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Abstract: Diabetes is a condition accompanied by the alteration of body parameters, including
those related to lipids like triglyceride (TG), low-density lipoproteins (LDLs), and high-density
lipoproteins (HDLs). The latter are grouped under the term dyslipidemia and are considered a risk
factor for cardiovascular events. In the present work, we analyzed the complex relationships between
twelve parameters (disease status, age, sex, body mass index, systolic blood pressure, diastolic blood
pressure, TG, HDL, LDL, glucose, HbA1c levels, and disease onset) of patients with diabetes from
Romania. An initial prospective analysis showed that HDL is inversely correlated with most of
the parameters; therefore, we further analyzed the dependence of HDLs on the other factors. The
analysis was conducted with the Code Interpreter plugin of ChatGPT, which was used to build
several models from which Random Forest performed best. The principal predictors of HDLs were
TG, LDL, and HbA1c levels. Random Forest models were used to model all parameters, showing
that blood pressure and HbA1c can be predicted based on the other parameters with the least error,
while the less predictable parameters were TG and LDL levels. By conducting the present study
using the ChatGPT Code Interpreter, we show that elaborate analysis methods are at hand and easy
to apply by researchers with limited computational resources. The insight that can be gained from
such an approach, such as what we obtained on HDL level predictors in diabetes, could be relevant
for deriving novel management strategies and therapeutic approaches.

Keywords: diabetes; data analysis; parameters; data modeling; predictors; management strategies

1. Introduction

Type 2 diabetes mellitus (T2DM) occurs when the body is unable to preserve normal
glucose levels due to insulin resistance and β-cell dysfunction [1,2]. T2DM is a complex
pathology with a multifactorial etiology. There is a genetic component of the disease, but
environmental factors like age, lifestyle, and diet are extremely important [3,4]. Obesity
is a major risk factor for T2DM, the body mass index (BMI) being proportional to insulin
levels and insulin resistance [4]. An increased calorie intake doubled by a decreased
energy consumption, as well as the nutrient composition of food, are also T2DM risk
factors. A diet rich in saturated fats was linked to all events that accompany T2DM [1].
Recent studies showed a bidirectional relationship between lipid metabolism and insulin
resistance or T2DM, the underlying mechanisms being discussed in [3]. Dyslipidemia
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is a condition characterized by elevated triglyceride (TG) and low-density lipoprotein
(LDL) levels doubled by decreased levels of high-density lipoproteins (HDLs). It is highly
prevalent in diabetes [5–7] and is a risk factor for cardiovascular diseases [8].

In a previous study, we analyzed the prevalence of metabolic syndrome in 110 T2DM
patients from Romania [9]. The metabolic syndrome includes various symptoms related to
metabolic dysfunctions, including insulin resistance, obesity, hypertension, and atherogenic
dyslipidemia [10]. Several parameters were measured in order to diagnose the metabolic
syndrome in these patients, like the levels of glucose, TG, HDL, LDL, BMI, blood pressure,
or the level of protein in the urine. In the present study, we continued the analysis of
the data in relationship with diabetes. We aimed to identify the parameters best corre-
lated with diabetes and the relationship between them by applying more elaborate data
analysis methods. At the same time, we were interested in conducting the analysis with
minimum computational expense, and therefore, we used the Code Interpreter feature of
ChatGPT [11].

The Code Interpreter plugin allows the upload or download of data, their analysis,
and graphical representation using a Python interpreter [12,13]. Even if there are current
limitations regarding the analysis of big data like those from the bioinformatics field [13],
the ChatGPT Code Interpreter holds the promise of facilitating data analysis even for non-
specialists. Our analysis identified HDL as best correlated with all measured parameters,
and different models were used to understand HDLs’ relationship to them. Given that
diabetes is a risk factor for cardiovascular disease and HDLs present protective vascular
effects [14], the insights that we derived could have significant relevance for the treatment
of diabetes and for deriving novel management strategies. Also, we showed that a complex
data analysis is at hand just by using the Code Interpreter.

