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Abstract: Background: Syncope, a common problem encountered in the emergency department (ED),
has a multitude of causes ranging from benign to life-threatening. Hospitalization may be required,
but the management can vary substantially depending on specific clinical characteristics. Models
predicting admission and hospitalization length of stay (LoS) are lacking. The purpose of this study
was to design an effective, exploratory model using machine learning (ML) technology to predict
LoS for patients presenting with syncope. Methods: This was a retrospective analysis using over 4
million patients from the National Emergency Department Sample (NEDS) database presenting to
the ED with syncope between 2016–2019. A multilayer perceptron neural network with one hidden
layer was trained and validated on this data set. Results: Receiver Operator Characteristics (ROC)
were determined for each of the five ANN models with varying cutoffs for LoS. A fair area under the
curve (AUC of 0.78) to good (AUC of 0.88) prediction performance was achieved based on sequential
analysis at different cutoff points, starting from the same day discharge and ending at the longest
analyzed cutoff LoS ≤7 days versus >7 days, accordingly. The ML algorithm showed significant
sensitivity and specificity in predicting short (≤48 h) versus long (>48 h) LoS, with an AUC of 0.81.
Conclusions: Using variables available to triaging ED clinicians, ML shows promise in predicting
hospital LoS with fair to good performance for patients presenting with syncope.

Keywords: syncope; length of stay; artificial intelligence; machine learning; prediction

1. Introduction

Syncope, one of the most common conditions seen in medical practice, is a major cause
for emergency department (ED) visits. Between 13–83% of such patients are hospitalized [1].
Variation in admission rates reflects the complexity of the problem and lack of evidence-
based consensus on effective syncope assessment criteria for hospital admission [1,2].
Some etiologies of syncope are easily identified and benign, whereas others are difficult
to determine. In particular, cardiogenic causes and other high-risk conditions can be
difficult to identify in the ED. Often extensive, expensive, unnecessary, and potentially
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harmful evaluations are undertaken due to fear of missing life-threatening or otherwise
serious underlying causes. Such approaches consume hospital resources and often lead to
prolonged and unnecessary hospital length of stay (LoS) [1,3–6]. Long initial hospital stays
(>3 days) are associated with greater expense, higher readmission rates within 30 days and
resource utilization [7].

LoS is a metric that can determine hospitals’ triage and illness severity, assess overall
healthcare cost, and identify resource allocation regarding staff and patient needs [8].
Hospitals in the United States and worldwide rely on Diagnosis Related Groups (DRG) and
Utilization Management services to reduce unnecessary and prolonged hospitalizations.
Short-term observation units help decrease LoS; however, the overall healthcare cost
related to syncope continues to rise [9]. Patient-specific, personalized, computer-generated
alerts to admitting physicians giving the mean target LoS based on a provisional DRG
assignment Interestingly, despite decades of experience, advances in diagnostic techniques,
and implementation of variouswas associated with approximately 3% reduction in mean
LoS [10]. Interestingly, despite decades of experience, advances in diagnostic techniques,
and implementation of various syncope risk stratification algorithms, a reliable benchmark
LoS prediction for patients presenting to the ED with syncope remains elusive.

This study aimed to design an effective and exploratory model to help ED physicians
predict LoS for each patient presenting with syncope. We hypothesized that machine learn-
ing (ML) technology can be trained effectively to make such personalized prediction using
retrospective data. Creating predictive instruments using an artificial neuronal network
(ANN) has been previously validated in different clinical settings [8,11], and has been
shown to predict LoS in intensive care units after cardiac surgery [12] or craniotomy [13].
Using a similar approach, we subjected a set of input variables to a series of computer
training to predict which syncope patients would qualify for an observation unit (predicted
hospital stay <48 h) versus an extended inpatient stay (>48 h). Such a personalized and
patient-centered approach could significantly impact quality of care and promote better
hospital resource utilization. Further, creating an effective point-of-care risk stratification
tool could help ED physicians and other healthcare providers identify patients at high risk
for prolonged hospitalization, death, and other adverse outcomes.

2. Materials and Methods
2.1. Data Source

This retrospective analysis is from the National Emergency Department Sample
(NEDS), the largest national all-payer ED dataset in the US. The dataset is developed
by the Healthcare Cost and Utilization Project (HCUP) and is publicly available. After
applying appropriate discharge weights, the estimates from this data set yield national
estimates that have been previously validated [14–16]. NEDS is compiled annually from
the nationwide EDs and inpatient databases, capturing 68.7% of the total population and
78.2% of all ED visits from 37 geographically dispersed states in the US.

