earlier stage. However, disadvantages remain, including
lack of sensitivity and inability to perform more specialized histologic analysis, such
as determining tumor grade, lymphatic and vascular invasion, etc. However, as these
traditional histologic features are replaced by genomic and next-generation sequencing
analysis in the future, the utility of liquid biopsy will continue to increase.

5. Treatment Navigation (Prognostication and Treatment Guidance) and
Precision Medicine

Tumor markers, radiographic, and clinical findings have been traditionally used to
predict treatment response. For example, in patients with pancreatic cancer, normalization
of previously elevated tumor marker CA-19-9 has been associated with a positive treatment
response [31]. The lack of sensitivity and specificity of tumor markers has pushed the
development of alternative non-invasive methods to monitor treatment response and to
navigate cancer treatment, including CTCs.

In addition to monitoring for treatment response, precision medicine, using tumor
markers to guide therapeutic options, has come to the forefront of cancer therapeutics.
Next-generation sequencing (NGS) has historically been accomplished via tissue obtained
from a tumor biopsy. Peripheral blood samples for NGS have been used in conjunction
with or as an alternative to tissue specimens. As CTC isolation is being perfected, a larger
number of CTCs will be isolated and may provide a better sample for NGS analysis.

Additionally, during disease progression, cancer cells are expected to acquire new
mutations that lead to resistance to cancer treatment. Ideally, we want to routinely obtain
tissue samples and repeat NGS with every progression. However, it would be logistically
challenging to perform a biopsy at every progression. Therefore, the ability to have a
reliable liquid biopsy will be a tremendous benefit.

CTCs analysis has been evaluated in prognostication and treatment guidance of
multiple solid malignancies, including breast, prostate, renal cell, non-small cell lung, small
cell lung, hepatocellular, pancreatic, gastric, and colorectal [32].

Table 2 summarizes pertinent studies that evaluated the clinical application of CTCs, in-
cluding the role of CTCs in prognostication and treatment guidance of select solid malignancies.

Table 2. Pertinent clinical trials evaluating the clinical application of CTCs.

Malignancy Trial Name NCT
Number

Patient
Population Study Arm Control Arm Patient

Number Study Outcome

Breast N/A [33] 01185509 HER2-MBC
w/HER2 + CTCs

Trastuzumab +
vinorelbine N/A 20 ORR 5%, mPFS

2.7 months

Breast
SWOG S0500

[34] 00382018
MBC

w/persistent
CTCs after
21 days of

therapy

Continue initial
therapy N/A 123

mOS 10.7 vs. 12.5
months, p = 0.98

Change
chemotherapy

Breast STIC CTCs
[35] 01710605 HR+,

ERBB2-MBC

First line therapy
by CTCs count
(chemo if ≥5
CTCs/7.5 mL,

endocrine if <5)

Clinician
driven first line

therapy
755

Noninferior OS (15.5
vs. 13.9 months, HR

0.94, 90% CI
0.81–1.09)

Prostate PROPHECY
[36] N/A

mCRPC starting
abiraterone or
enzalutamide

CTCs AR-V7 status N/A 118

Pretreatment
detection of AR-V7

associated with
poorer OS by two

different assays (HR
3.3, 95% CI 1.7–6.3
and HR 3.0, 95% CI

1.4–6.3, respectively)
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Table 2. Cont.

Malignancy Trial Name NCT
Number

Patient
Population Study Arm Control Arm Patient

Number Study Outcome

NSCL N/A [37] 03798743

NSCL w/o
targetable
mutation

w/progression
after

platinum-based
chemo

Sintilimab plus
docetaxol N/A 30

Patients with high
CTCs PD-L1

expression had better
mPFS (6.0 vs.

3.5 months, p = 0.011)
and mOS (15.8 vs.

