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Abstract: Myocardial bridging (MB) is a congenital coronary artery anomaly and an important
cause of angina. The genetic basis of MB is currently unknown. This study used a whole-exome
sequencing technique and analyzed genotypic differences. Eight coronary angiography-confirmed
cases of severe MB and eight age- and sex-matched control patients were investigated. In total,
139 rare variants that are potentially pathogenic for severe MB were identified in 132 genes. Genes
with multiple rare variants or co-predicted by ClinVar and CADD/REVEL for severe MB were
collected, from which heart-specific genes were selected under the guidance of tissue expression
levels. Functional annotation indicated significant genetic associations with abnormal skeletal
muscle mass, cardiomyopathies, and transmembrane ion channels. Candidate genes were reviewed
regarding the functions and locations of each individual gene product. Among the gene candidates
for severe MB, rare variants in DMD, SGCA, and TTN were determined to be the most crucial. The
results suggest that altered anchoring proteins on the cell membrane and intracellular sarcomere
unit of cardiomyocytes play a role in the development of the missed trajectory of coronary vessels.
Additional studies are required to support the diagnostic application of cardiac sarcoglycan and
dystroglycan complexes in patients with severe MB.

Keywords: myocardial bridging; cardiovascular disease; genetic variant; whole-exome sequencing;
DMD; SGCA; TTN

1. Introduction

The supply of blood to the heart depends on coronary arteries, which are normally
distributed in the epicardial space on the surface of the heart. The diastolic phase accounts
for most blood flow perfusion to the coronary arteries, meeting the metabolic demands
of the heart. Myocardial bridging (MB) is a coronary vascular anomaly where coronary
vessels are embedded into heart muscles, making a “bridge” of the muscle band above the
feeding vessel, resulting in vascular compression during heart contractions (Figure 1) [1,2].
Because MB squeezes the luminal tunnel of the affected vessel and hampers coronary blood
flow, the distal blood perfusion of cardiac tissues would be compromised. Consequently,
chest tightness or exertional chest pain may occur, whenever strenuous cardiac muscle
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contraction is induced, mimicking atherosclerotic coronary artery disease (CAD). Although
MB was reported to alleviate atherosclerotic processes of the affected vessel, the proximal
end of the MB segment has a higher probability of atherosclerosis due to blood stasis, focal
turbulent flow, and shear-stress-related endothelial damage [3,4]. MB causes myocardial
ischemia, and the subsequent hemodynamic consequence could not be ignored due to
ischemic cardiomyopathy [5]. In a meta-analysis, MB was shown to be associated with an
increased risk of adverse cardiac events, non-fatal myocardial infarction, and hospitalization
for chest pain [6]. Clinically, the spectrum of symptoms from MB spans extensively. MB can
be asymptomatic or manifest as minor angina to severe chest pain [7]. In some rare cases,
major cardiac events or life-threatening ventricular arrhythmias may occur during extreme
exercise [8–10]. The presence of MB was reported to increase the risk of fatal arrhythmia
among those with hypertrophic cardiomyopathy and those who underwent implantable
cardioverter defibrillator or heart transplantation [10–12]. A significantly elevated risk
of in-hospital death was demonstrated among Takotsubo cardiomyopathy patients with
versus without MB [13]. It seems reasonable to detect MB as early as possible to prevent a
potential major event. MB has a male preponderance [14]. The prevalence of MB differs
depending on the tools used for screening, ranging from 2% to 6% via invasive coronary
angiography to 40% according to autopsies [7,15]. Although the number of reports on the
topic is limited, MB with severe systolic luminal compression (SMB) is rare. Consequently,
in some areas, patients with MB are prohibited from military service or training. The
clinical presentations and exaggerating factors of MB mimic those of CAD [7]. Noninvasive
evaluation modalities for ischemic heart disease, such as echocardiography, a treadmill
test, or a nuclear medicine cardiology examination, are not effective in distinguishing
between MB and CAD. To exclude the possibility of CAD, patients with MB and angina
often have to undergo invasive coronary angiography or contrast coronary computed
tomography (CT), both of which entail exposure to ionizing radiation [16]. So far, there
is not a reliable, rapid, noninvasive, and cost-effective diagnostic method to identify the
presence of myocardial bridging among anginal patients with low-risk profiles of coronary
artery disease. Next-generation sequencing (NGS) has the potential to be a new alternative
tool to CT and invasive angiography for rapidly and accurately diagnosing MB.
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Figure 1. Flowchart of a genetic association study for SMB. Patients with MB might present with
exertional chest pain. This is a case–control study that compared patients with SMB and healthy
controls in terms of genetics, targeting hereditary differences etiologic for this coronary anomaly.
SNP: single-nucleotide polymorphism. The “X” refers to any form of SNP.

