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Abstract: Quantifying the role of genetics via construction of polygenic risk scores (PRSs) is deemed
a resourceful tool to enable and promote effective obesity prevention strategies. The present paper
proposes a novel methodology for PRS extraction and presents the first PRS for body mass index
(BMI) in a Greek population. A novel pipeline for PRS derivation was used to analyze genetic data
from a unified database of three cohorts of Greek adults. The pipeline spans various steps of the
process, from iterative dataset splitting to training and test partitions, calculation of summary statistics
and PRS extraction, up to PRS aggregation and stabilization, achieving higher evaluation metrics.
Using data from 2185 participants, implementation of the pipeline enabled consecutive repetitions
in splitting training and testing samples and resulted in a 343-single nucleotide polymorphism PRS
yielding an R2 = 0.3241 (beta = 1.011, p-value = 4 × 10−193) for BMI. PRS-included variants displayed a
variety of associations with known traits (i.e., blood cell count, gut microbiome, lifestyle parameters).
The proposed methodology led to creation of the first-ever PRS for BMI in Greek adults and aims at
promoting a facilitating approach to reliable PRS development and integration in healthcare practice.

Keywords: polygenic risk score (PRS); bioinformatics; body mass index (BMI); Greek adults

1. Introduction

According to WHO estimates for 2016, a considerable 49% and 13% of the global adult
population presented overweight or obesity, whereas worldwide obesity prevalence has
tripled since 1975 [1]. In this context, respective linear predictions dictate that about 50%
of the global population will suffer from obesity by 2030 should similar increasing trends
continue uninterrupted [2]. Increased body weight and fat accumulation are evidently
directly related to elevated cardiometabolic risk and, subsequently, augmented prevalence
of chronic diseases related to glycemic and lipidemic profile, such as type 2 diabetes and
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cancer [3]. Due to its preventable nature and demand for effective prevention strategies [4],
current research focuses on deepening understanding of multifactorial obesity etiology by
focusing on the quantified role of genetic predisposition and its reciprocal relation with
lifestyle and environmental determinants in populations with various characteristics.

Indeed, aggregation of multiple single nucleotide polymorphisms (SNPs) in construc-
tion of polygenic risk scores (PRS) is increasingly gaining ground as a practical tool to
enable quantification and interpretation of genetic information on phenotypic variance.
From identification of the first 97 key BMI-related variants [5] up to creation of multiple
BMI-specific PRSs presented in the PGS Catalog database [6], using polygenic predictions
is increasingly viewed as a useful tool to assess and explain the relevant attributed obe-
sity variance [7–11]. The advantages of the role of PRS use for disease prevention and
augmented accuracy in precision medicine are discussed in the context of potentially in-
creasing both personal and clinical utility [12]. Recent studies show that inclusion of PRS
in prediction models for certain disease outcomes, such as cardiovascular disease or cancer,
carries similar importance to other contributing factors, namely lipidemic biomarkers
or smoking [13–15]. For that reason, future PRS integration in personalized medicine is
deemed useful for disease diagnosis, risk prediction and forming contextualized lifestyle
recommendations [13].

The current literature highlights the need for an efficient translational approach to
integrating PRS use into daily practice, potentially via inclusion in tools predicting dis-
ease risk [13]. In an effort to increase validity and straightforward application, various
methodologies for PRS creation have been suggested. In the case of examining BMI, such
examples refer to conduct of large genome-wide association studies (GWAS) and subse-
quent inclusion of significant SNPs in the form of a score [11,16], a priori aggregation of
literature-based SNPs [9] or even use of other techniques, such as functional data analy-
sis [17]. However, most approaches suggested to date focus on the use of one methodology
and do not display increased portability and applicability across populations [18]. The
need of improving their constructive parameters is, therefore, deemed central in order to
increase PRS validity and wider implementation [12].

Hereby, we introduce the use of a novel, automated and iterative approach for PRS
construction using repetitive sample splitting processes, informed decision-making through
real-time comparison of different summary statistics’ methodologies and aggregation of
PRS candidates based on a stabilizing iterative procedure. We present the results of its
application in creating the first PRS for BMI in Greek adults using data from a unified
database of three separate cohorts. The suggested outlined pipeline constitutes an innova-
tive approach in facilitating PRS construction in a straightforward manner, applicable to
cohorts of various sizes and characteristics.

2. Materials and Methods
2.1. Study Population

For the purpose of the present analyses, data from three cohorts of Greek adults were
used, namely the case-control Greek Non-Alcoholic Fatty Liver Disease (NAFLD) study [19],
the cross-sectional OSTEOS study [20] and the case-control THISEAS (The Hellenic Study
of Interactions between Single Nucleotide Polymorphisms and Eating in Atherosclerosis
Susceptibility) [21] study. All studies were approved by the Research Ethics Committee
of Harokopio University of Athens and further required participants’ written informed
consent prior to enrolment (NALFD protocol number: 38074/13-07-2012, OSTEOS protocol
number: 15/8-12-2005, 8/12/2005, THISEAS protocol number: 10/9-6-2004, 14/6/2004).