2. Materials and Methods
2.1. Diabetes Dataset

As described in [9], the dataset was acquired cross-sectionally on 110 diabetic and
50 nondiabetic (control, healthy cases) persons that presented for diagnosis or follow-up
at The National Institute of Diabetes, Nutrition, and Metabolic Diseases “N.C. Paulescu”,
Bucharest, Romania, in the March 2022–November 2022 time period. Almost all diabetic
patients were using diabetes treatment consisting of metformin or insulin injections in
equal proportions. Supplementarily, the patients also used gliclazide, pioglitazone, or
canagliflozin. The patients were prohibited from using any type of medication 24 h prior to
sample collection. Twelve parameters were measured, as presented in Table 1.

2.2. Data Correlations in Diabetes and Non-Diabetes Datasets

Before using ChatGPT Code Interpreter, the data were analyzed in R environment [15]
by descriptive statistics and by correlation analysis [16] between the variables associated
with diabetic (Disease = 1) and nondiabetic (Disease = 0) conditions.

2.3. Data Analysis

Data analysis was performed with Code Interpreter plugin in ChatGPT [11,12] using
the diabetic patients’ dataset (110 values with the parameter Disease = 1). The conversations
are given in the Supplementary Material S1.

2.3.1. HDL Prediction Based on the Other Variables

HDL levels (dependent variable) were modeled based on the other parameters (in-
dependent variables). The following models were considered: Generalized Linear Model
(GLM) [17], Lasso Regression [18], Elastic Net [19], Quantile Regression [20], Random
Forest [21,22], Gradient Boosting Machine (GBM) [23], Support Vector Machine (SVR) [24],
and Neural Network [25]. The 110 subjects were divided into training (88 samples) and
test (22 samples) sets. Training of the models involved an initial checking of the precon-
ditions assumed by each model. This was followed by the actual training of the models
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for which preconditions are met. Additional refinement of the models was achieved by
hyperparameter tuning.

Table 1. The analyzed dataset for the total of 160 diabetic and nondiabetic patients.

Variable Type Description Non-Null Count Range

Disease Integer (0 or 1)

1 for Yes (the patient has
diabetes) or 0 for No (the
patient does not
have diabetes),

160 NA

Sex Object (Categorical—‘M’
or ‘F’) Gender of the patient 160 NA

Age Integer Age of patient 160 35–70 years

BMI Float Body Mass Index of patient 160 3.0–40.0

Blood Pressure—H Integer Systolic blood
pressure measurement 160 123–147 mmHg

Blood Pressure—L Integer Diastolic blood
pressure measurement 160 81–91 mmHg

TG Integer Triglyceride level of patient 160 130–540 mg/dL

HDL Integer High-density lipoprotein level 160 19–72 mg/dL

LDL Integer Low-density lipoprotein level 160 60–300 mg/dL

Glucose Integer Blood glucose level 160 70–295 mg/dL

HbA1C Float
Hemoglobin A1c level,
indicating average blood sugar
over the past 2–3 months

160 3.9–11.9%

Onset Float
Time between the onset of
diabetes and the moment of
collecting data

110 (50 missing
values) 1–13 years

Preliminary Checks and Preconditions

Preconditions (Table 2) were checked for the above-mentioned models. HDL levels
were considered as dependent variables, and the other parameters were considered as
independent variables.

Table 2. Preconditions of the applied regression models.

Model Preconditions

Generalized Linear Model (GLM) [17]

-linear variation of predictors and outcome
-independence of errors
-homoscedasticity of errors
-normality of error distribution
-no or little multicollinearity

Lasso [18] and Elastic Net [19]
Regressions -evaluation of multicollinearity

Quantile Regression [20] -linear variation of predictors and outcome
-independence of errors

Random Forest [21,22], GBM [23], SVR, [24] and
Neural Network [25]

-no missing data
-data normalization for Neural Networks

The assumptions of linearity and independence were addressed by visual inspection
of the scatter plots of residual versus predicted values. The independence and normality of
residual assumptions were tested by applying Durbin–Watson statistics [26] and Shapiro–
Wilk test [27], respectively. The multicollinearity was tested using the Variance Inflation
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Factors (VIF) [28]. VIFs were refined by omitting the most inflated variables. The scales
of the data were compared in order to determine if data normalization should be applied
prior to training the machine learning models.