9.0 months, p = 0.038)

CRC N/A [38] N/A Advanced KRAS
WT CRC

Irinotecan,
oxaliplatin, and

tegafur-uracil with
leucovorin and

cetuximab

N/A 48

mOS for CTCs ≥
3/7.5 mL vs. <3 was
18.7 vs. 22.3 months

(p = 0.038)

Abbreviations: MBC: metastatic breast cancer, CTCs: circulating tumor cell, ORR: objective response rate, mPFS:
median progression-free survival, mOS: median overall survival, HR+: hormone receptor positive, HR: hazard
ratio, 95% CI: 95% confidence interval, mCRPC: metastatic castration-resistant prostate cancer, AR-V7: andro-
gen receptor splice variant 7, NSCL: non-small cell lung cancer, PD-L1: programmed death-ligand 1, CRC;
colorectal cancer.

6. The Clinical Application of CTCs in Solid Tumors
6.1. Breast Cancer

The clinical utility of CTC detection and its use in prognostication, tailoring therapies
based on CTC characteristics, and guiding treatment based on CTC response to therapy
has been most extensively evaluated in breast cancer at this time.

6.1.1. Prognostication

Many studies have been conducted evaluating the prognostic value of detectable CTCs
at breast cancer diagnosis, both in localized disease and metastatic disease, demonstrating
worse progression-free survival (PFS) and overall survival (OS) when compared to patients
with undetectable levels or below a threshold of 5 CTCs/7.5 mL whole blood [39–44]. This
negative prognostic value holds true after initiation of treatment, with worse PFS and OS
when levels remain elevated despite therapy [40].

Beyond simply quantifying CTCs, molecular analysis of these cells can provide ad-
ditional prognostic information. As previously mentioned, as malignant epithelial cells
become metastatic, they will undergo epithelial to mesenchymal transition in which they
undergo a phenotypic transformation allowing for tissue invasion. In a study of 427 pa-
tients with breast cancer, polymerase chain reaction (PCR) was able to detect epithelial to
mesenchymal transcription factors within CTCs of 18% of patients, with these patients man-
ifesting a shorter disease-free survival [45]. A subsequent study evaluating the presence
of TWIST1, a marker of epithelial to mesenchymal transition, in patients with EpCAM-
positive CTCs, found a correlation with shorter overall survival [46]. Beyond transcription
factors, others have evaluated surface marker expression on CTCs, with one study finding
an association of high expression of CD47 and/or PD-L1 with shorter PFS [47].

6.1.2. Precision Medicine

CTCs can additionally play a role in guiding targeted therapies. With breast cancer,
CTCs are able to be evaluated for HER2 expression, which can be dynamic over time [48].
In a study evaluating HER2 expression in CTCs of patients with advanced-stage breast
cancer, those with ≥2 HER2 + CTCs/8 mL who received anti-HER2 therapy had longer
PFS compared to those not receiving HER2-directed therapy [49].

However, the discrepancy between the HER2 status of the primary tumor and CTCs
has been observed [44,50]. As such, multiple studies have sought to determine the thera-
peutic implications of this discrepancy. In a multicenter phase 2 trial that included seven
patients with HER2 non-amplified tumors who had ≥2CTCs/7.5 mL having at least 50%
HER2 positivity, treatment with lapatinib, a HER2-directed therapy, resulted in objective
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response in 0 patients [51]. A similar study conducted using trastuzumab-emtansine in a
similar population of 11 patients with metastatic HER2-negative breast cancer with HER2
amplified CTCs (at least 1 HER2 amplified CTCs/7.5 mL) showed partial response in
only one patient [52]. The lack of efficacy of HER2-directed therapies in patients with
HER2-expressing CTCs with negative expression in the primary tumor was shown in
an additional phase II trial including 20 patients, with only partial response observed in
1 patient [33]. Why there is a discrepancy in HER2 status between the primary tumor
and CTCs remains unclear. Prior study has shown discordance between the HER2 status
of a primary tumor and metastatic disease infrequently [53]. Different hypotheses have
been proposed regarding this discrepancy, including the acquisition of HER2 amplification
during the mesenchymal to epithelial transformation or heterogeneity of HER2 status
within the primary tumor reflected in heterogeneous CTCs [51]. At this time, evidence is
lacking in support of tailoring therapy based on CTCs when discrepant from the primary
malignancy, although this does remain an area of interest and will require additional study.