The detailed protocols of all three studies have been previously described elsewhere [19–23].
Briefly, the NAFLD study recruited adult participants without liver disease/injury and re-
porting absence of excess alcohol drinking at the time of induction to the study. Volunteers
were recruited from the Outpatient Clinics of the First Department of Propaedeutic and
Internal Medicine in Laiko General Hospital, during the period 2012 to 2015 [19]. Recruits
were further screened for NAFLD through abdominal ultrasound and deemed as controls
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in the absence of hepatic steatosis or in the presence of mild-stage, or cases in presence
of moderate or severe hepatic steatosis [20]. Concerning the nodes of the OSTEOS study,
970 community-dwelling adults were recruited from rural and urban areas of Greece and
assessed for quantitative ultrasound (QUS) parameters of bone health during the 2010–2012
period and in cooperation with the Hellenic Society for the Support of Patients with Osteo-
porosis and the Laboratory for the Research of Musculoskeletal System “Th. Garofalidis”,
School of Medicine, National and Kapodistrian University of Athens [21]. Last, within the
THISEAS study, a total of 2565 participants were recruited from three Athenian hospitals,
open protection centers and municipalities during the years 2006–2010. Recruits were
mainly assessed using coronary angiography information and were categorized as controls
if they presented negative coronary findings or a negative stress test or did not report
any related clinical symptoms. Volunteers were categorized as cases in the presence of
acute coronary syndrome or stable coronary artery disease (> 50% stenosis in ≥ 1/3 main
coronary vessels) [22,23].

2.2. Anthropometric Measurements

Anthropometric characteristics, including body weight and body height, were mea-
sured for all three studies. Body weight was measured using the TANITA Segmental Body
Composition Analyzer BC-418 and a calibrated scale to the nearest 0.1 kg. Height was
calculated to the nearest 0.5 cm using a mounted stadiometer. Participants were barefoot
and maintained light clothing and measurements occurred twice and average values were
kept as final in all projects. All measurements were conducted by trained professionals.
BMI was calculated for all participants via use of the following formula:

BMI
(

kg
m2

)
= Body Weight(kg)/ (Body Height)2(m2)

Participants in all studies were classified based on BMI values in the categories of un-
derweight (BMI < 18.5 kg/m2), normal weight (18 kg/m2 ≤ BMI < 25 kg/m2), overweight
(25 kg/m2 ≤ BMI < 30 kg/m2) or obese (BMI ≥ 30 kg/m2). Within-study group differences
in BMI were calculated using Kruskal–Wallis tests.

2.3. Genotyping Analyses

For the NAFLD study, DNA samples were isolated using peripheral blood lympho-
cytes and genotyped via use of the Infinium CoreExome-24 BeadChip, Illumina genome-
wide SNP array (with 567,218 fixed markers). OSTEOS’ DNA samples were isolated from
buffy coats and genotyped using the Axiom Precision Medicine Diversity Research Array
[with over 850,000 SNPs, insertions, deletions and copy number variations (CNVs)]. DNA
samples from the THISEAS study were extracted from whole blood and genotyped using
the Illumina Metabochip (with about 200.000 SNPs).

2.4. Preprocessing and Statistical Analysis
2.4.1. Dataset Merging and Genotype Imputation

Prior to joint statistical analysis and PRS derivation, the phenotypic and genotypic
data of the three populations were merged. While the phenotypic integration was straight-
forward and comprised the simple join of the common phenotypes across the three
datasets, the following steps were followed for the genotypic data which were converted
to PLINK [24] 1.9 BED+BIM+FAM filesets. First, the PLINK filesets from NAFLD and
THISEAS were imported into R version 4.2.0. using facilities from the package snpStats,
version 1.46.0. Then, the process of merged dataset creation started with identifying the
identical SNPs between the two datasets in terms of accession numbers, position and
alleles. For the common but non-identical SNPs in terms of alleles, it was checked whether
they could be resolved with strand-flipping. Those SNPs that could not be resolved with
strand-flipping were not pointing to the same risk allele. This was resolved by querying
online resources (Ensembl with the R package biomaRt, version 2.52.0 and dbSNP with
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the R package rsnps, version 0.5.0). After the resolution, samples where the risk allele was
changed based on online search were subjected to allele switching to maintain proper risk
allele copies in the merged dataset. SNPs for which alleles could not be resolved by any
means were dropped from the merged dataset. Finally, the SNPs and genotypes unique
to each dataset were appended to the common ones to form the final SNP set. The same
appending was applied to the samples of each dataset.