Model Selection and Comparison

The models were applied to our data on diabetes patients, and the performance was
estimated as Mean Squared Error (MSE). The performance of the models was improved
by tuning and refinement. The model leading to the best MSE was further explored
and analyzed.

2.3.2. Random Forest Models of All Variables

Random Forest models were trained for modeling all variables except for disease
and onset. Each variable in our dataset was considered dependent, while the rest of the
variables were considered independent. Random Forest models were trained for all possible
combinations, and the performances of models were compared based on MSE values.

2.3.3. Modeling the Transition from Normal to Elevated HbA1c

The transition from normal to elevated levels of HbA1c was investigated using the
Kaplan–Meier survival analysis [29]. The event of interest was defined as the transition
from normal (<6.5%) to elevated (≥6.5%) HbA1c levels. The model assumes that “survival”
refers to the probability of maintaining HbA1c below the threshold of 6.5%. The variable
‘Onset’ was defined as the time after the initial diagnosis when the event occurred. Patients
with HbA1c below the threshold levels were considered as censored.

2.3.4. Software and Tools

As stated by ChatGPT, the analysis was conducted in Python [30], the tools used for
statistical analyses and visualizations being pandas [31], numpy [32], scipy [33], statsmod-
els [34], sklearn [35], matplotlib [36], and seaborn [37] libraries.

3. Results and Discussions
3.1. Correlation of Analyzed Parameters

An initial analysis of data involved the identification of parameters that are correlated.
The analysis was performed separately in the case of diabetic and control patients in order to
identify the correlations specific to diabetes (Figure 1). In control patients, most parameters
present no association, as supported by the very small correlation coefficients. An exception
is the very strong positive correlation between age and systolic blood pressure.

In the case of diabetic patients, there are very strong positive correlations between
glucose and HbA1c levels, TG and LDL levels, and glucose or HbA1c levels. Very strong
negative correlations are seen between age and HDL levels. Strong positive correlations
are seen between age and TG, LDL, glucose, or HbA1c levels and between HDL and
other parameters like TG, LDL, glucose, and HbA1c levels. Moderate correlations are seen
between Blood Pressure—H and age, BMI, or LDL levels (positive correlation), between
age and disease onset (positive correlation), and between Blood Pressure—H and HDL
(negative correlation). The other correlations are weak and very weak, like in the case of
disease onset and all parameters except for age or in the case of BMI and all parameters
except for Blood Pressure—H.

The two plots in Figure 1 show that the data on diabetic patients present many positive
and negative correlations that are not seen in the case of control patients. Also, the strong
and very strong correlations of variables in diabetic patients suggest that simple linear
regressions will not be suited for modeling these parameters.
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Figure 1. The correlation between analyzed parameters in the case of healthy, nondiabetic patients
(left plot) and diabetic patients (right plot). Correlation coefficients are labeled. The color scheme
varies from red—maximum inverse correlation (correlation coefficient of −1) to blue—maximum
direct correlation (correlation coefficient of 1). The figure was generated in R [15].

3.2. Model Selection for Predicting HDL Levels
3.2.1. Assumptions and Preconditions Checking

Several models were proposed for modeling HDLs based on the other variables, from
simple GLM to complex machine learning approaches. Prior to modeling, the assumptions
of linearity (linear relationship between HDL and the independent variables), independence
(the observations are independent of each other), homoscedasticity (constant variance
across observations), and no multicollinearity (independent variables are not correlated
with each other) were checked for the dataset comprising diabetes patients’ parameters.

Linearity between predictors and the dependent variable (HDL) was determined
by visual inspection of the corresponding scatter plots. The analysis revealed that some
variables show a linear relationship with HDL, while others do not show such a relationship.
The homoscedasticity analysis was performed based on the residual plots. These showed a
random scattering of variables around the Ox axis (y = 0), suggesting that the assumption is
met. The independence of errors was addressed using the Durbin–Watson statistic [26]. The
obtained value of 2.35 indicates no autocorrelation of residuals. Additionally, in the context
of the GLM model, the normality of error distribution was addressed by the Shapiro–Wilk
test. When applying the test, the null hypothesis was that the residuals were normally
distributed. The obtained p-value of 0.378 suggests that the null hypothesis cannot be
rejected; thus, the residuals can be assumed to be normally distributed. These show that
the GLM assumptions of linearity, homoscedasticity, independence of errors, and normality
of error distribution are reasonably met.