An additional application of CTCs in guiding targeted therapy includes single-cell
CTC genomic DNA sequencing to detect mutations in the ESR1 gene, as mutations have
been associated with resistance to estrogen deprivation therapy [54,55]. In a study of
46 patients with luminal breast cancer, ESR1 mutations were detected via sequencing of
genomic DNA in the CTCs of 12 patients, all of whom had been treated with estrogen
deprivation therapy [54]. However, these mutations were absent in the primary tumor
tissue sample but were detected in metastases obtained after CTCs analysis. A study
evaluating the detection of ESR1 mutations in CTCs found concordance with ctDNA in 95%
of cases [56]. However, an additional study suggested that the detection of ESR1 mutations
and splice variants may be less sensitive in CTCs compared to ctDNA, although this was
a smaller study [57]. In another study evaluating ESR1 methylation, high concordance
was found between detection in CTCs and ctDNA, with methylation associated with poor
response to everolimus/exemestane [58].

Within breast cancer, other markers can be evaluated to help guide therapy. For
example, multiple studies have demonstrated the ability to detect PIK3CA mutations within
CTCs, and as mutations in PIK3CA can predict resistance to HER2-directed therapies, this
is a potential mechanism to guide treatment [59]. Much like HER2 expression, there may
be a discrepancy in mutational status between the primary tumor and CTCs [60]. At this
time, to our knowledge, tailoring treatment based on the assessment of PIK3CA mutational
status in CTCs has not been clinically evaluated.

6.1.3. Treatment Guidance

Multiple studies have demonstrated the negative prognostic value of persistently ele-
vated CTCs in spite of systemic chemotherapy [61–63]. Based on this observation, multiple
clinical trials have been conducted with the intention of changing therapeutic strategy based
on CTCs elevation, essentially allowing CTCs response to guide therapeutic decisions.

SWOG S0500 was an early trial that evaluated 288 women with metastatic breast cancer
with CTCs elevation at baseline. Of these, 123 had persistently elevated CTCs after 21 days
of chemotherapy and were randomly assigned to continue the current chemotherapy or
change to a different chemotherapy [34]. Ultimately, there was no difference in OS observed
between these groups. EORTC 90091-10093 BIG 1-12 Treat CTCs was a similarly designed
phase II trial, enrolling 63 patients with non-HER2 amplified breast cancer who had at
least 1 CTCs/15 mL following neoadjuvant chemotherapy and surgery, and randomized
them to receive trastuzumab-based on the prior observation that patients with non-HER2
amplified breast cancer received a benefit from trastuzumab [64]—with 1 hypothesis that
this benefit may stem from the targeting of HER2 positive CTCs, versus observation, with
a primary endpoint of the rate of detection of CTCs at 18 weeks [65]. However, this study
was discontinued early due to futility.

Later, CirCe01 was a prospective, multicenter randomized trial in which 204 patients
with metastatic breast cancer who had progression on two prior lines of therapy were
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enrolled [66]. Patients with elevated CTCs were randomized to standard care or a CTCs-
driven arm in which the change in CTCs suggestive of treatment failure would prompt a
transition to the next line of therapy. OS was ultimately not different between the two arms,
although this study was limited by patient accrual and compliance.

STIC CTCs was a randomized, open-label phase 3 noninferiority trial enrolling women
with hormone receptor-positive, ERBB2-negative metastatic breast cancer who were ran-
domized to either clinician-driven first-line treatment versus treatment based on CTC
count, with those with CTCs ≥ 5/7.5 mL receiving chemotherapy and CTCs < 5 receiving
endocrine therapy [35]. A primary endpoint of noninferiority was achieved. However, a
higher rate of chemotherapy-related adverse events was seen in the CTC-driven arm.