As expected, the aforementioned process created many missing genotypes, especially
regarding non-common SNPs between the two datasets. To impute them, an iterative
imputation approach was followed using facilities from package snpStats. The package
includes genotype imputation functions based on linear regression of neighboring SNPs.
This process was repeated until no further genotype imputation was possible. For the re-
maining missing genotypes of the merged dataset, a k-nearest-neighbors-based imputation
technique was applied, implemented in the R package scrime, version 1.3.5.

The merging and the imputation process resulted in a merged NAFLD–THISEAS
dataset. The OSTEOS dataset was merged with the latter by repeating all the aforemen-
tioned steps, resulting in a merged NAFLD–THISEAS-OSTEOS dataset. The final merged
dataset was exported to PLINK format using functions from the snpStats package. Next,
to enhance the pool of SNPs for PRS derivation, the merged dataset was extended using
IMPUTE2 software [25] using the bundled 1000 Genomes Project reference panel. The
imputed and extended dataset was re-imported to R for further analysis.

2.4.2. Data Filtering and Summary Statistics

The first filter applied to genotypic data was to exclude poorly imputed genotypes;
therefore, SNPs with an IMPUTE2 INFO score less than 0.9 were excluded. Additional
genotype and sample filtering was performed using functionalities from the snpStats
package. Specifically, SNPs with an SNP call rate < 95% and minor allele frequency
(MAF) < 5% and samples with a sample call rate < 90% were excluded from further analysis.
The resulting filtered dataset was further subjected to a second round of genotype filtering
based on the Hardy–Weinberg (HWE) equilibrium, where SNPs with HWE p-value < 10−9

were also excluded from further analysis.
After dataset filtering, principal component analysis (PCA) was performed to cap-

ture any underlying population stratification not reflected by the confounders used in the
subsequent association tests using R package SNPRelate, version 1.30.1. Subsequently,
regression models were fitted for each SNP against BMI phenotype using sex, age, NAFLD
case/control and cardiovascular disease status along with selected PCs as correction co-
variates with the purpose of deriving summary statistics for each SNP, namely effects and
statistical significance for contribution of each single SNP to the phenotype. The number
of PCs was automatically selected using the Tracy–Widom statistic for assessment of the
most significant PCs based on their eigen values [26]. Four different algorithms were
used for derivation of summary statistics, namely simple General Linear Models (GLM, R
version 4.2.0), statgenGWAS version 1.0.8. [27], SNPTEST version 2.5.4 [28] and PLINK.

2.4.3. Derivation of PRS

Several PRS candidates were derived using PRSice2 [29] combined with an iterative
process for PRS derivation and validation and based on the merged dataset from the three
populations. The PRS was calculated with the default PRSice2 option, which is:

PRS =
k

∑
i=1

βiGi

N

where βi represents the effect of PRS SNP i, Gi is the genotype coding (0, 1, 2 following
PLINK notation, for the number of copies of risk alleles) and N the number of samples in
the population. The PRS is reported in the figures of the present articles after applying
min–max normalization to scale it to values between 0 and 1.
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In each iteration, the following actions were performed: first, the total dataset was split
to a training set (source set, 80% of samples) and a testing set (target set, 20% of samples).
Then, the source set was used to perform de novo association tests for each SNP with four
different methods (GLM, statgenGWAS, SNPTEST, PLINK) against the BMI phenotype.
Sex, age, NAFLD status and several automatically selected PCs (varying between 5–12
across multiple iterations), using the Tracy–Widom test, were used as confounders in the
regression models underlying each of the four methods, resulting in sets of summary
statistics derived with each method. Then, these summary statistics were used along with
the target dataset as inputs to PRSice2 for extraction of the optimal number of SNPs that
would comprise a candidate PRS for the specific iteration. The aforementioned steps, from
data splitting up to PRS synthesis with PRSice2, were repeated 100 times. At each iteration,
several performance metrics were collected, among which the statistical significance of the
PRS and the percentage of additional variance explained by the PRS (R2) as returned by
PRSice2. At this point, it should be noted that the PRSice2 PRS R2 is the difference between
the R2 of the “full” model, i.e., a regression model including all the covariates/confounders
and the PRS, and the “null” or “reduced” model, i.e., a regression model only with the other
covariates without the PRS. The PRS R2 values were collected for each iteration, resulting
in a baseline distribution that would be used later for assessing the statistical significance
of the final PRS.

