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Abstract: Chronic kidney disease (CKD) is a major public health concern with an increasing propor-
tion of sufferers progressing to renal replacement therapy (RRT). Early identification of those at risk
of disease progression could be key in improving outcomes. We hypothesise that urinary liver-type
fatty acid binding protein (uL-FABP) may be a suitable biomarker for CKD progression and can
add value to currently established biomarkers such as the urinary protein-to-creatinine ratio (uPCR).
A total of 583 participants with CKD 1–5 (not receiving renal replacement therapy) entered a 2 yr
prospective longitudinal study. UPCR and uL-FABP were measured at baseline and CKD progression
was defined as either (i) a decline in eGFR of >5 mL/min/1.73 m2 or an increase in serum creatinine
by 10% at 1 yr; (ii) a decline in eGFR of >6 mL/min/1.73 m2 or an increase in serum creatinine by
20% at 2 yrs; or (iii) the initiation of RRT. A combined outcome of initiating RRT or death was also
included. Approximately 40% of participants showed CKD progression. uL-FABP predicted CKD
progression at both years 1 and 2 (OR 1.01, p < 0.01). Sensitivity and specificity were comparable to
those of uPCR (AUC 0.623 v 0.706) and heat map analysis suggested that uL-FABP in the absence of
significant proteinuria can predict an increase in serum creatinine of 10% at 1 yr and 20% at 2 yrs. The
risk of the combined outcome of initiating RRT or death was 23% higher in those with high uL-FABP
(p < 0.01) independent of uPCR. uL-FABP appears to be a highly sensitive and specific biomarker
of CKD progression. The use of this biomarker could enhance the risk stratification of CKD and its
progression and should be assessed further.

Keywords: chronic kidney disease; biomarkers; urinary liver-type fatty acid binding protein; urinary
protein-to-creatinine ratio

1. Introduction

Affecting approximately 10–13% of the population worldwide [1], the epidemic of
chronic kidney disease (CKD) has soared through the ranking of causes of global mortality,
rising from 27th place in 1999 to 18th in 2010 [2,3] to 12th in 2017 [4]. Established as a
major public health concern [5], CKD is diagnosed, classified and monitored based on
estimates of renal function and creatinine clearance. Using the Kidney Outcomes Quality
Initiative (KDOQI) classification [6] CKD can be defined in stages (1–5) according to disease
severity, based on estimates of the glomerular filtration rate (eGFR) derived using either
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the Modification of Diet in Renal Disease Study Group (MDRD) [7] methodology or more
recently the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) [8] equations
and the presence or absence of proteinuria. The risk of disease progression increases at
advanced CKD stages with 8.9% of CKD stage 4 patients and 39.1% of CKD stage 5 patients
likely to show a decline in eGFR of 5 mL/min/1.73 m2/year or more [9]. However, only
0.5% of the general population progress to these advanced stages of CKD; additionally,
the majority of patients with CKD have stage 3 disease (7–9% of the general population;
80–90% of all CKD) and will never progress to end-stage disease [10]. Nevertheless, 6% of
CKD stage 3 patients show a decline in eGFR of 5 mL/min/1.73 m2/year [11]. Globally,
50–400 per million CKD patients will become dependent on renal replacement therapy per
year [12], alongside an increased risk of cardiovascular disease [13,14]. In this context, early
identification of patients at risk of CKD progression is imperative.

Although eGFR is a useful measure for stratifying disease severity, it provides little
information about the potential risk of disease progression [15]. Proteinuria has been an
important prognostic marker in glomerular pathologies [16], especially diabetic nephropa-
thy [17], but is limited as a biomarker for CKD progression and response to treatment [18].
A number of alternative biomarkers or risk prediction equations based on creatinine and
uPCR (Kidney Failure Risk Equation) have been proposed as predictors of disease progres-
sion [15]. Urinary liver-type fatty acid binding protein (uL-FABP) is one such biomarker
with the potential for predicting CKD progression. Free fatty acids are found in abun-
dance in renal tubules in proteinuric renal disease and they have been implicated in the
pathogenesis of proximal tubular injury through their binding to albumin and activation
of the inflammatory response [18]. This phenomenon is also present ischemia and under
oxidative stress [19,20], in the absence of proteinuria. Free fatty acids are believed to bind
to the 14 kDa fatty acid binding protein 1 (also known as L-FABP), found in the cytoplasm
of renal tubular cells, before being transported to mitochondria or peroxisomes to be me-
tabolized by oxidation [19–21]. uL-FABP is already established as a reliable biomarker of
acute kidney injury [21,22] and, in a number of small studies, has been linked with CKD
progression in diabetic [23–25] and non-diabetic [26] patients.