NEDS provides de-identified, patient-specific, and limited information about the
encounter in the ED and subsequent inpatient care, if admitted. These details are compiled
at the end of hospitalization in the form of the International Classification of Disease, Tenth
Revision, Clinical Modification (ICD-10-CM) diagnosis and procedure codes. The dataset
was analyzed in compliance with the Health Insurance Portability and Accountability
Act (HIPAA) of 1996. Therefore, the study was exempt from institutional review board
approval. 2.2. Study Overview and Participants

We included all patients who presented to the ED primarily with syncope. Syncope
was defined as all encounters with a primary discharge ICD-10-CM code diagnosis of
R55 (Syncope and Collapse). Utilization of the ICD-10 code to diagnose syncope in an
administrative database has been externally validated with 63% sensitivity and has a 99.5%
positive predictive value [17]. To maintain uniformity in ICD codes, we limited our study
to years with the ICD-10 codes in the NEDS dataset. Therefore, we analyzed the dataset
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from 1 January 2016 to 31 December 2019. We excluded patients under age 18 and those
without mortality data.

Database contains patient demographics such as patient age, gender, and race (cal-
endar year 2019 only), primary insurance provider, and hospital demographics including
hospital ownership, teaching status, urban-rural designation, and trauma level is provided
in the dataset. Hospitalization-specific patient characteristics including diagnoses (acute
and chronic), procedures performed, disposition from the ED, and inpatient admission
information is also available.

2.2. Input Variables

To maximize the predictive capability of our model, we included patient factors
such as age, sex, race, and ethnicity, as well as 31 Elixhauser comorbidity indices (ECI)
computed from ICD-10-CM diagnosis codes which were utilized in the ML algorithm
as a representation of personalized cardiovascular risk factors and include: AIDS/HIV,
alcohol abuse, blood loss anemia, cardiac arrhythmias, chronic pulmonary disease, coag-
ulopathy, congestive heart failure, deficiency anemia, depression, diabetes-complicated,
diabetes-uncomplicated, drug abuse, fluid-electrolyte disorder, hypotension, hypertension-
complicated, hypertension-uncomplicated, hypothyroidism, liver disease, lymphoma,
metastatic cancer, obesity, other neurological disorder, paralysis, peptic ulcer disease ex-
cluding bleeding, peripheral vascular disorders, psychoses, pulmonary circulation disorder,
renal failure, rheumatoid arthritis-collagen vascular disorder, stroke, solid tumor without
metastasis, valvular disease and weight loss.

ECI is a validated method for categorizing patient specific comorbidities in a large
administrative database based on ICD diagnosis codes [18,19]. The larger the ECI score,
the higher the comorbidity burden. We chose the ECI over individual ICD-10-CM codes
to provide a personalized approach and reduce complex dimensionality that would have
been created from a unique ICD-10 code.

All the 31 ECIs were computed if the pertinent ICD-10-CM diagnosis code was present
for an individual patient; this included all the subcategories for the same disease. If none of
the ICD-10 codes were present, then that comorbid condition was considered absent. Once
all the 31-ECI were computed, a composite sum ECI score was calculated after applying
predefined individual comorbidity weights [18]. The sum ECI score is a continuous variable
that has a positive skewed (right skewed) distribution; with nearly 36% of patients having
a sum ECI score of 0 (i.e., lacking any of the 31-comorbid condition). In order to provide a
clinically meaningful information, we clustered the sum ECI score (continuous variable)
into a categorical variable with 3 levels: 0 (no sum ECI), 1 to 2 (one or two sum ECI score),
and > 3 (three or more sum ECI score). ECI was computed utilizing a predefined code in
the statistical package used in this study. ECI variables of the study population have been
summarized in the Supplemental Tables S3 and S4.

Age (continuous variable) was also clustered into 4 subgroups: 18–40, 40-60, 60-75,
and ≥75 years. As for facility-level factors, we included rurality based on metropolitan
statistical area (MSA) status and whether the ED is affiliated with an academic institution or
community hospital. In addition, the ED encounter during weekends versus weekdays was
also analyzed. After converting the aforementioned input variables to indicator variables,
a total of 72 variables were included.

2.3. Target Variables (Study Outcomes)

The primary outcomes of interest included LoS among syncope patients and death
in ED or during inpatient hospitalization. We categorized LoS into short stay (negative
class) and extended stay (positive class). Five models considering different short/long
separation cutoffs of LoS were created. Short versus extended stay models were ≤0 days
(indicating ED discharge without hospitalization) versus >0 days, ≤24 h versus >24 h,
≤48 h versus >48 h, ≤4 days versus >4 days, and ≤7 days versus > 7 days. In-hospital
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mortality was considered a competing outcome for hospital LoS and it was categorized as
extended stay.

2.4. Statistical Analysis

First, we reported the descriptive statistics for the syncope cohort between 2016–2019.
Then, we introduced the study sample into an ANN algorithm to develop and validate
the outcome of death or extended LoS using the input variables described above. Metrics
reported include prediction performance precision, recall, F1 score, and accuracy for each
of the models built. Receiver-operating characteristics (ROC) and the area under the ROC
curve (AUC) were evaluated and plotted.

Consider a task of predicting “short” LoS. The metrics used to evaluate the predictive
performance of trained classifiers are defined as follows. True positive (TP) decisions reflect
correct predictions (e.g., a patient whose LoS was predicted as “short” and was indeed
discharged earlier than the LoS cutoff). True negative (TN) decisions also represent correct
predictions (e.g., a patient whose LoS was predicted as “long” and was indeed discharged
later than the LoS cutoff). False positive (FP) and false negative (FN) predictions are defined
accordingly (e.g., a false positive decision reflects a “short” LoS prediction for a patient
who was discharged later than the LoS cutoff).