After completion of PRS derivation iterations, SNPs comprising PRS candidates for
each summary statistics method were aggregated and number of appearances (frequency)
of each SNP in the 100 iterations was counted considering an SNP to be appearing at
least 5 times in order to further proceed to the downstream procedures. Then, for each
frequency, a PRS comprising the SNPs appearing equally or above this frequency was
assembled with effects averaged over iterations where each SNP appears and evaluated
using previously described source/target dataset splits and linear regression, resulting in a
series of evaluation metrics, among which also the PRS R2 as described above. This was
repeated for all observed frequencies and a distribution of PRS R2 values was created. The
PRS R2 values were further penalized based on number of SNPs in PRS according to the
following formula:

R2
P =

√
R2

PRS
log(N)

where R2
P is the PRS R2 and N is the number of SNPs in the PRS. Then, a set of pre-final

PRS candidates was defined by detecting local maxima in the R2
P distribution, reflecting

PRSs with high values of R2
P. The final PRS was selected based on the highest R2

P value.
The statistical significance of the aggregated PRS R2 as well as the R2

P was assessed using
an empirical bootstrap defined as number of times where the baseline PRS R2 was greater
than the aggregated PRS R2 divided by number of iterations.

3. Results
3.1. Population Characteristics

The anthropometric characteristics of the unified sample are described in Table 1.
Overall, we used available data from 2083 participants, namely 342 participants from the
NAFLD study, as well as 791 and 950 participants from the OSTEOS and THISEAS studies,
respectively. A total of 841 men and 1242 women were included, with a median age of
53 years (calculated at 2075 participants) and a median BMI of 27.38 kg/m2. Within the re-
spective databases, participants presented median BMIs in the spectrum of overweight for
all three studies (NAFLD median BMI = 26.5 kg/m2, OSTEOS median BMI = 26.91 kg/m2

and THISEAS median BMI = 27.81 kg/m2). BMI was not statistically significantly different
between the NAFLD and OSTEOS studies but did present a statistically significant dif-
ference between the NAFLD and THISEAS as well as the OSTEOS and THISEAS studies
(p < 0.001 for both pairs). Differences in age were also statistically significant between all
studies (p < 0.001 for the Kruskal–Wallis test).
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Table 1. Descriptive characteristics of the NAFLD, OSTEOS and THISEAS study populations.

All NAFLD OSTEOS THISEAS

All (n = 2075
for age,

n = 2083 for
BMI)

Men
(n = 841)

Women
(n = 1234 for
age, n = 1242

for BMI)

All
(n = 342)

Men
(n = 140)

Women
(n = 202)

All (n = 783
for age,

n = 791 for
BMI)

Men
(n = 101)

Women
(n = 682 for
age, n = 690

for BMI)

All
(n = 950)

Men
(n = 600)

Women
(n = 350)

Med (IQR)

Age 53 (18) 54 (19) 52 (19) 47 (18) 44 (17) 50 (16) 50 (18) 47 (28.5) 51 (16.25) 59 (19) 58 (18.75) 60 (21)
BMI (kg/m2) 27.38 (6.18) 27.68 (5.34) 27.02 (7.10) 26.5 (6.23) 26.8 (4.54) 25.9 (6.98) 26.91 (6.81) 26.70 (5.13) 26.94 7.01) 27.81 (5.80) 27.88 (5.43) 27.77 (6.51)

BMI: body mass index, Med: median, IQR: interquartile range.

Differences in BMI levels across the two sexes were statistically significant in the
overall sample (p-value < 2.2 × 10−16), with men presenting higher values. Among the
overall sample, 614 participants presented BMI in the range of 18.5–24.99 kg/m2 (31.43%
men, 68.56% women), whereas 875 and 579 participants presented overweight and obesity,
respectively (Table 2). Most participants presenting overweight or obesity were in the
THISEAS study (n = 730).

Table 2. Frequencies of BMI categories across the three studies.

BMI < 18.5 kg/m2 18.5 kg/m2 ≤ BMI < 25 kg/m2 25 kg/m2 ≤ BMI < 30 kg/m2 BMI ≥ 30 kg/m2

All Men Women All Men Women All Men Women All Men Women

All 15 0 15 614 193 421 875 405 470 579 243 336
NAFLD 3 0 3 117 36 81 141 74 67 81 30 51
OSTEOS 10 0 10 279 34 245 300 43 257 202 24 178
THISEAS 2 0 2 218 123 95 434 288 146 296 189 107

BMI: body mass index.

Regarding genotypic data, after imputation of IMPUTE2 with data from 1000 genomes
project as a reference panel, a total of 24,307,245 variations were made available. Subse-
quently, variants with imputation confidence (INFO score returned by IMPUTE2) less than
0.9, structural and copy-number variations were excluded from further analysis. All down-
stream analyses were based only on known variants (i.e., variants recorded in dbSNP). This
process led to 1,454,104 variants interrogated for PRS candidates. With respect to samples,
1970 (94.6%) had complete phenotypic records for covariates interrogated in regression
models and included in further analyses.