In the era of NGS, genetic tests are valuable tools for screening, diagnosis, and prog-
nosis [17,18]. The mechanism of MB formation in terms of genetics and development has
not been thoroughly investigated. Liu et al. investigated correlations between SNPs on
the APOE gene and MB, but the results were not significant [19]. Currently, there is not a
universal OMIM (Online Mendelian Inheritance in Man) identifier for MB. We explored
potential underlying genetic variations associated with MB and a possible pathophysiol-
ogy to understand the genetic factors surrounding MB and gain insight into interactions
between myocardial vascular and cardiomyocytes (Figure 1).
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2. Results
2.1. Variants Detected in Patients with SMB

Eight patients with SMB (mean age: 48.5 years, men: 50%) with prominent loss
of the systolic luminal area were matched with eight controls for genetic sequencing
(Supplementary Materials S1). A total of 3,559,047 variants were detected among 39,577 genes
in our study cohort (Figure 2). Nonsynonymous single-nucleotide variants and indels were
selected, and we condensed the results to 21,334 variants in 8548 genes. Rare variants with
allelic frequencies of <1% were selected from the Taiwan Biobank (TWB), the 1000 Genomes
Project (1KGP), the Genome Aggregation Database (gnomAD), and the Exome Aggregation
Consortium (ExAC) database, which yielded 3297 variants in 2530 genes. Variants or indels
detected in the control group were excluded. A total of 56 pathogenic variants (including
49 coding variants) in 51 genes and 87 pathogenic variants (including 86 coding vari-
ants) in 85 genes for SMB were identified from ClinVar and CADD/REVEL, respectively.
A detailed list of all the rare variants potentially pathogenic for SMB was provided in
Supplementary Materials S2.
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Figure 2. Gene variant exploration for SMB. 1KGP indicates the 1000 Genomes Project; EAS, East
Asians; ExAC, Exome Aggregation Consortium; GATK, Genome Analysis Toolkit; gnomAD, The
Genome Aggregation Database; GRCh38, Genome Reference Consortium Human Build 38 Organism;
INDEL, insertion and deletion; SNV, single-nucleotide variants; TWB, Taiwan Biobank.

2.2. Genes with Multiple Rare Pathogenic Variants in Patients with SMB

Figure 3 presents the distributions of rare pathogenic variants for SMB. Most candidate
genes only included one variant. Although not being simultaneously predicted by both
prediction systems, some genes included two or more rare variants for SMB. Genes with
multiple rare variants pathogenic for SMB were also presumably important. The genes
with two or more rare pathogenic variants were BRCA2, DMD, TTN, FLNB, and SCN1A
(Table 1).
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Table 1. Genes with multiple pathogenic variants for SMB predicted by ClinVar or CADD/REVEL.

Chr. Position Ref. Alt. Gene Type rs Number ClinVar CADD REVEL
Number of Alt. Alleles in

Patients with SMB

1 2 3 4 5 6 7 8

Pathogenic Variants Predicted by ClinVar
2 178548927 T C TTN nsSNV rs186234393 CIP 13.78 0.496 1 - - - - - - -
2 178561041 C T TTN nsSNV rs376283153 CIP 18.93 0.14 1 - - - - - - -
2 178565578 G A TTN nsSNV rs185887755 CIP 20.8 0.533 - - - - - - 1 1
13 32338731 A G BRCA2 nsSNV rs117187202 CIP 0.395 0.146 - - - - - - 1 -
13 32340191 T C BRCA2 nsSNV rs80358811 CIP 0.002 0.14 - - 1 - - - - -
X 32310266 C T DMD nsSNV rs148135406 CIP 17.97 0.147 - - - - - - 1 -
X 32441307 C G DMD nsSNV rs200213555 CIP 25.8 0.312 - - - 1 - - - -
X 32644145 C T DMD nsSNV rs189143447 CIP 27.4 0.294 - - 1 - - - - -