Overall, CTC monitoring for treatment guidance remains an area of interest in breast
cancer. However, at this time, clinical data are lacking in support of its routine use. Ad-
ditional clinical trials will be necessary going forward to determine its value in breast
cancer management.

6.2. Prostate Cancer

Within the field of prostate cancer, CTCs have shown value in the prognostication
of patient outcomes. Beyond this, there has been great interest in monitoring androgen
receptor splice variants (AR-V) within CTCs to assist in the guidance of therapy.

6.2.1. Prognostication

Much like breast cancer, the elevation of CTCs has been demonstrated to have a
negative prognostic value in prostate cancer. Studies have demonstrated poorer PFS and OS
among patients with metastatic castration-resistant prostate cancer (MCRPC) [67,68], as well
as patients with castration-sensitive prostate cancer [69,70]. Additionally, beyond the initial
elevation of CTCs before therapy, multiple studies had shown the persistence of negative
prognostic value when the CTCs were continually elevated despite chemotherapy [71–73].

Beyond simple detection and quantification, CTCs have been evaluated for various
markers, allowing for better prediction of patient outcomes. AR-Vs are one such marker.
For example, AR-V7 detected in CTCs has been associated with more aggressive and
advanced disease and poorer patient outcomes [74,75]. Another study aimed at determining
other prognostic markers in prostate cancer evaluated transcriptional profiles of patients
with MCRPC and was able to identify two distinct transcriptional clusters, one of which
was associated with worse OS [76]. Additionally, CTC detection has been evaluated in
combination with other makers. For example, a study of 711 patients with MCRPC found
the combination of CTCs ≥ 5CTCs/7.5 mL with LDH > 250 U/L after 12 weeks of therapy
was predictive of 2-year survival of 2% versus 46% observed in patients lacking these
markers [77].

6.2.2. Precision Medicine

Much interest has been generated in the evaluation of AR-Vs present in CTCs and
the impact of these splice variants on patient response to therapy. A study evaluating the
expression of AR-Vs in CTCs from 118 patients with metastatic prostate cancer undergoing
treatment with cabazitaxel found that CTCs reduction to <5CTCs was less frequently
observed in patients with AR-V9 positive CTCs at baseline and that those with AR-V1
expression after two weeks of therapy exhibited worse OS [78]. An additional study
evaluating outcomes of patients with MCRPC who were on their second line or greater
of therapy found that those with CTCs with detectable AR-V7 trended towards superior
survival when treated with taxanes over an androgen receptor signaling inhibitor (ARSI),
whereas those not expressing AR-V7 had superior survival with an ARSI over taxanes [79].
However, another phase II study (PROPHECY) conducted in 118 men with metastatic
prostate cancer found that AR-V7 positivity in CTCs prior to treatment with abiraterone
or enzalutamide was associated with worse PFS and OS [36]. These studies demonstrate
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the potential utilization of CTCs for AR-V analysis, which may assist with the selection
of therapy.

Other studies have evaluated different markers and their predictive value for response
to therapy. A recent phase IB/II study evaluating ribociclib plus docetaxel in MCRPC
found non-amplified MYC in baseline CTCs to be associated with longer radiographic
PFS [80]. Another phase 2 trial evaluated BIND-014, a prostate-specific membrane antigen
(PSMA)-directed docetaxel-containing nanoparticle, and found that after treatment, there
was a selective reduction in PSMA-positive CTCs [81], which suggests a role for treatment
monitoring of various marker expression in CTCs in guiding further therapeutic choices.

6.3. Non-Small Cell and Small Cell Lung Cancer
6.3.1. Prognostication

Within non-small cell lung cancer (NSCLC), multiple studies have demonstrated the nega-
tive prognostic implications of elevated CTCs in patients with early-stage disease [82–84], with
elevation following surgical resection also predictive of poorer prognosis and earlier disease
recurrence [85–87]. The negative prognostic value also holds true in patients with advanced
disease [88,89], including those with persistently positive in spite of treatment [90]. In
addition to simple quantification, a recent study utilizing PCR was able to evaluate gene
expression and identify a genetic panel predictive of poorer prognosis in NSCLC [91].