3.2. Summary Statistics for PRS Derivation

Summary statistics for the merged dataset were calculated with BMI phenotype as a
response variable and using the extended (imputed based on the 1000 genomes external
reference panel) and further filtered genotypic dataset. In order to properly estimate the
effects of individual SNPs that potentially contributed to the BMI phenotype in the unified
dataset, we applied four different frameworks for summary statistics estimation, namely
a simple generalized linear model (GLM) as implemented in the R statistical language,
the regression algorithm implemented in the R package statgen GWAS as well as the
SNPTEST software and the more generalized PLINK framework. In all cases, the sex, age,
NAFLD status and cardiovascular disease status of individuals were incorporated in the
regression models as confounders, along with several automatically selected principal
components to capture potential underlying population stratifications not reflected by the
other confounders. The four sets of summary statistics were used as input to PRSice2
along with the target samples in an iterative PRS derivation procedure, as described in
Materials and Methods. To evaluate the performance of each summary statistics estimation
method, we used the PRS R2 metric returned by PRSice2, which measures percentage of
BMI variability explained by the PRS in the regression models. The PRS R2 values for
each method were averaged over 100 PRS derivation iterations (Supplementary Figure S1)
and the method that yielded the highest PRS R2 was selected to provide the summary
statistics for final PRS derivation. In our case, SNPTEST yielded the highest average
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PRS R2 (0.012 ± 0.006, pmin = 0.0002, pmedian = 0.0375, pmax = 0.3194), followed by
GLM (0.011 ± 0.006, pmin = 0.0003, pmedian = 0.0697, pmax = 0.4251) and statgenGWAS
(0.010 ± 0.006, pmin = 0.0005, pmedian = 0.0718, pmax = 0.3579). PLINK yielded the lowest
average PRS R2 values but with the smallest variability across 100 iterations (0.009 ± 0.004,
pmin = 0.0002, pmedian = 0.0802, pmax = 0.5282).

3.3. Selection of a PRS

After completion of 100 PRS derivation iterations, we assessed the stability of the
extracted PRSs (Supplementary Figure S2). We observed that, in our case, PRS extraction
process was highly dependent on source (training) dataset summary statistics. As a result,
the SNP content of each PRS greatly varied between iterations, therefore affecting the perfor-
mance of the latter and its contribution in explaining BMI. In order to mitigate the observed
PRS instability, the 100 different SNP sets comprising the 100 different PRSs returned by
PRSice2 with SNPTEST summary statistics were aggregated (Supplementary Table S1) as
described in Materials and Methods, requiring that an SNP considered for inclusion in a
PRS candidate should appear at least five times in the end of the iterative procedure.

Subsequently, several PRS candidates were assembled with SNP content based on
frequency of appearance of the latter across the aggregated SNP set, new regression models
were created based on the initial target dataset splits used by PRSice2 and PRS R2 values
were assembled (Figure 1A) along with their respective significance when compared with
the baseline PRSice2 PRS R2 distribution. As our goals included derivation of a PRS with a
less extended number of SNPs but of high predictive value as a PRS with a larger number
of SNPs, the new PRS R2 values were further penalized based on the number of SNPs
that each PRS candidate included (Figure 1B). Then, using the resulting distribution of
penalized PRS R2 values, we detected local maxima, denoting both high predictive value
and lower SNP content. The number of SNPs yielding an adequately high penalized PRS
R2 while maintaining significance when compared to the baseline PRS R2 distribution
was found to be 343 (PRS R2 = 0.1156 ± 0.0277). Notably, our iterative and aggregative
PRS derivation process resulted in a PRS with ~10 times improved explanatory power
(bootstrap p-value = 0, Figure 1A) than using PRSice2 alone.

3.4. PRS Evaluation

Next, we further evaluated the final 343-SNPs-selected PRS for BMI using the total
merged dataset coupled with an iterative 10-fold cross-validation process, where, in each
iteration of the process, we left out 5–50% of the total dataset samples, each time increasing
the left-out samples by 5% and creating regression models including (full) and excluding
(reduced) the PRS while maintaining the other covariates (Supplementary Table S2). Overall,
the PRS increased the predictive power of the models by 31–33%, with the minimum PRS
R2 value observed at 0.3159 ± 0.0190 (p-value = 4 × 10−87) when leaving out 50 of samples,
with the maximum value at 0.3279 ± 0.0114 (p-value = 9 × 10−130). A final regression model
using the 343-SNP PRS for BMI with the total merged dataset yielded a PRS R2 = 0.3241
(beta = 1.011, p-value = 4 × 10−193). Finally, to evaluate the ability of the 343-SNP PRS to
characterize close phenotypes, we created a regression model with the same covariates but
using population weight instead of BMI. The model yielded PRS R2 = 0.2313 (beta = 2.702,
p-value = 4.15 × 10−158, Supplementary Figure S3).
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The number inside the parentheses next to the number of SNPs in the horizontal axis depicts the SNP
frequency of appearance in the PRS. For example, 393 (34) means that the PRS at that particular R2