Our aim was to assess whether uL-FABP levels can predict a decline in renal function,
and thus disease progression, in patients with CKD attending outpatient clinics in two
large tertiary centres in the United Kingdom.

2. Materials and Methods

This was a 2 yr prospective follow-up study of participants with CKD stages 1–5 (not
receiving renal replacement therapy) attending outpatient nephrology clinics in 2 large
tertiary university renal centres in the northwest of the UK. The study received approval
from the Yorkshire and Humber-Leeds West NHS Research Ethics Committee (15/YH/0516)
and was adopted on the NIHR clinical research network portfolio (CRN ID: 20484). Adult
patients, with capacity to consent, receiving their care in the participating centres were
eligible to participate in the study and were approached during their attendance to clinic.
Participation in the study was voluntary. Informed written consent was obtained prior
to enrolment.

2.1. Definitions

A number of definitions of CKD progression were considered; however, based on the
definitions used by NICE [2,3] and KDIGO [6], for purposes of this study at the time, CKD
progression was defined as either:

(A) at 1 yr follow up, (i) a decline in eGFR by the equivalent of 5 mL/min/1.73 m2,
(ii) increase in serum creatinine by 10% or (iii) initiation of renal replacement therapy for
CKD 5;

(B) at 2 yr follow up, (i) a decline in eGFR by the equivalent of 6 mL/min/1.73 m2,
(ii) increase in serum creatinine by 20% or (iii) initiation of renal replacement therapy.
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The combined outcome of initiating renal replacement therapy or death was also
evaluated.

2.2. Study Population Size

Katoh et al. [27] suggest that a cut-off of 19 µg/g.cr for urinary L-FABP carries 100%
sensitivity and 81.8% specificity for the detection of contrast-induced AKI. Their mean study
population uL-FABP level was 59.8 ± 45.6 µg/g.cr. Shingai et al. [28] used a detection cut-
off 8.4 µg/g.cr based on the study of 420 healthy volunteers by Kamijo-Ikemori et al. [24].
Although published data from Kamijo et al. [26] suggest that a uL-FABP level of 17.4 µg/g.cr
can be used as a cut-off for monitoring progression in CKD, the use of uL-FABP as a
predictor of progression of CKD is unclear and remains under investigation. Although the
literature failed to inform any power calculation, we believe that based on previous study
population sizes, a population of 500 CKD participants would provide us with an adequate
sample size to evaluate the potential of uL-FABP as a CKD biomarker.

2.3. Data Collection

The past medical history and medication lists were collected directly from participants
and through their electronic medical records. These were used to calculate the Davies’
Comorbidity Score for all participants [29] as an indicator of coexisting disease burden.
Prospective follow-up data on CKD were collected from patient electronic records at 1 yr
and 2 yrs from enrolment.

2.4. Blood Sampling, eGFR Calculation and CKD Classification

Serum samples were collected as part of participants’ routine attendance to clinic
and were analysed for urea and creatinine at the individual participating centres’ NHS
biochemistry laboratories. Both laboratories comply with the NHS laboratory standard-
ization process for clinical laboratories. The eGFR was calculated using the MDRD [7]
formula. Patients were categorised in CKD stages according to KDOQI [30]. The difference
in creatinine and eGFR over the 1st and 2nd years of the study was taken to be the difference
in the values of these parameters at the data collection time points and at baseline.

2.5. Urine Sampling and Analysis

A 20 mL urine sample was provided as part of the participants’ routine clinical
care. Then, 10 mL was analysed by the participating centres’ local NHS biochemistry
laboratories to measure urinary protein, creatinine and the protein: creatinine ratio (uPCR).
The remaining 10 mL sample was stored at −80◦ pending measurement of uL-FABP levels
using an Enzyme-Linked Immunosorbent Assay (ELISA).