The multicollinearity precondition imposed by GLM, Lasso, and Elastic Net models
was tested using the Variance Inflation Factors (VIF) [28] calculated for HDL predictors.
Table 3 shows the calculated VIF values for all predictors. Large VIF values exceeding
5-10 indicate an amount of collinearity that can be problematic to models like GLM. We
notice that age, BMI, Blood Pressure—H, TG, LDL, glucose, and HbA1c levels present a
high degree of multicollinearity.

A means of reducing multicollinearity is to remove some of the correlated predictors.
VIFs were recalculated after omitting glucose levels (Table 3), which resulted in a slight
decrease in VIFs. A supplementary omission of age (Table 3) decreased the VIFs of remain-
ing parameters even more, but BMI (VIF = 43.58), Blood Pressure—H (VIF = 122.14), LDL
(VIF = 70.97), and HbA1c (VIF = 73.82) still presented high VIFs. At this point, ChatGPT
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was asked to suggest further reductions. It analyzed the medical relevance of predictors and
their potential multicollinearity, proposing the additional removal of Blood Pressure—H.
The recalculation of VIFs showed improved values (Table 3) that are still insufficiently low
to meet the no multicollinearity assumption. Based on the new results, ChatGPT envisaged
a further reduction in predictors based on domain knowledge or relevance for HDLs. At
the same time, it suggested accepting the multicollinearity. The multicollinearity of data
can influence the accuracy of coefficient estimates and their interpretation in the case of the
GLM model; therefore, the GLM model cannot be applied to the current data. The Lasso or
Elastic Net models could handle multicollinearity to some degree, but we decided not to
apply the Lasso or Elastic Net models either.

Table 3. Variance Inflation Factors (VIFs) calculated over all predictors and when omitting one or
more parameters, as noted in the head of the table.

Variable VIF—All Variables VIF after Omitting
‘Glucose’

VIF after Omitting
‘Glucose’ and ‘Age’

VIF after Omitting
‘Glucose’, ‘Age’, and
‘Blood Pressure—H’

Sex 2.09 2.09 2.09 2.07

Age 117.24 115.19 - -

BMI 43.82 43.60 43.58 22.70

Blood Pressure—H 189.24 155.07 122.14 -

TG 26.99 26.40 24.00 20.77

LDL 71.97 71.17 70.97 62.39

Glucose 509.68 - - -

HbA1c 825.05 79.00 73.82 46.19

Onset 8.05 7.92 6.78 6.76

A common precondition for machine learning approaches (Random Forest, GBM, SVR,
and Neural Networks) is to have no missing data in the training set for the variables under
consideration, which is met for the analyzed dataset. In addition, SVR and neural networks
require the evaluation of the dataset scale and decide whether a data normalization should
be performed. The features have different scales. For instance, BMI ranges from 3.00 to
39.50, while TG ranges from 140 to 540. Therefore, the normalization or standardization of
data is advisable before modeling.

3.2.2. Data Modeling and Optimal Model Selection

The training set comprising data on diabetic cases was used for training Quantile
Regression, Random Forest, and Gradient Boosting Machine (GBM) models. After nor-
malization, the data were also used for training a Support Vector Regression (SVR) and a
Neural Network model. The MSE values obtained for these models are 86.35 for Quantile
Regression, 70.51 for Random Forest, 75.68 for GBM, 79.46 for SVR, and 73.49 for the Neural
Network. The data are best modeled by the Random Forest approach, as it led to the lowest
MSE. The following best-performing models were Neural Network and GBM.

Random Forest, GBM, and Neural Network models were further refined by hyper-
parameter tuning using the grid search approach. The resulting hyperparameters are
presented in Table 4. Based on the MSE values obtained after hyperparameter tuning, the
Random Forest model appears to perform best. Therefore, it was considered for evaluation
and additional refinement using the data in the test set.

The Random Forest model with the tuned hyperparameters led to an MSE of 70.51
when applied to the test set. This value is close to the MSE obtained on the training set
prior to hyperparameter tuning, which shows that the model is generalizing well to the
new data.
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Table 4. The hyperparameters of Random Forest, GBM, and Neural Network models tuned by grid
search and the resulting best MSE for each model.