consists of 393 SNPs that appear at least 34 times over 100 iterations. The color scale denotes the
statistical significance (Student’s t-test p-value in −log10 scale) of the adjusted R2 distribution over
100 de novo PRS extraction iterations (baseline R2) as compared to the adjusted R2 distribution of each
assembled PRS candidate in the horizontal axis. The mean baseline (derived directly from PRSice2
outcomes for each iteration) R2 is depicted with the dashed grey horizontal line, and the dotted grey
horizontal lines depict the standard deviation of the former. (B). Mean penalized according to the
number of SNPs PRS R2.

3.5. PRS for BMI

The aforementioned 343-SNP PRS deriving from using SNPTEST displayed a statis-
tically significant association for BMI (beta = 1.011, p-value = 4 × 10−193) and a positive
correlation, where increased PRS values were associated with increased BMI levels. As
shown in Figure 2, the examined population presented an overall median risk, with most
observations met in the 0.25–0.50 range. Out of the 343 SNPs identified in the PRS (see Sup-
plementary Table S3), automatically identified known associations included in the GWAS
Catalog were displayed for 16 SNPs, namely rs2710804 (27 associations) and rs2955742
(five associations) (see Table 3).
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Figure 2. Correlation of the 343-SNP PRS for BMI with the phenotype and PRS distribution. (A). The
BMI phenotype across the merged dataset is plotted against the min–max-normalized PRS value
for each individual. (B). Histogram depicting the min–max-normalized PRS distribution for all
individuals in the merged dataset.

Table 3. List of PRS SNPs with known associated traits in GWAS Catalog.

Consortial Summary Statistics (GWAS Catalog) Known Associated Traits Unified Cohort Summary Statistics

SNP Nearest gene Position (Chr:bp) Alleles MAF Effect Allele Associated Traits Effect allele Beta 1

rs11668205 IZUMO4 19:2096429-2099593 G/A 0.09 (A) N/A Abnormality of chromosome segregation G −0.32575
rs488248 LOC728192 13:105944370 C/A/T 0.23 (C) T Response to docetaxel, antineoplastic agent C −0.17048
rs480039 SLC35F3 1:234290732 G/A/C/T 0.37 (A) N/A Gut microbiome measurement G −0.17361

rs2288061 RPL18P13 16:76135833 G/A/C 0.34 (A) G Delta-5 desaturase measurement G −0.17776
rs2807854 HLX-AS1 1:220856499 T/C/G 0.25 (T) T LDL, apoB measurements T −0.13816

rs2955742 TMEM266 15:76153791 G/A 0.10 (A) A Serum urea, cystatin c, creatinine, urate, glomerular
filtration measurement G −0.19108

Rs2710804 SEPT7,EEPD1 7:36044919 T/C 0.23 (C) #N/A Fibrinogen measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Serum alanine aminotransferase measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 KIAA1706 7:36044919 T/C 0.23 (C) C C-reactive protein measurement T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Leukocyte count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Myeloid white cell count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) N/A Leukocyte count T −0.1356
rs2710804 SEPT7, EEPD1 7:36044919 T/C 0.23 (C) N/A Fibrinogen measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) T Platelet count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Leukocyte count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Serum albumin measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C C-reactive protein measurement T −0.1356
rs2710804 EEPD1 7:36044919 T/C 0.23 (C) C Fibrinogen measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2710804 LOC101928618 7:36044919 T/C 0.23 (C) T Serum alanine aminotransferase measurement T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Myeloid white cell count T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Lymphocyte count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Platelet count T −0.1356
rs2710804 AC083864.3 7:36044919 T/C 0.23 (C) C Platelet crit T −0.1356
rs2710804 N/A 7:36044919 T/C 0.23 (C) C Neutrophil count T −0.1356
rs2251188 ZNF12, ZNF316 7:6664701 A/C/G/T 0.16 (A) G Basophil count, neutrophil count A 0.13807
rs7589592 ENSG00000237720 2:2709171 T/A/C 0.41 (C) N/A Diffuse plaque measurement T 0.11391

rs1010304 CHD6, EMILIN3 20:41473007 A/G 0.30 (G) A Memory performance, word list delayed recall
measurement A −0.28657

rs12673506 CHN2 7:29382170 G/A 0.24 (A) A Gut microbiome measurement G −0.185
rs17662327 HNRNPA1P41,JAK2 9:4967587 T/C/G 0.16 (C) T Wellbeing measurement T 0.14714
rs2485662 MEX3A/LMNA 1:156113677 T/C 0.31 (T) N/A Triacylglycerol 48:1, triacylglycerol 50:2 measurements T 0.11601
rs4718965 AUTS2 7:70575462 C/A/T 0.08 (C) C Cortical surface area measurement C 0.19049