2.6. ELISA Analysis for the Measurement of uL-FABP Levels

Urine samples were processed in batches. Samples were thawed overnight and
centrifuged at 2400 rpm at room temperature for 10 min to separate and remove impurities.
uL-FABP levels were quantified using a commercially available ELISA kit (CMIC Co Ltd.,
Tokyo, Japan) as per the manufacturers’ instructions. All samples were assessed in duplicate
within the same ELISA plate. The intra-assay coefficient of variation was 5.5%. Ten samples
with detectable levels of uL-FABP were analysed separately to assess inter-plate assay
variability. The inter-assay coefficient of variance was 7.8%. Calculations of uL-FABP levels
were adjusted for urinary creatinine concentration obtained from the uPCR data that were
measured within the same sample.

2.7. Statistical Analysis

The demographic and biochemical characteristics of participants were analysed us-
ing descriptive epidemiology. Categorical variables were presented as frequencies and
percentages. Continuous variables with normal distribution were presented as means
and standard deviation (SD) while variables with skewed distribution were presented as
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medians with minimum and maximum values. Normality of distribution was assessed
using the Shapiro–Wilk method. The relationship between baseline urine uL-FABP levels,
serum creatinine, eGFR and urine PCR was explored using stepwise linear regression
modelling adjusted for age and sex. Skewed outcome variables underwent logarithmic
transformation. Longitudinal analysis was performed from the change in eGFR, increase
in serum creatinine, CKD progression and combined renal mortality. Participants that
received kidney transplantation between baseline and 1 yr were removed from year one
analysis unless they had initiated dialysis prior to transplantation. The same was true for
participants receiving renal transplantation between years 1 and 2 for year 2 analysis. The
association between uL-FABP and uPCR and the change in serum creatinine and eGFR
was assessed using stepwise linear regression modelling adjusted for age and sex. The
demographic characteristics and biochemical profiles of participants that exhibited CKD
progression were compared to those without disease progression using group comparison.
Categorical variables were compared using Pearson’s Chi2 with observation of the stan-
dardised residuals as post hoc analysis. Continuous variables were skewed in distribution,
so differences between the assessed groups were analysed using the Kruskal–Wallis test.
The predictive potential of uL-FABP was evaluated using logistic regression modelling
adjusted for age, sex and proteinuria. The predictive sensitivity and specificity of uL-FABP
were evaluated through ROC curve analysis and were compared to that of uPCR and uPCR
in combination with uL-FABP. The interaction between uL-FABP and uPCR and changes in
creatinine was also explored using heat map assessment. Subgroup analysis stratified by
individuals’ CKD stage at baseline and the absence of proteinuria was performed using
the same logistic regression model utilised for the entire study population. Combined
outcome analysis was performed using Cox regression modelling using 8 mcg/gCr of
uL-FABP as a cut-off for a significant level. Models were adjusted for age, sex and uPCR.
Statistical analyses were performed by IBM SPSS Statistics, version 23 (IBM Corp., Armonk,
NY, USA).

3. Results

A total of 641 patients were recruited into the study. Of those recruited, the data of
583 participants were analysed at baseline, while 484 were available in year one and 335 in
year two. Participants’ exclusions and dropout reasons are shown in Figures 1 and 2. The
demographic characteristics and biochemical profiles of these participants are shown in
Table 1 and Figure 3. No participants were noted to have liver disease.

Table 1. Demographic and biochemical characteristics at baseline of participants entered for baseline
and longitudinal analysis.

Demographics Baseline 1 Year 2 Year

N 583 484 335

CKD stage

1–2 14.6% 13.6% 7.8%
3A 13.3% 12.8% 15.6%
3B 24.8% 24.8% 29.0%
4 32.8% 33.5% 38.3%
5 14.6% 15.3% 9.3%

Age (yrs) 65 (51; 75) 65 (51; 74) 65 (52; 74)
Sex: Male 56% 55.8% 54.0%
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Table 1. Cont.