Model Hyperparameter Significance of Hyperparameter Value Best MSE

Random Forest

n_estimators Number of trees in the forest 100

55.48max_depth Maximum depth of the tree None

min_samples_split Minimum samples required to split an internal node 2

Neural Network
(MLPRegressor)

hidden_layer_sizes Number of neurons in hidden layers 100

74.46activation Activation function for the hidden layer tanh

alpha L2 penalty (regularization term) parameter 0.0001

GBM

n_estimators Number of boosting stages to run 50

62.05learning_rate Step size shrinkage used to prevent overfitting 0.1

max_depth Maximum depth of the individual
regression estimators 3

3.2.3. Data Relationships According to the Random Forest Model

The importance of features determined for the parameters in the context of the Random
Forest model with tuned hyperparameters is 44.9% for TG, 23.3% for HbA1c, 20.7% for
LDL, 5.0% for BMI, 3.9% for onset, and 2.1% for sex. This shows that TG presents the
highest importance and subsequent contribution to the decision-making process. A mean
importance is seen in the case of HbA1c and LDL, while BMI, onset, and sex present a
low importance.

Partial dependence plots for TG, HbA1c, and LDL are presented in Figure 2. It appears
that HDL levels decrease when TG levels increase or when HbA1c levels increase. There
is only a slight decrease in HDL levels as LDL levels increase, but mostly, HDL levels are
relatively constant over different LDL levels.
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Several analyses were performed to gain a deeper understanding of the relationships
between HDL levels and their predictors: distribution analysis, bivariate relationships,
interaction effects, correlation analysis, and model residual analysis.

The distribution analysis consisted of visually observing the distribution of the primary
predictors (TG, HbA1c, and LDL) over different HDL levels (Figure 3). HDL values were
divided into quartiles, and the distribution of predictors was addressed relative to the
quartiles. The distribution of TG shows that the parameter shifts to higher levels as HDL
levels decrease. Less pronounced than in the case of TG, as HDL decreases, there is a slight
shift toward higher HbA1c levels. LDL levels have a fairly consistent distribution across
HDL levels.
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The bivariate relationship analysis involved evaluating the relationship between HDL
and its primary predictors using scatter plots (Figure 4). The TG versus HDL plot shows a
negative relationship between the two properties. Similarly, but less pronounced, HbA1c
also shows a negative relationship to HDL. As in the previous discussions, the values in
the LDL versus HDL plots are widely dispersed, thus showing a less clear relationship.
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The interaction effect analysis aimed to understand if the impact of one predictor on
HDL levels is dependent on the level of another predictor. Given the unclear relation of
LDL to HDL, the analysis focused on TG and HbA1C and their impact on HDL levels.
More precisely, the analysis addressed the effect of TG on HDL for different levels of HbA1c
(Figure 5). It appears that across all levels of HbA1c, mean HDL decreases as TG increases.
This is more pronounced at low and medium levels of HbA1c and less pronounced at high
levels of HbA1c. These observations suggest that TG levels have an overall negative effect
on HDL, and the effect might be influenced by HbA1c levels.

The correlation analysis of the primary predictors and HDL revealed a negative corre-
lation (rTG-HDL = −0.69; rHBA1c-HDL = −0.63; rLDL-HDL = −0.75). The strongest correlation
is seen between LDL and HDL, followed by TG and HbA1c.

The last analysis performed was the examination of the residuals calculated for the
refined Random Forest model. This was performed using the residual plot in which
predicted HDL values are plotted against the residuals (Figure 6). The scattering of residuals
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over different HDL values suggests that the model has a consistent variance across different
levels of predicted HDL values (homoscedasticity). Also, in the absence of a clear pattern
in residuals, the model appears to capture reasonably well the trends in the data.
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3.3. Random Forest Models of All Variables

After validating the Random Forest model as best performing on our data, Random
Forest models were trained to model each parameter (dependent variable) based on the
others. MSE values obtained for these models are given in Table 5. The models for systolic
and diastolic blood pressure, as well as for HbA1c, present the lowest MSE, supporting
that these variables are best predicted using our data. The least predictable variables are
TG and LDL.