rs9847987 intergenic/CFAP20DC-
DT 3:59432807 C/T 0.20 (T) T Neuritic plaque measurement C 0.26274

rs10252228 DPY19L1, NPSR1 7:34900427 A/G 0.29 (G) G Exercise A 0.12063

SNP: single nucleotide polymorphism, Chr: chromosome, bp: base pairs, MAF: minor allele frequency, beta: effect
size for BMI. 1 Results were derived via linear regressions after adjusting for sex, age, NAFLD status and number
automatically selected PCs for population stratifications. Effect sizes (betas) and ORs shown for the corresponding
SNP and effect sizes (betas) are reported for the respective effect allele.

4. Discussion

The present study sought to investigate application of an automated pipeline for PRS
extraction using data from the three Greek studies of NAFLD, OSTEOS and THISEAS. In
this population of Greek adults, the constructed PRS displayed a statistically significant
association for BMI, with an R2 of 0.3241 (beta = 1.011, p-value = 4 × 10−193). The iterative
pipeline presented here attempts to address various matters on PRS extraction, namely
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selection of an appropriate threshold for SNP inclusion and prediction accuracy [18] as
well as stability of the SNP content of PRS candidates across different training and test
dataset splits.

In attempting to strengthen PRS construction methodology [30], this pipeline pro-
poses implementation of iterative processes through repetitive steps of sample splitting,
aggregating SNP frequency and effect size as well as comparative use of summary statistic
metrics and consideration of lifestyle and genetic covariates. As a result, the suggested PRS
includes a less extended number of variants but of high explanatory power. In this spec-
trum, this effort aims at facilitating construction of high-validity PRSs and subsequently
promoting their use as a diagnostic tool accounting for various individual characteristics
in daily practice. Use of the information of increased or reduced genetic risk for elevated
BMI values, as demonstrated by the PRS, can potentially be translated in clinical practice
to intensify (in the case of increased risk) or modify and personalize recommendations on
lifestyle parameters to combat overweight and obesity.

To the best of our knowledge, the present study constitutes the first attempt to develop
a PRS for BMI using data from a Greek population and a previous attempt for construc-
tion of a PRS has only been referred to once before in the current literature, exploring
Parkinson’s disease in older Greek adults [31]. Implementation of the suggested aggre-
gated methodology refers, among others, to (a) repetitive splitting of the overall sample;
(b) comparative use of different summary statistics in an attempt to reduce population size
and SNP selection bias, respectively. Thus, future work will concern attempts in replicating
the proposed PRS in wider populations of different ancestry.

Other attempts to create PRSs for BMI in populations of European ancestry are ex-
tensively described in the current literature, with an overall number of 56 BMI-related
entries in the PGS Catalog [6]. All referred entries include parts of populations of European
ancestry but present a wide range in the numbers of PRS-included variants, from a few
tens up to several thousand or millions, with these numbers possibly limiting their effec-
tive usage in research or clinical settings. Although the PRS proposed here includes only
343 SNPs, the yielded R2 of 0.3241 is substantially comparable, and, in some cases, higher,
than the ones presented in other PRSs from BMI, which include thousands of SNPs [6]. An
overall advantage is also observed when comparing the present results to other attempts in
European populations, which have a priori calculated the effect of literature-based PRSs
using a limited amount of SNPs. Use of our proposed pipeline is an advanced tool due to
the notion that the aggregated approach of splitting processes strengthens identification of
appropriate and sometimes novel SNPs increases the validity of the results and makes up
for the need to have a very large sample size.

In the current study, we observe links for various indices related to cardiovascular
profile for twelve out of the sixteen variants with GWAS-Catalog-identified associations.
The latter could be explained by inclusion of data for THISEAS participants with diagnosed
cardiovascular disease (19.58% of the participants). Although the mediating effect of
BMI is usually accounted for when investigating the effect of genetic or polygenic risk
scores on indices of cardiovascular disease, the reciprocal relation between variation in
cardiometabolic indices levels and BMI levels has not been extensively demonstrated
through BMI-PRS-included, CVD-related variants. Out of the associated SNPs, the C allele
of the rs2710804-included variant presents the majority of reported associations, namely
with cell count types (platelets, leukocytes, lymphocytes) and even measurements of C-
reactive protein. In this context, the negative effect of the T allele observed in our study
(β = −0.1356) could denote a positive relation of the C allele with metabolic pathways of
inflammation and disturbed immunological responses in the subsequent increasing effect
of BMI values.