Beyond CTCs sampling from peripheral blood, 1 study evaluated CTC detection within
the pulmonary venous system and found that in 100 patients with early-stage NSCLC,
pulmonary venous CTCs were detected in 48% and associated with poorer PFS [92]. Interest-
ingly, a recent trial randomized patients with early-stage lung cancer undergoing lobectomy
to a vein-first (ligation of effluent vessels completed first) or artery first-procedure and
found that those who had artery-first ligation had a higher risk of CTC increase during
surgery, with a propensity-matched analysis demonstrating better 5-year overall survival in
the vein-first group [93]. This demonstrates a role for the understanding of CTC physiology
contributing to the improvement in disease management.

Detection of circulating tumor cells in patients with small cell lung cancer (SCLC) is a
poor prognostic marker as well [94–98]. Different from other malignancies, higher rates of
CTCs have been reported in SCLC. For example, a study of 60 patients with extensive stage
SCLC identified CTCs in 90% of patients, with a range from 0 to 24,281 per 7.5 mL [99].
This same study reported that prognostic accuracy using CTCs detection was greatest
in patients who had a reduction of CTCs count by 89% following chemotherapy. Other
studies have supported the prognostic value of CTCs reduction following chemotherapy
in SCLC [100,101]. Beyond the reduction in CTCs, monitoring tumor markers may also
hold value in treatment navigation. One study evaluated vascular endothelial growth
factor receptor (VEGFR) expression on CTCs of patients with SCLC undergoing treatment
with pazopanib (VEGFR inhibitor), finding an initial reduction in CTCs expression with
treatment initiation, but with disease progression, a significant increase in CTCs were
observed with a significant increase in VEGFR expression [102]. This suggests a role for
tailoring therapies to receptor expression of CTCs in SCLC.

6.3.2. Precision Medicine

A recent prospective study evaluated CTC PD-L1 expression in patients with recurrent
or metastatic NSCLC prior to and after initiation of ICI therapy and found that increased
expression of CTC PD-L1 from prior treatment to after treatment was associated with better
PFS and OS, which may potentially allow for determination of which patients may benefit
from further ICI therapy [103]. In a study evaluating 30 patients with NSCLC without
targetable mutations who had progression on first-line platinum-based chemotherapy and
were now receiving sintilimab (PD-1 inhibitor) plus docetaxel, patients with high PD-L1
expression on CTCs had longer median PFS and longer median OS when compared to
patients with low CTC PD-L1 levels [37]. These studies suggest a role for monitoring PD-L1
expression on CTCs in NSCLC to guide therapeutic decisions.
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6.4. Colorectal Cancer

Within colorectal cancer, an active area of research surrounds the determination of
which patients with stage II and stage III disease may benefit from adjuvant chemotherapy.
As such, much of the research regarding the utility of CTCs has sought to evaluate a
possible role in this population of patients.

6.4.1. Prognostication

Among patients who are CTC-positive, quantification has been shown to help predict
the extent of disease involvement. In a study of 121 patients with advanced colorectal can-
cer, of whom 71 were CTC-positive, CTC positivity was predictive of the depth of invasion,
lymphatic involvement, distant metastatic disease, TNM staging, and serum CEA level,
and was overall predictive of less favorable PFS and OS, with persistent presence during
chemotherapy also associated with poorer PFS and OS [104]. Additional studies have corre-
lated baseline CTC count ≥3/7.5 mL with stage IV disease at diagnosis, at least three sites
of metastasis, elevated CEA levels, and increased TNM staging [105,106]. Beyond disease
characteristics, additional studies have supported the negative prognostication associated
with CTC detection in both localized and advanced CRC prior to intervention [107–110].