The model for HbA1c was further considered for in-depth analysis. The model
presented an MSE of 0.0656. The importance of the features for predicting HbA1c is 95.72%
for Glucose, 1.71% for TG, 0.72% for HDL, 0.45% for sex, 0.36% for BMI, 0.32% for age, 0.30%
for onset, 0.27% for LDL, 0.09% for Blood Pressure—H, and 0.007% for Blood Pressure—L.
The model identified glucose levels as the most important for predicting HbA1c, while the
other parameters appear to have small contributions. Blood pressure variables are the least
important for the prediction, with a contribution close to zero.
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Table 5. MSE calculated for the Random Forest models trained by considering each parameter as
dependent variable and the remaining as independent variables.

Dependent Variable Mean Squared Error (MSE)

Blood Pressure—L 0.0163

HbA1c 0.0753

Blood Pressure—H 0.1105

Sex 0.1498

Onset 12.7679

Age 12.9156

BMI 14.8431

HDL 53.59.98

Glucose 53.9048

LDL 421.2393

TG 745.7605

Given that the relevance of glucose to HbA1c is well known, the model was trained
when omitting glucose. The new model has an MSE of 0.2944, showing that the predictive
power decreased when omitting glucose levels. This supports the importance of glucose
levels for the levels of HbA1c but helps identify the following predictors of HbA1c. The
calculated importance of features is 73.65% in the case of TG, 7.22% for HDL, 5.89% for age,
4.89% for BMI, 3.76% for LDL, 1.78% for onset, 1.15% for Blood Pressure—H, 1.13% for
sex, 0.52% for sex, and 0.52% for Blood Pressure—L. This shows that TG levels became the
main predictor, while the other parameters have a minimal influence on predicting HbA1c.

3.4. Modeling the Transition between Normal and High HbA1c Levels

The data on disease onset and HbA1c levels of diabetic patients were used to model
the transition between normal and elevated HbA1c. The transition represents the event
of interest that occurs when HbA1c levels exceed 6.5% [38]. The model aims to link the
time since the initial diagnosis to the occurrence of the event. The patients who have not
experienced the event are considered censored. The Kaplan–Meier survival curve [29] in
Figure 7 presents the probability of maintaining HbA1c levels below the threshold. It shows
an immediate decrease in HbA1c levels after initial diagnosis. The survival approaches
zero after 6 years, indicating that almost all patients in the dataset experienced elevated
HbA1c levels within the timeframe.

3.5. Discussions and Perspectives

In the present study, we performed a statistical analysis on data from diabetic and
control patients harnessing the capabilities of the Code Interpreter Plugin of ChatGPT.
The analysis has two main purposes. One was to derive novel information that can be
of relevance to the medical field, and the other was to achieve a complex analysis with
minimal computational and software resources. The present work is a cross-sectional study
using routine analyses that are performed in Romanian clinics on diabetic patients (age,
sex, BMI, systolic and diastolic blood pressure, TG, HDL, LDL, glucose and HbA1c levels,
and disease onset) to understand the relationship between the measured parameters.

Using the available measurements on diabetic and control patients, we initially showed
that there are strong and very strong correlations between these parameters in the case of
diabetic patients, while there are no such correlations in the case of control patients. This is
not surprising given the complex clinical picture of diabetes in which many parameters,
including lipidic ones, are perturbed [5–7,38].
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In the case of diabetic patients, the analysis showed that HDL is the only parameter
found in an inverse strong and very strong correlation with the other parameters. Low
HDL levels are considered a risk factor for cardiovascular disease [39]. HDL levels appear
as a valuable predictor for cardiovascular events, especially since the patients using LDL-
lowering agents still experienced such pathology [40,41]. HDL levels are very important
for diabetic patients. Ikura et al. [42] also showed that lower HDL cholesterol levels are
associated with extremity amputation and wound-related death in patients suffering from
diabetic foot ulcers. Concerning the risk for cardiovascular diseases in diabetic patients,
there is a U-shaped association between HDL and clinical outcomes due to a possible
interaction with the glycemic status [43].