Pathogenic Variants Predicted by CADD/REVEL
2 165994164 C T SCN1A nsSNV rs121918808 LB 32 0.817 - - - - - - - 1
2 166041286 A G SCN1A nsSNV rs773695263 CIP 25.9 0.884 - - - - 1 - - -
3 58008647 A T FLNB nsSNV N/A N/A 32 0.953 - - 1 - - - - -
3 58154853 C T FLNB nsSNV rs369477886 N/A 34 0.876 - - - - 1 - - -

Chr., chromosome; Ref., reference allele; Alt., alternative allele; nsSNV, non-synonymous single nucleotide variant;
CIP, Conflicting interpretations of pathogenicity; LB, likely benign; N/A, not applicable.

2.3. Rare Pathogenic Variants Identified by Both ClinVar and CADD/REVEL

In order to narrow down the gene list and to find the more important genes for SMB,
we compared genes that appeared in both ClinVar and CADD/REVEL. Rare variants that
were predicted to be pathogenic for SMB by both prediction systems were presumably
important. Four rare pathogenic variants in four genes were identified by both ClinVar and
CADD/REVEL, namely SCN1A, PCDH15, SMAD9, and SGCA (Table 2).

Table 2. Rare pathogenic variants predicted by both ClinVar and CADD/REVEL scores in patients
with SMB.

Chr. Position Ref. Alt. Gene Type rs Number SMB No.

2 166041286 A G SCN1A nsSNV rs773695263 5
10 53857257 C T PCDH15 nsSNV rs201137087 4
13 36879563 T C SMAD9 nsSNV rs397514715 6
17 50167954 C T SGCA nsSNV rs186669379 3

Ref., reference allele; Alt., alternative allele; SMB No., patient ID.
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2.4. Tissue Expression Levels of Rare Variants Potentially Pathogenic for SMB

Genes with rare variants pathogenic for SMB from Tables 1 and 2 were further exam-
ined according to the expression levels among cardiovascular and myocardial tissues. The
Genotype-Tissue Expression (GTEx) Project was used to further investigate the expression
of the genes harboring rare pathogenic variants in muscle and artery tissues. TTN, DMD,
and SGCA exhibited high expression levels in the muscle and heart tissues (Figure 4). DMD
and SGCA were also highly expressed in the artery tissues.
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2.5. Functional Annotation of Rare Variants for SMB

We detected 132 SMB candidate genes by intersecting rare pathogenic variants iden-
tified by ClinVar and CADD/REVEL for enrichment analysis. The 132 SMB candidate
genes were mapped to 124 mammalian (mouse) genes that were significantly enriched into
10 knockout mouse phenotypes, including abnormal cardiovascular system morphology,
abnormal skeletal muscle morphology, abnormal skeletal muscle mass, abnormal muscle
fiber morphology, and impaired skeletal muscle contractility. Similarly, the SMB candidate
genes were enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway of
arrhythmogenic right ventricular cardiomyopathy. Gene ontology (GO) was used to evalu-
ate the molecular functions, cellular components, and the biological processes involved
in SMB gene sets. A total of 10 GO terms were significantly enriched, including mus-
cle contraction processes, the detection of mechanical stimuli, and ion transport systems
(Table 3). The comprehensively detailed gene list of each category of gene set from func-
tional annotation is shown in the Supplementary Materials S3.

Table 3. Functional annotation of SMB candidate genes.

Functional Annotation Reference Genes
in Category

SMB Genes in
Category p Value FDR

Knockout mouse phenotype
Abnormal soleus morphology 21 4 3.84 × 10−5 2.50 × 10−2

Impaired skeletal muscle contractility 38 6 1.25 × 10−6 8.18 × 10−3

Absent startle reflex 39 5 2.91 × 10−5 2.22 × 10−2

Decreased skeletal muscle mass 107 8 6.75 × 10−6 1.85 × 10−2

Abnormal skeletal muscle mass 121 8 1.67 × 10−5 2.04 × 10−2

Abnormal muscle fiber morphology 322 13 8.84 × 10−6 1.85 × 10−2

Increased or absent threshold for auditory brainstem response 310 12 3.06 × 10−5 2.22 × 10−2
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Table 3. Cont.