As previously mentioned, an important question in colorectal cancer remains in regard
to which patients benefit from adjuvant chemotherapy versus which patients may be able to
be spared this intervention. A study published in 2019 suggested that post-operative CTC
levels were more predictive of recurrence-free survival in patients with stage II–III CRC
undergoing surgical resection [111]. However, conflicting results have also been published
suggesting that CTC elevation following surgical resection was not predictive of patient
outcomes [109,112]. This discrepancy may, in part, be due to the timing of sample analysis
and represents an area where further study may be required.

However, CTCs do have prognostic value following chemotherapy in patients with
stage III colon cancer, with a study demonstrating post-chemotherapy persistence correlated
with worse DFS and OS [113]. An additional phase II trial enrolling patients with metastatic
CRC found that persistently negative CTC status during chemotherapy predicted better
OS [114].

6.4.2. Treatment Guidance

An interesting phase II trial including 48 patients with advanced CRC who received a
regimen of irinotecan, oxaliplatin, and tegafur-uracil—and made cross-trial comparisons
to patients who received capecitabine, oxaliplatin, and bevacizumab +/− cetuximab—
stratified patients by CTC count < 3 or ≥3 and found that median OS was similar for
both treatment groups if the baseline CTCs count was <3. However, patients receiving the
regimen consisting of irinotecan, oxaliplatin, and tegafur-uracil had better survival when
the CTC count was ≥3 [38]. While no significant conclusions can be drawn based on the
design of the study, the authors note that this is a hypothesis-generating study, suggesting
that patients who have elevated CTC counts may benefit from more aggressive treatment
regimens and allow for avoidance of higher toxicity chemotherapy in lower risk groups.

This was followed by the phase III VISNU-1 trial, which was an open-label, phase III
study that enrolled 349 patients with untreated, unresectable metastatic CRC with CTCs
count ≥3 and randomized them to receive FOLFOXIRI (irinotecan 165 mg/m2, oxaliplatin
85 mg/m2, leucovorin 400 mg/m2, and 5-fluorouracil 3200 mg/m2) plus bevacizumab
or FOLFOX (oxaliplatin 85 mg/m2, leucovorin 400 mg/m2, 5-fluorouracil 400 mg/m2,
then 2400 mg/m2) plus bevacizumab, and found that those who received FOLFOXIRI
plus bevacizumab had longer PFS [115]. It is important to note that grade 3 toxicity was
more frequently reported in the FOLFOXIRI arm. However, it is challenging to draw any
conclusions from this study using a primary endpoint of PFS when comparing a triplet
chemotherapy backbone to a doublet backbone, recognizing that a meaningful endpoint
would be OS or time to second progression following receipt of a second doublet in those
who received a doublet in the first line.
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7. Surveillance

Currently, disease surveillance is accomplished via clinical examinations, imaging
studies, and tumor markers. For patients who have elevated tumor markers at diagnosis,
it is not uncommon to see an elevation of markers prior to the detection of the recurrent
disease on imaging studies. However, current markers are lacking in sensitivity and
specificity, particularly in the setting of minimal disease, demonstrating a need for better
methods for early detection of minimal residual disease recurrence.

Circulating tumor cells may play a role in disease surveillance. In a study of prostate
cancer patients undergoing active surveillance, CTCs positivity was noted to be a marker of
upstaging and upgrading, and therefore, positive CTCs may be an indication for treatment
in patients with a localized malignancy [116]. Conversely, in a study using CTCs for
screening following surgical resection of early-stage breast cancer, the use of CTCs for
disease monitoring was not associated with improved OS or DFS [117].

At this time, the use of CTC monitoring for recurrent disease is likely lacking due to
the sensitivity of this assay. As laboratory techniques improve and sensitivity is improved,
CTCs may be a viable assay for monitoring recurrent disease.