Demographics Baseline 1 Year 2 Year

Ethnicity

White 78.3% 78.3% 79.4%
Black 3.8% 3.7% 3.6%
Asian 8.5% 9.1% 9.0%
Chinese 1.0% 1.2% 1.2%
Other 6.6% 6.0% 5.7%
Unspecified 1.7% 1.7% 1.2%

Primary CKD
Pathology

ADPKD 8.1% 8.5% 9.0%
Diabetic Nephropathy 10.7% 10.7% 9.6%
Glomerulonepgritis 16.5% 17.6% 17.3%
Acute/Chronic TIN 3.3% 3.7% 4.8%
Obstructive/Stones/Reflux 10.7% 10.7% 10.4%
Renovascular/HTN/Ischaemic 12.8% 12.4% 11.3%
Vasculitis/SLE 9.9% 11.0% 13.4%
Myeloma 1.4% 1.4% 1.2%
Hereditary Nephropathy 0.7% 0.8% 0.6%
Other 9.4% 8.3% 9.0%
Uncertain Aetiology 16.5% 14.9% 13.4%

Cardiovascular Disease 21.5% 20.2% 18.8%
Diabetes Mellitus 29.1% 28.5% 26.9%
Davies’ Comorbidity Score 1 (1; 2) 1 (1; 2) 1 (1; 2)
Number of Medications 7 (4; 9) 7 (4; 9) 7 (4; 9)
Number of Blood Pressure Medications 2 (1; 3) 2 (1; 3) 2 (1; 3)
ACEi/ARB ACEi 33.4% 34.1% 34.4%

ARB 21.5% 22.3% 25.4%
Both 2.4% 2.5% 2.4%

Aldosterone Inhibitors 2.6% 2.1% 2.4%
Serum Creatinine (mmol/L) 173 (199; 265) 174 (124; 268) 169 (126; 238)
MDRD eGFR (mL/min/1.73 m2) 31 (19; 46) 30 (18; 46) 31 (21; 46)
uPCR mg/gCr 40 (11; 147) 42 (12; 152) 36 (11; 128)
uL-FABP ELISA (mcg/gCr) 2.79 (0; 19.4) 3.49 (0; 19.6) 2.68 (0; 16.4)

ACEi = angiotensin-converting enzyme inhibitors, CKD = chronic kidney disease, eGFR = estimate glomerular
filtration rate, ELISA = enzyme-linked immunosorbent assay, HTN = hypertensive nephropathy, L = litre,
m = metre, mcg = microgram, MDRD = Modification of Diet in Renal Disease, mg = milligram, mL = millilitre,
mmol = millimol, SLE = systemic lupus erythematosus, TIN = tubulointerstitial nephritis, uL-FABP = urinary
liver-type fatty acid binding protein, uPCR = urinary protein-to-creatinine ratio.
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Figure 3. Urinary levels of L-FABP and PCR at baseline stratified by CKD stage. Bars represent
median biomarker levels and whiskers indicate the 95% confidence interval.

At baseline, uL-FABP levels correlated to those of uPCR (beta = 0.383, CI 0.305; 0.457,
p ≤ 0.001, R2 = 0.142). uL-FABP also correlated to serum creatinine (beta = 0.379, CI
0.303; 0.455, p ≤ 0.001, R2 = 0.145) and eGFR (beta = −0.380, CI −0.454; −0.302, p ≤ 0.001,
R2 = 0.143). This association was independent of proteinuria, age and sex (linear regression
models shown in Table 2).

3.1. Year 1 and 2 Analysis

The median percentage increase in serum creatinine between baseline and year 1 was
3.5% (−6.9; 18.8) with a median decrease in MDRD eGFR of 1 mL/min (−2.0; 5.0).

Both uL-FABP (beta = 0.140, CI 0.045; 0.203, p = 0.002, R2 = 0.020) and uPCR (beta = 0.202,
CI 0.102; 0.258, p < 0.001, R2 = 0.041) correlated with increases in serum creatinine. UPCR
(beta = 0.101, CI 0.010; 0.159, p = 0.026, R2 = 0.010) predicted a decrease in eGFR over 1 year,
but this relationship was not observed with uL-FABP (beta = −0.045, CI −0.112; 0.037,
p = 0.324, R2 = 0.002).

By the end of year 1, 208 participants (43%) showed progression of CKD defined as a
reduction in eGFR by 5 mL/min, an increase in serum creatinine by 10% or initiation of
renal replacement therapy. Their characteristics are described in Table 3. Both uL-FABP
and uPCR predicted CKD progression (logistic regression model adjusted for sex and age)
(Table 4).
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Table 2. Unadjusted and adjusted linear regression models of uL-FABP and uPCR with serum
creatinine and eGFR.