Functional Annotation Reference Genes
in Category

SMB Genes in
Category p Value FDR

Abnormal skeletal muscle morphology 381 14 1.14 × 10−5 1.85 × 10−2

Abnormal cardiovascular system physiology 1421 29 2.56 × 10−5 2.22 × 10−2

Abnormal cardiovascular system morphology 1794 34 1.88 × 10−5 2.04 × 10−2

KEGG pathway
Arrhythmogenic right ventricular cardiomyopathy 72 7 3.49 × 10−6 1.14 × 10−3

GO term categories
Detection of mechanical stimulus 43 6 6.03 × 10−7 2.74 × 10−3

Muscle contraction 339 14 1.52 × 10−7 1.38 × 10−3

Muscle system process 423 14 2.15 × 10−6 3.33 × 10−3

Monovalent inorganic cation transport 513 15 4.17 × 10−6 4.21 × 10−3

Inorganic cation transmembrane transport 722 19 9.42 × 10−7 2.85 × 10−3

Cation transmembrane transport 810 20 1.27 × 10−6 2.88 × 10−3

Metal ion transport 841 20 2.25 × 10−6 3.33 × 10−3

Inorganic ion transmembrane transport 808 19 4.91 × 10−6 4.47 × 10−3

Cation transport 1111 23 3.73 × 10−6 4.22 × 10−3

Ion transport 1608 29 2.56 × 10−6 3.33 × 10−3

FDR, false-discovery rate; KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.

3. Discussion

The genetic basis of MB remains unclear. Here, we particularly focused on severe
MB. In this study, we identified several pathogenic gene variants associated with SMB.
Based on protein function, tissue expression levels, and the ClinVar and CADD/REVEL
predictions, TTN, DMD, and SGCA were the highest-potential genes for SMB. All
three genes are physiologically and morphologically essential to the cardiovascular sys-
tem. Thus, we hypothesized that structural instability between cardiomyocytes and the
surrounding connective tissues is critical for SMB.

TTN translates to the giant titin protein, previously known as connectin [20]. Titin is
a large cytoplasmic protein in the human body that constitutes the backbone of the basic
unit of cardiomyocytes: sarcomeres, which act as the fundamental driving force of heart
power [21–23]. TTN has high expression levels in the heart and artery systems (Figure 4),
the missense variants of which cause dilated cardiomyopathy [24–27]. As titin locates in the
cytoplasm of cardiomyocytes with indirect attachment to the cell membrane via actin [28],
genetic variants on TTN and subsequent derangement of titin might have a role in the
formation of SMB under the interplay with anchor proteins on cell membrane, for example,
the dystroglycan complex and sarcoglycan complex. In the current study, three rare variants
were detected on TTN that only presented in the SMB patients, suggesting that TTN is a
potentially important key to SMB. However, there could be another possibility that variants
had a higher chance to be detected on TTN owing to the size of the giant gene. Due to the
extreme abundance of titin in cardiomyocytes, a tiny change in the protein conformation
might also translate to a tremendous structural impact and organ development. Also, due
to the proximity of sarcomere units to the plasma membrane of cardiomyocytes, the effect
of TTN variants on the formation of SMB currently could not be excluded, necessitating
further evidence to address this issue.

DMD transcribes and translates to an essential protein on the muscular cell membrane:
dystrophin [29]. The dystrophin-associated protein complex (DAPC) functions as an anchor
protein, stabilizing the cell membrane of cardiomyocytes via linking in between the intracel-
lular actin and the surrounding extracellular matrix (ECM; Figure 5) [30]. For decades, the
majority of DMD research focused on muscular anomalies. Gene mutations of DMD caused
several kinds of dystrophinopathies, including two rare muscular diseases: Duchenne mus-
cular dystrophy and Becker muscular dystrophy [31,32]. Dystrophinopathies also manifest
as dilated cardiomyopathies, which cause affected patients to develop progressive heart
failure; newer treatments for dystrophinopathies are being extensively investigated [33].
The current study detected three genetic variants on DMD in three separate SMB patients,
which might suggest an essential role of DMD in SMB. So far, evidence regarding the link-
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age between DMD and SMB is still lacking. The research field discussing the constitutional
role in cell membrane assembly and mechanotransduction function of dystrophin is emerg-
ing in order to unravel the fundamental role of DMD in morphogenesis and basement
membranes [34]. Based on the medical records, none of our enrolled patients with SMB
exhibited relevant muscular diseases. DAPC is a laminin- and actin-binding glycoprotein
that provides a robust connection between the cell membrane of cardiomyocytes and the
surrounding connective tissues. We proposed that a loosened assembly of the cardiac
muscles would enable the coronary arteries to penetrate through cardiomyocytes, leading
to SMB. It was generally accepted that males had a higher prevalence for MB. Since the
DMD locates on the sex chromosome, it seemed reasonable that males were more likely to
be affected if the genetic variant for MB is located on chromosome X.
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Figure 5. Interaction between the sarcoglycan complex (partially transcribed and translated from
SGCA), the dystroglycan complex, and dystrophin (transcribed and translated from DMD). Sarco-
glycans, dystroglycans, and dystrophins jointly construct the anchoring proteins on the plasma
membrane of cardiomyocytes, augmenting fixation with the ECM. Our study suggests that variants
of both genes might be correlated with SMB, which manifests as deviated coronary vessels into the
myocardium. Also, TTN might have a role in SMB formation along with the cellular anchor proteins
shown above.