8. CTCs vs. ctDNA

As previously mentioned, two primary biomarkers within liquid biopsy are CTCs and
ctDNA, with each of these having unique strengths and limitations [4,118] (Table 3). While
there is much discussion regarding which is the “better” assay, it is important to recognize
that each is unique and provides different information regarding an individual malignancy,
and perhaps, the optimal strategy may involve both—not one or the other.

Table 3. The comparison (advantages and disadvantages) between CTC and ctDNA.

Pros Cons

Circulating tumor cells

• Non-invasive
• Phenotypic and genotypic

characterization of tumor cells
• Role in prognostication
• Creation of patient-derived xenograft

• Current assays lacking in sensitivity
• Currently lacking trial data to guide treatment

Circulating tumor DNA

• Non-invasive
• Genotypic characterization of malignancy
• Short half-life allows for real-time

monitoring of tumor burden
• Evidence of role in guiding treatment

• Inability to analyze tumor cell phenotype

CTC detection has demonstrated utility in cancer prognostication in malignancies,
including breast, prostate, lung, and colorectal cancer, with persistently elevated levels
despite therapy further predictive of poorer patient outcomes. With this in mind, there is
likely a role in monitoring CTCs in response to therapy and adjusting treatment regimens in
response, although trial data does not yet support this indication. Similar to ctDNA, CTCs
allow for genomic analysis of malignancy, but beyond this, they also allow for phenotypic
analysis of a heterogenous tumor population—for example, identifying PD-L1 expression,
which may help predict response to immunotherapy. Additionally, CTCs have the potential
to be cultured, allowing for patient-specific tumor models for therapy testing, which may
have promising clinical applications in the future [119].

However, CTCs do have limitations. In a trial evaluating patients with colorectal
cancer with liver metastases, ≥3CTCs/7.5 mL were detected in 19% of patients, whereas
KRAS ctDNA detection used in this study was 91% sensitive [120]. At this time, the
relatively low sensitivity of CTC assays remains a limitation of its use. In addition, CTCs
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are a heterogeneous population, and therefore, phenotypic expression may change as
a result of treatment. While this may be a tool for monitoring treatment response and
adjusting therapy, clinical trial data does not yet support this function.

Circulating tumor DNA, on the other hand, provides valuable, real-time data regarding
tumor burden due to its short half-life, with studies demonstrating its superiority to CTCs
in correlation with levels and tumor burden [121]. Beyond this, studies have demonstrated
utility in monitoring for disease recurrence due to its high sensitivity and specificity, even
in states of low disease burden [122]. Additionally, there is evidence supporting the utility
of ctDNA in disease management. For example, in the case of non-small cell lung cancer,
evidence suggests that EGFR T790M mutation status may be determined by ctDNA and
used to guide therapy [123].

Like CTCs, ctDNA does have its limitations. First, ctDNA only allows for the genotypic
characterization of malignancy, as opposed to CTCs, which allow for phenotypic analysis.
In addition, the sensitivity of ctDNA may vary by organ involvement, with studies of
recurrent metastatic CRC demonstrating higher sensitivity with hepatic metastasis over
pulmonary metastasis [124].

9. Conclusions and Future Directions

CTCs are tumor cells that have detached from the primary tumor and entered the
blood circulation, and have the potential to form metastatic disease. The study of CTCs
has important implications not only for cancer diagnosis, prognosis, and treatments, but
also for screening and surveillance. CTCs have been shown to be present in the blood of
patients with almost all types of malignancy, and their detection and characterization can
provide valuable information, particularly in regard to prognostication.

In the future, studies of CTCs will likely continue to play an important role in cancer
research and clinical practice. However, several challenges still exist. CTC assays currently
lack adequate sensitivity, especially in early-stage solid malignancies, due to low numbers
of detectable CTCs [125]. One important area of research is the development of more
sensitive and specific methods for detecting and analyzing CTCs. Recent advances in
detection methods, including size-based detection, microfluidic, and nanotechnology, have
enabled more precise and comprehensive characterization of CTCs.