Outcome: MDRD eGFR (Log10 eGFR)

Unadjusted (R2 = 0.169) +Age (R2 = 0.313) +Age, Sex (R2 = 0.317)

Beta (95% CI) Sig Beta (95% CI) Sig Beta (95% CI) Sig

uPCR −0.178 (−0.257; −0.096) <0.001 * −0.216 (−0.228; −0.140) <0.001 * −0.216 (−0.289; −0.141) <0.001 *

uL-FABP −0.313 (−0.392; −0.231) <0.001 * −0.300 (−0.372; −0.225) <0.001 * −0.300 (−0.372; −0.225) <0.001 *

Outcome: Serum Creatinine (Log10 serum creatinine)

Unadjusted (R2 = 0.173) +Age (R2 = 0.268) +Age, Sex (R2 = 0.312)

Beta (95% CI) Sig Beta (95% CI) Sig Beta (95% CI) Sig

uPCR 0.185 (0.104; 0.265) <0.001 * 0.216 (0.139; 0.291) <0.001 * 0.211 (0.135; 0.284) <0.001 *

uL-FABP 0.312 (0.230; 0.392) <0.001 * 0.302 (0.225; 0.377) <0.001 * 0.307 (0.231; 0.379) <0.001 *

Outcome variables with skewed distribution of errors underwent logarithmic transformation. Results are
presented as beta coefficients with 95% confidence intervals (CIs). * denotes statistical significance (sig) at
the level of p < 0.05. eGFR = estimate glomerular filtration rate, MDRD = Modification of Diet in Renal Disease,
uL-FABP = urinary liver-type fatty acid binding protein, uPCR = urinary protein-to-creatinine ratio.

Table 3. Participants’ demographic characteristics and biochemical profiles stratified by CKD pro-
gression by the end of year 1 of follow-up.

Demographics CKD Progression No CKD Progression p-Value

N 208 276

CKD stage

1–2 8.5% 11.3%

<0.001 *
3A 7.5% a 17.7%
3B 18.5% 31.3%
4 40.5% 30.6%
5 25.0% b 9.1%

Age (yrs) 63 (50; 74) 66 (53; 75) 0.233
Sex: Male 55.3% 56.2% 0.849

Ethnicity

White 77.4% 79.0% 0.332
Black 4.8% 2.9%
Asian 9.6% 8.7%
Chinese 1.9% 0.7%
Other 5.8% 6.2%
Unspecified 0.5% 2.5%

Primary CKD Pathology

ADPKD 11.1% 6.5%

0.042 *c

Diabetic Nephropathy 13.5% 8.7%
Glomerulonepgritis 18.3% 17.0%
Acute/Chronic TIN 2.9% 4.3%
Obstructive/Stones/Reflux 12.0% 9.8%
Renovascular/HTN/ Ischaemic 12.0% 12.7%
Vasculitis/SLE 6.7% 14.1%
Myeloma 2.4% 0.7%
Hereditary Nephropathy 1.4% 0.4%
Other 7.7% 8.7%
Uncertain Aetiology 12.0% 17.0%

Cardiovascular Disease 20.7% 19.9% 0.840
Diabetes Mellitus 32.7% 25.4% 0.077
Davies’ Comorbidity Score 1 (1; 2) 1 (1; 2) 0.718
ACEi/A2RB ACEi 33.4% 22.3% 0.560

A2RB 21.5% 21.8% 0.742
Both 2.4% 3.3% 0.201
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Table 3. Cont.

Demographics CKD Progression No CKD Progression p-Value

Aldosterone Inhibitors 2.6% 2.9% 0.137
Baseline Serum Creatinine (umol/L) 222 (141; 322) 154 (119; 214) <0.001 *
Baseline MDRD eGFR (mL/min/1.73 m2) 24 (15; 40) 34 (24; 48) <0.001 *
uPCR mg/gCr 115 (24; 287) 25 (9; 73) <0.001 *
uL-FABP ELISA (mcg/gCr) 7.8 (0; 31.1) 1.9 (0; 9.4) <0.001 *
1 Year Serum Creatinine (umol/L) 278 (177; 438) 149 (109; 199) <0.001 *
1 Year MDRD eGFR (mL/min/1.73 m2) 17 (10; 30) 37 (25; 52) <0.001 *
Increase in Creatinine (%) 22.6 (13.3; 41.9) −3.5 (−12.3; 1.5) <0.001 *
Decrease in eGFR (mL/min/1.73 m2) 5 (3; 8) −1 (−5; 1) <0.001 *