SGCA encodes a protein called “sarcoglycan-alpha”, a component of the dystrophin–
glycoprotein complex that stabilizes cell membranes to the ECM [35]. Sarcoglycan alpha
is one of the major sarcoglycan proteins assembled on the plasma membrane of striatal
muscle fibers, including cardiomyocytes and skeletal muscle. Sarcoglycanopathy is an
evolving science regarding a rare autosomal recessive hereditary muscular dystrophy
affecting limb girdle muscles [36]. The sarcoglycan complex, along with the dystroglycan
complex, functions as a connector between the cytoskeleton of the muscle fiber and the ECM,
augmenting mechanical support during muscle contraction [37]. SGCA is highly expressed
in striated muscles, and the heart has the highest expression levels (Figure 4). Because
protein products from SGCA account for the structural stability between cardiomyocytes
and the surrounding connective tissues [38], deformed SGCA products might result in a
loosened myocardial mass structure and, thus, a tendency of coronary vasculature deviation
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into the myocardium. An animal experiment was once performed using Sgca-null mice for
the characterization of cardiac structure and global functions, from which a significantly
thickened interventricular septum and posterior wall, accompanied by the dilated left
ventricular chamber, were recognized among Sgca-null mice [39]. However, there is no
angiographical characterization study for Sgca-null mice so far. An animal study indicated
that Sgcd-null mice had irregularities of the coronary vessels [40]. However, the effect of
SGCA on the cardiovascular system remains unknown. Sarcoglycans are integrated into the
dystrophin glycoprotein complex (DGC) and function as the fundamental anchor between
cardiomyocytes and the ECM [41]. Because animal models have demonstrated that the
destabilization of DGC leads to membrane fragility and a loss of integrity [42–44], genetic
variants of SGCA might have a role in SMB (Figure 5). Indeed, a further study to confirm
these functional variants is required.

Based on the ClinVar database, CADD/REVEL scoring tools, the degrees of tissue
expression, individual gene functions, and locations of each protein product, we suggested
that rare variants in TTN, DMD, and SGCA would play critical roles in the pathogenesis of
SMB. All three genes were also included in both the “abnormal cardiovascular system phys-
iology” and “abnormal cardiovascular system morphology” categories during functional
annotation (Supplementary Materials S3). Although the variants in the proposed culprit
genes were not observed in all patients with SMB, our findings at least provided a new re-
search direction and opened up a new field for addressing the underlying pathophysiology
of SMB.

There are limitations in this study. First, there were very few enrolled study subjects.
Consequently, the power of prediction might be relatively low, and there might be some
undetected pathogenic rare variants for SMB. However, since we do not know exactly
what the underlying mechanisms of MB are, we could not estimate very precisely the
total amount of genetic variants pathogenic for MB from the available evidence. It might
be difficult to calculate the power of the current study as to the efficiency of detecting
pathogenic variants. Second, a functional study with animal experiment validation for the
genetic variants of DMD and SGCA in SMB was not provided. Third, a high CADD or
REVEL score does not necessarily mean that the variant is pathogenic. Therefore, false-
negative or false-positive mining of variants could not be fully excluded. Fourth, the present
study only highlights protein-coding variants identified from whole-exome sequencing.
Thus, there might be non-coding genome wide variants that play an important role in the
regulation of protein-coding pathogenic SMB genes. Fifth, because we compared those with
severe MB in contrast to those with purely normal vessels, not those with milder MBs, the
reported variants could be related to general MB rather than only to severe MB. Collectively,
a combination of a larger patient cohort and animal model using whole-genome sequencing
data would be very helpful to address these questions in the future.