Interestingly and among this PRS’s novel associations, we find two variants pre-
viously linked to gut microbiome measurements in populations of European ancestry.
More specifically, Rühlemann MC et al. previously associated the rs480039 SNP with a
0.082571946 unit increase in P_Bacteroidetes abundance among German individuals [32].
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Similarly, a 0.1019 unit increase in the abundance of parabacteroides in stools of individuals
of Finnish ancestry for the A allele of the rs12673506 SNP was shown by Qin et al. [33].
Comparably, our study showed that the G allele of the rs480039 and rs12673506 variants
was negatively related to BMI levels (β = −0.1736 and β = −0.1850, respectively). This
is not the first time that the Parabacteroides genus has been linked to body weight. The
majority of studies denote a higher Firmicutes:Bacteroidetes ratio and a generalized reduction
in species variation in individuals with increased body weight or obesity [34], and different
studies have found positive associations between genus and normal weight or weight
loss in mice, as well as fat loss in humans [35–39]. It is plausible that the corresponding
SNPs are further linked to BMI through the genus’s role in gut production of bile acids and
succinate, which have, in turn, been associated with reduction in body weight [38].

When referring to SNPs related to lifestyle, our suggested PRS included one vari-
ant related to well-being (variant rs17662327) and one variant associated with exercise
(rs10252228). More specifically, in our sample, presence of the T allele of the former SNP
was linked to a 0.1471 change in BMI levels. Previously, Okbay et al. demonstrated a 0.0182
unit increase in sentiment of life satisfaction or emotional well-being of adults for the T
allele [39]. Our study further showed that presence of the A allele of the rs10252228 SNP
was related to higher BMI values (β = 0.1206). This finding could be in accordance with
the 0.027 unit increase in exercise associated with leisure time shown for the SNP’s G allele
in Japanese adults [40], meaning that the positive effect of the A allele on BMI could be
mediated by individuals’ low exercise levels.

One of the great strengths of the present study entails implementation of our novel
methodology for extraction of PRS, which enables effective management and analysis
of the vast amounts of genetic data required for such analyses. The automated pipeline
enables practical application of our suggested holistic approach for extensive examination
of thousands of SNPs, leading to identification of various novel associations. Through the
methodological approach of applying a repetitive process of continuous adjustment of the
R2 measure for the number of each-time-associated SNPs, the pipeline aims to facilitate
integration of PRS use in daily healthcare practice, for example as part of widely distributed
consumer reports. It should be stressed that, as this methodology is based on the highest R2

values of the aggregate PRS candidates, it ensures high explanatory power of the reduced
signature. At the same time, it mitigates any computational and data management burden
imposed by PRSs with large (up to millions) numbers of SNPs.

Limitations of the present study mainly concern power given the restrained partici-
pant sample size available for conducting analyses. Another limitation refers to use of a
unified database of participants from three different studies. It is possible that variation in
participant characteristics and bias accompanying use of a large analogic sample size of
participants with cardiovascular disease played a considerable part in identifying associ-
ations between BMI and SNPs related to regulation of cardiovascular indices. However,
we determined that much of the potential variability introduced by the fact of joining
three databases was successfully captured by one of the PCs incorporated in the model.
In addition, although the hypothesized pathways through which the identified SNPs po-
tentially affect BMI levels provide insight for novel relations, there is little evidence to
establish direct causal relationships. However, the present analysis sets a foundation for
the suggested causal SNPs, and further research is also needed to explore the possibility of
relations through their role as proxies for different associated variants.

5. Conclusions

The present paper describes creation of the first PRS for BMI in Greek adults by
introducing use of a novel, automated pipeline for PRS extraction. The findings of this
study lead to identification of several novel SNPs associated with BMI, potentially through
their implication in various metabolic pathways related to traits of cardiometabolic pro-
file and gut microbiome. Our data provide novel insights into interactions of various
biological pathways implicated in formation of BMI levels and subsequently affecting its
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individual variation across different populations. The suggested pipeline aims at promot-
ing maximization of PRS integration in daily healthcare practice by enabling rapid and
straightforward development of risk scores. In this regard, this first-ever PRS of a Greek
population highlights the need for further development of PRSs for anthropometric traits
in larger databases of Greek adults and sets a foundation for wider use of the described
iterative PRS methodology.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/jpm13020327/s1, Figure S1: Mean PRSice2 PRS R2 +/− standard
deviation for each performed summary statistics derivation method across 100 PRS extraction
iterations; Figure S2: Stability of the PRS candidates over 100 PRS extraction iterations as described in
the main text; Figure S3: Correlation of the 343-SNP PRS for BMI with the weight phenotype and
PRS distribution; Table S1: Number of iterations and effect of all SNPs examined; Table S2: PRS
cross-validation statistics; Table S3: List of all single nucleotide polymorphisms (SNPs) (n = 343)
included in the PRS for BMI, sorted by number of times they appeared in the split datasets (largest
to smallest).
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