CKD progression was defined as a decline in the MDRD eGFR by 5 mL/min or more, an increase in serum
creatinine by 10% or more and renal death (initiation of renal replacement therapy). Group comparison was
performed using Chi-square for categorical variables and Kruskal–Wallis test for continuous variables. Post
hoc analysis for categorical variables was performed through observation of standardised residuals. * indicates
statistical significance at p = 0.05, a indicates lower than expected frequency, b indicates higher than expected
frequency and c indicates that observation of residuals did not identify a higher or lower than expected frequency
for any of the categories. ACEi = angiotensin-converting enzyme inhibitors, A2RB = angiotensin 2 receptor blocker,
CKD = chronic kidney disease, eGFR = estimate glomerular filtration rate, ELISA = enzyme-linked immunosorbent
assay, HTN = hypertensive nephropathy, L = litre, m = metre, mcg = microgram, MDRD = Modification of Diet
in Renal Disease, mg = milligram, mL = millilitre, mmol = millimol, SLE = systemic lupus erythematosus,
TIN = tubulointerstitial nephritis, uL-FABP = urinary liver-type fatty acid binding protein, uPCR = urinary
protein-to-creatinine ratio.

Table 4. Logistic regression models for the prediction of CKD progression by uL-FABP and uPCR
during the first year of follow-up.

Outcome: CKD Progression, Predictor: uL-FABP

Unadjusted +Age, Sex

OR (95% CI) Sig OR (95% CI) Sig

uL-FABP 1.01 (1.00; 1.01) 0.002 * 1.01 (1.00; 1.01) 0.002 *

Outcome: CKD progression, Predictor: uPCR

Unadjusted +Age, Sex

OR (95% CI) Sig OR (95% CI) Sig

uPCR 1.00 (1.00; 1.01) <0.001 * 1.00 (1.00; 1.01) <0.001 *

Results are presented as Odds Ratios (OR) and coefficients with 95% confidence intervals (CIs). * denotes statistical
significance (sig) at the level of p < 0.05. uL-FABP = urinary liver-type fatty acid binding protein, uPCR = urinary
protein-to-creatinine ratio.

By the end of year 2, 153 participants (42%) showed CKD progression defined as
a reduction in eGFR by 6 mL/min, an increase in creatinine by 20% and start of renal
replacement therapy. uL-FABP did not correlate with the increase in creatinine over 2 years
(beta = 0.041, p = 0.464) or the decrease in eGFR (beta = −0.030, p = 0.602) over the same
period. uPCR did correlate with both of these outcomes in a linear model adjusted for age,
sex and uL-FABP (∆Creatinine: beta = 0.310, p < 0.001, ∆eGFR; beta = 0.253, p < 0.001). Both
L-FABP and uPCR predicted CKD progression (logistic regression model adjusted for sex
and age). The results are shown in Supplementary Table S1.



J. Pers. Med. 2023, 13, 1481 9 of 13

3.2. Sensitivity and Specificity

The area under the curve for sensitivity and specificity of uL-FABP in predicting CKD
progression was calculated using ROC curve analysis as 0.623 (CI 0.572; 0.675, p < 0.01)
while that for uPCR was 0.706 (CI 0.658; 0.753, p < 0.01) (Figure 4a,b). Heat map analysis
(Figure 5) also showed that uL-FABP in the absence of significant proteinuria can predict
modest increases in serum creatinine (10% at 1 year and 20% at 2 years). The combined
elevation of uL-FABP and uPCR had the highest predictive power for increases in creatinine
at both 1 year (≤20% increase; Figure 5a) and 2 years (≤40% increase; Figure 5b).
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3.3. Mortality and RRT Initiation Risk Analysis

Cox regression for the combined outcomes of death and initiation of RRT over the
2-year study period showed that the cumulative risk for patients with high uL-FABP levels
(using uL-FABP of 8 as the differentiator) was significantly higher than those with low
levels (p < 0.001) in a model adjusted for age, sex and uPCR (Figure 6).
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4. Discussion

We describe the findings of a prospective 2-year follow-up study exploring the poten-
tial of uL-FABP as a biomarker for disease progression in CKD. This is the largest study
of a CKD population using uL-FABP. Our baseline analysis demonstrated an association
between uL-FABP levels and disease severity, as demonstrated both by raised creatinine
and reduced eGFR but also proteinuria. The presence of elevated levels of uL-FABP at
baseline appears to predict CKD progression both at 1 and 2 years of follow-up. Although
proteinuria appears to have a higher sensitivity and specificity than uL-FABP alone in
predicting CKD progression, our ROC curve analysis would suggest that the best prediction
for sensitivity and specificity is offered by the combination of the two biomarkers. As
apparent from the heat map analysis, patients with elevated uL-FABP levels were more
likely to experience a rise in serum creatinine both at 1 and 2 years of follow-up. In addition
to disease progression, elevated uL-FABP carried a 24% higher risk of RRT and overall
mortality independent of the presence of proteinuria.