4. Materials and Methods
4.1. Participants

Participants were recruited from Taipei Medical University Hospital, and the study
was approved by the hospital’s Institutional Review Board. A total of 248 individuals
had undergone coronary angiography. Those who presented with systolic compression
in their coronary arteries but did not have any evidence of atherosclerotic CAD were
treated as patients with MB. Each patient’s diagnosis of MB was independently confirmed
by two cardiologists. The severity of MB was determined on the basis of the reduction
in the luminal area. Because of a lack of universal angiographic definitions of SMB, we
defined SMB as cases of MB with a loss of the luminal area greater than 80% based on our
clinical experience. Control participants were individuals with normal coronary arteries, as
confirmed via coronary angiography. To identify key variants carried by patients with SMB
but not healthy patients, eight patients with SMB and eight age- and sex-matched control
patients were selected for analysis. All participants provided informed consent for human
body research.
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4.2. Sample Preparation, Whole-Exome Sequencing, and Bioinformatics Analysis

DNA samples from the eight patients with SMB and eight normal patients were
extracted using the QIAamp DNA Blood Maxi Kit (Qiagen, Germantown, MD, USA).
Whole-exome sequencing using white blood cells was performed via polymerase chain
reaction (PCR) amplification and the Nextera Illumina platform. The GATK discovery
pipeline was used for PCR duplicate removal, quality score recalibration, GRCh38 (hg38)
reference genome alignment, and variant calling. The annotation of functional conse-
quences, pathogenicity, and minor allele frequencies for each variant was performed using
ANNOVAR. Filtering for rare nonsynonymous variants and indels was performed using R.
Our hypothesis was that rare genetic variants would contribute to the development of SMB.
For this reason, we were specifically interested in rare variants with minor allele frequencies
less than 0.01 according to data from TWB [45], 1KGP (East Asian) [46], gnomAD (East
Asian) [47], and ExAC (East Asian) [48].

4.3. Pathogenicity Prediction

The definition and criteria for pathogenic variants were as follows: (A) ClinVar (ver-
sion 20210501), those with conflicting evidence of pathogenicity, those likely pathogenic,
pathogenic, or those pathogenic/likely pathogenic; (B) CADD Phred score > 20, indicat-
ing inclusion in the top 1% of the most pathogenic variants [49–51]; and (C) REVEL raw
score > 0.75, calculated on the basis of 13 independent tools, with a higher score indicating a
greater likelihood that the variant causes disease [52]. Gene expression levels among human
tissues were viewed through the GTEx Portal (https://gtexportal.org/home/ accessed on
1 April 2022). Please refer to Figure 2 for study protocol.

4.4. Functional Annotation

Functional annotation provides relevant cellular, structural, and physiologic functions
of a given gene set. The function of SMB pathogenic genes was examined to gain insight
into the underlying mechanism of how these genes could cause SMB. Three databases
were used for functional annotation: a mammalian phenotype ontology database [53],
KEGG [54], and GO [55,56]. Mammalian gene knockout database provides abundant
evidence that could not be carried out in humans. Knockout mouse phenotyping was
performed using the Mammalian Phenotype Ontology database, which provides valuable
insight into the physiological role of a gene in humans by demonstrating the consequences
of gene ablation in mice. KEGG is a well-known knowledge base comprising many major
databases, including GENES, PATHWAY, and DISEASE. KEGG pathway analysis provides
information for understanding the biological pathways and interactions of genes. The GO
Consortium incorporates extensive scientific research and provides consistently updated
genes and gene products. It is a powerful tool for annotating genes with functional
information and provides data on biological processes, molecular function, and cellular
components. Over-representation analysis based on these three databases was performed
using WebGestalt (WEB-based Gene SeT AnaLysis Toolkit). For all analyses, we considered
an FDR of <0.05 to be significant.

5. Conclusions

The results suggest the roles of rare variants on TTN, DMD, and SGCA in the patho-
genesis of SMB (Figure 6). Subsequent studies should focus on the TTN, SGCA, and
DMD, because defective proteins and downstream protein complexes, including sarcom-
ere, sarcoglycan, and dystroglycan, may lead to altered anchoring of cardiomyocytes and
misguided vasculogenesis.

https://gtexportal.org/home/
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