Another area of future research is the functional analysis of CTCs, including their role
in tumor progression, metastasis, and resistance to therapy. At this time, CTC analysis may
play a role in cancer prognostication and phenotypic evaluation of tumor cells, but data
regarding how to tailor treatment based on the phenotypic and genotypic expression of
CTCs—as well as how to tailor treatment based on CTC response to therapy—is currently
lacking. The molecular and cellular mechanisms that control CTC survival, migration,
and cluster formation in distant organs are not yet fully understood and warrant further
investigation. Furthermore, the potential clinical applications of CTCs are actively being
explored. For example, CTC-based liquid biopsy has the potential to complement or replace
traditional tissue biopsy, as it is less invasive and may provide real-time monitoring for
disease progression, treatment response, and detection of newly acquired mutations in the
cancer cells. Moreover, the identification of specific biomarkers for CTCs can aid in the de-
velopment of targeted therapies that are tailored to individual patients (precision medicine).

As assays improve and more trials evaluate the clinical utility of CTC detection in
guiding therapies, we anticipate increased use in cancer management. Full utilization of
CTCs in the clinical management of malignancies—from cancer screening, diagnosis, and
treatment navigation to surveillance—may be feasible in the near future. As of February
2023, over 80 trials involving CTCs in some capacity are actively recruiting (Table 4).
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Table 4. Selected ongoing clinical trials in CTCs and solid tumors.

Malignancy Trial Name NCT
Number Patients Study Arm Control Arm Primary Outcome

CRC POACC-1 03700411
Undergoing open radical

surgery for CRC

Morphine

N/A

Change in CTCs count
following surgery depending

on the type of
perioperative analgesia

Piritramid

Epidural

Breast HER2Cell 04993014
Early HER2+ breast
cancer w/complete

response to neoadjuvant
trastuzumab and

pertuzumab

Adjuvant
trastuzumab N/A DFS between adjuvant arms

based on whether the patient
had HER2 + CTCs at

baseline analysis
Adjuvant

trastuzumab plus
pertuzumab

N/A

Liver N/A 04800497 Resected HCC N/A N/A

Association between CTCs
obtained 0, 30, 90, 180, and 365

days following surgical
resection and DFS

Breast N/A 03928210 Advanced or metastatic
breast cancer Digoxin N/A Change in CTCs cluster size

after ingestion of oral digoxin

Breast N/A 04065321
Luminal A breast cancer

w/o lymph node
involvement

CTCs monitoring PET-CT
examination DFS

Prostate C-ProMeta-1 05533515

Localized prostate cancer
scheduled for
robot-assisted
prostatectomy

CTCs level prior to
surgery and at 3

months
post-surgery

N/A
Post-radical prostatectomy
treatment failure during 4.5

years of follow-up

Thoracic
malignancy N/A 04048512

Neoplastic thoracic
disease undergoing

resection with
intraoperative ECMO

or CPB

CTCs quantification N/A
Quantification of CTCs before

and after surgery

Neoplastic thoracic
disease undergoing

resection without ECMO
or CPB

Pancreas EUS-CTCs 04677244 Suspected pancreas cancer

CTCs detection in
portal venous blood

before and after
endoscopic biopsy

N/A
Frequency of increase of CTCs
> 4cells/mL in portal system

after endoscopic biopsy

Bladder N/A 04811846 Recurrent transitional cell
cancer of the bladder

Transurethral
resection of bladder

tumor N/A
Change of CTC count in blood
before, during, and after the
procedure, and CTC number

and characterization in
purging fluid

Plasma kinetic
vaporization of
bladder tumor

Stomach N/A 05208372 Gastric cancer
Radical laparotomy

N/A
Quantity and classification of
CTCs in ascites and blood and
expression of ctDNA in ascites

and blood
Laparoscope-

assisted radical
gastrectomy

Abbreviations: CRC: colorectal cancer, CTCs: circulating tumor cell, DFS: disease-free survival, ECMO: extracor-
poreal membrane oxygenation, CPB: cardiopulmonary bypass.
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