Serum creatinine levels, and by extension creatinine-based estimations of GFR, might
portray a reliable insight into CKD severity but their overall value in predicting disease
progression is limited [15]. uPCR and its risk prediction equations (KFRE [31]) remain
the gold standard in identifying individuals more likely to progress [18,32–34] but our
findings suggest that the absence of proteinuria does not exclude progressive pathology. In
these individuals, the presence of elevated uL-FABP might be a better predictor of disease
progression.

Urinary PCR and L-FABP biomarkers are likely to represent different pathological
processes involving the kidney. While uPCR tends to be predominantly glomerular in
its origin in the early stages of CKD [16], uL-FABP is produced by the renal tubules
in response to ischemia and oxidative stress. A number of studies have linked urinary
levels of L-FABP with tubular injury both in the acute and chronic phases of kidney
disease. In health, L-FABP is produced in the proximal renal tubule and binds fatty
acids reabsorbed by the renal tubular cells enabling their transposition into the tubular
mitochondria [20]. Under ischaemic conditions, this process is compromised by lipid
peroxidation products binding to L-FABP instead, leading to increased secretion of L-FABP
into the urine [20]. Whether this process is pathological or protective is unclear. All studies
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to date have shown that high levels of uL-FABP are generally linked with adverse outcomes.
This has been predominantly in the setting of acute kidney injury [35–39], perioperative
ischaemic [40,41], contrast-induced acute tubular injury [42] and peri-haematopoietic stem
cell transplantation-associated acute kidney injury [28]. In the setting of CKD, studies have
been few, with limited study populations [23,26,38,43]. Some studies have investigated
specific CKD groups such as those with diabetes or cardiovascular disease [23,26,38]. They
do all, however, conclude that uL-FABP is a useful biomarker in CKD [20] and its potential
should be explored further. Our results are suggestive that in addition to an additive
predictive value to that of uPCR, uL-FABP might play a role in risk stratification of patients,
especially with negligible or absent proteinuria. Our attempts to characterise this group
were limited by a smaller subgroup size (Supplementary Table S2).

Although the association between uL-FABP and ESKD/RRT has been noted before in
a study of diabetic Pima Indians [38], this is the first time that such an association has been
shown in a large population of unselected patients with CKD.

Another potential benefit when considering uL-FABP as a potential biomarker of
CKD progression in the clinical setting is its potential availability as a semi-quantitative
point-of-care test. The technology can be adapted for screening the CKD population in
clinics.

The main limitation of our study was the lack of repeated measurements of uL-FABP
during the follow-up period. The limited number of studies in the field made the design
of this study and any population size estimation difficult. Efforts were made to minimise
selection biases during the recruitment of participants. Participants were randomly ap-
proached for recruitment during their attendance at routine CKD clinical appointments.
Laboratory analysis was also blinded to the personal information of participants.

In summary, uL-FABP appears to be a highly sensitive and specific biomarker of renal
dysfunction and an effective predictor of CKD progression. A rapid assay of elevated
uL-FABP in routine CKD care could improve rapid diagnosis and feasibility in clinical
practice, especially in CKD patients with minimal or no proteinuria.

Further studies involving large registries are needed to evaluate the role of uL-FABP
in the risk stratification of CKD patients and disease progression. Future research should
also investigate interventions that can modify the expression of the biomarker and help
improve the prognosis of chronic kidney disease.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm13101481/s1, Table S1: Logistic regression models for the
prediction of CKD progression by uLFABP and uPCR over the 2 years of follow-up; Table S2:
Subgroup analysis of demographic and biochemical characteristics of participants’ with no proteinuria
(uPCR < 50) and high uL-FABP levels (>8 mcg/gCr) that showed progression at year 1 of follow-up.
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