Given the relevance of HDL, here, we explored several models to understand the
relationships and predict HDL values based on all the other parameters: age, BMI, systolic
and diastolic blood pressure, TG, LDL, glucose, HbA1c levels, and disease onset. HDL
modeling started with simple models like GLM, Lasso, or Elastic Net. The assumptions
check showed that our data does not meet the multicollinearity assumption, suggesting
that more complex models should be used to capture the relationship of HDL to the other
parameters. The best-performing model for HDL prediction was the Random Forest model,
which showed the high importance of TG, LDL, and HbA1c in influencing HDL levels.
A more in-depth analysis of the model showed that HDL levels decrease as TG levels
increase. Less pronounced was how HDL levels decrease as HbA1c levels increase, while
LDL levels present a more constant distribution across all HDL levels. TG levels are the
most important predictor of HDL. An interaction between HbA1c and TG levels was also
seen; the impact of HbA1c on the HDL-TG dependence is more pronounced at lower to
medium levels of HbA1c.

The research that we performed identified TG, HbA1c, and LDL as the main deter-
minants of HDL by filtering a larger set of parameters. The results offer a more complex
picture relative to studies focusing on pairs of parameters like HDL-TG, HDL-LDL [44],
or HDL-HbA1c [45]. HDL, TG, and LDL are established risk factors for cardiovascular
disease and are important therapeutic targets for treating them. Baliga et al. have discussed
in [39] that there are therapeutic strategies that result in decreasing cardiovascular risk
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by elevating HDL levels. Other strategies for cardiovascular risk reduction involve the
reduction of LDL levels [39] or TG levels [46]. Knowledge of the relationships between
these parameters can be useful in the design of therapeutic strategies.

In addition to HDL modeling, we also explored the possibility of predicting other
parameters using Random Forest models. Models with good prediction power were ob-
tained for blood pressure—both systolic and diastolic and for HbA1c. The main predictor
of HbA1c was glucose levels, but omitting glucose revealed that TG levels are the following
main predictor. The survival analysis performed on HbA1c levels revealed that the transi-
tion from normal to elevated levels is expected to occur in the case of all patients within
a 6-year timeframe after diagnosis. TG levels are the principal predictors of both HDL
and HbA1c levels. At the same time, the levels of TG and LDL were the less predictable
properties using Random Forest models. This suggests that an improved control of TG
levels should have a positive impact on both glycosylated protein levels and HDL levels.

The study performed here can be easily extended by including other parameters.
Being a cross-sectional study at this point, the follow-up of patients can provide additional
insight into the time evolution of parameters, especially under specific therapies, and the
diabetes complications that might arise.

4. Conclusions

We successfully used ChatGPT to analyze the complex relationships between twelve pa-
rameters measured on Romanian diabetic patients. In contrast to data from control patients,
data from diabetic patients showed strong and very strong correlations. HDL is the only
parameter in negative correlation with most of the others. Given the enhanced multi-
collinearity of data, HDL modeling required the usage of a more complicated model. The
best-performing model was Random Forest. TG, LDL, and HbA1c resulted as the most
important predictors of HDL, the increase in TG and HbA1c levels being associated with
the decrease in HDL. The interaction analysis showed that the decrease in HDL when TG
increased is seen at all HbA1c levels, especially at low and medium levels of HbA1c. The
other parameters that can be predicted with Random Forest models are HbA1c levels and
blood pressure, while the parameters that are difficult to predict are TG and LDL levels. The
main predictor of HDL and the second most important predictor of HbA1c (after glucose
levels) is the level of TG.

Such a study bringing insight into the dependence of HDL on other parameters is
relevant for future therapeutic strategies that could consider tuning the predictors of HDL
in order to have a positive impact on HDL. The study can be easily translated on a different
parameter important for diabetes or for any other disease. The methodology that we
proposed is easy to apply using the ChatGPT Code Interpreter. It does not require the
installation of software and libraries, which can be difficult for non-specialists. Concerning
the models that were obtained with ChatGPT, the Code Interpreter performed the modeling,
offered explanations, identified limitations, and performed graphical data representations.
Our work proves that ChatGPT can successfully assist the interpretation of scientific data,
being a valuable tool for researchers with limited computational capabilities.
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