Precision (or positive predictive value) is the ratio of the number of correct TP de-
cisions and the sum of TP + TN decisions (Precision = TP/(TP + FP). Recall (or sensi-
tivity) is the ratio of the number of correct TP decisions and the sum of TP + FN deci-
sions (Recall = TP/(TP + FN). F1 score is a mean of Precision and Recall, calculated as
F1 = 2TP/(2TP + FP + FN), to reflect both the precision and recall in a single combined
performance metric. Accuracy is a ratio of the number of all correct decisions vs. the
number of all decisions (Accuracy = (TP + TN)/(TP + TN + FP + FN). Finally, a receiver
operating characteristic (ROC) curve is a graphical plot that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is varied. The ROC curve is
created by plotting the Recall against the rate of FP decisions (probability of false decision
or 1-specificity) at various operating threshold settings. The closer the area under the ROC
curve is to one (AUC = 1), the better classifier performance is observed for the assessed
prediction (decision-making) system.

Patient demographics, ECI, and hospital demographics were stratified by the calendar
year and compared using the Pearson chi-squared test after accounting for the complex
survey design of NEDS. As per the HCUP data reporting policy, any variable with n < 10 is
not presented. A two-sided p < 0.05 was considered statistically significant. All analyses
were performed using IM SPSS Statistics, version 27.0 (IBM Corp, IL, USA), STATA version
16.1 (Stat Corp. LP, TX, USA), and Python 3.8.

2.5. Data Processing and Machine Learning

ANNs are modeled by mimicking neurons in the brain. In biological systems, the learn-
ing happens through adjustments to synaptic connections between the neurons. Similarly,
in an ANN model, this happens through updating the weights of the connections between
the nodes/neurons. Multilayer perceptron (MLP) networks are feedforward ANNs that
contain at least three layers: an input, a hidden, and an output layer. The learning hap-
pens through an iterative, supervised mechanism where the information passes through
input, hidden, and output layers to predict an outcome. During the subsequent learning
epochs, the predicted outcome is compared with the ground truth to determine the ANN’s
performance—the prediction error at each epoch. For each next learning approach, the
weights between the layers are updated in a back propagation manner to reduce the error
in the subsequent iteration. This process is repeated until the error is minimized through
this backpropagation optimization process.

As described in Section 2.3, we used a 72-dimensional input to predict a binary
outcome: short stay or extended stay. Several cutoff thresholds of what constituted an
extended (long) stay were identified and predictive ANN performance was tested. We
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used upsampling and stratified sampling techniques to address the class imbalance in the
dataset. The dataset is further divided into a train-validation-test split of 64:16:20. We
evaluated the parameter tuning during the development of the ANNs.

Our neural network (Figure 1) has three hidden layers with 64, 32, and 16 neurons fired
by rectified linear unit activation. Each layer is further treated with batch normalization
and dropouts (0.05). The output layer has a binary outcome with “sigmoid” activation.
We used Adam optimizer (lr = 0.001), the binary cross entropy loss as optimizer, and loss
function, respectively. The model is trained for 750 epochs with 8192 as batch size. We
divided 64% of the entire samples into a training, 16% for validation, and 20% for test.
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Figure 1. Study Design. * Uncomplicated hypertension, Cardiac arrhythmias, Fluid and electrolyte
disorders, Uncomplicated diabetes, Chronic pulmonary disease, Complicated hypertension, Hypothy-
roidism, Renal failure, Depression, Congestive heart failure, Complicated diabetes, Neurological
disorders, Obesity, Valvular disease, Peripheral vascular disorders, Drug abuse, Alcohol abuse,
Rheumatoid arthritis/collagen vascular disorder, Solid tumor without metastasis, Deficiency anemia,
Coagulopathy, Pulmonary circulation disorder, Liver disease, Psychoses, Weight loss, Metastatic can-
cer, Lymphoma, Paralysis, Peptic ulcer disease excluding bleeding, AIDS/HIV and Blood loss anemia.

3. Results
3.1. Participant Characteristics

We identified a total of 4,645,483 patient presentations to EDs for syncope in the
United States between 2016–2019 and this entire set of almost 5 million patients was used
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in this study. The 18 to 54 years of age group consistently represented nearly half of the
population. Likewise, over half the study population was women and over half were
insured by Medicare or Medicaid. Demographic details of the study population after
stratifying based on the calendar year are presented in Table 1. A total of 929 (<0.01%)
died in the ED or hospital. Supplementary materials (Tables S1–S3) provide additional
information related to patient and hospital characteristics.

Table 1. Patient characteristics.

Total
(n = 4,645,483)

2016
(n = 1,135,359)

2017
(n = 1,174,452)

2018
(n = 1,137,276)

2019
(n = 1,188,396) P trend

Age (clustered)
18–54 years 2,108,750 (45.4%) 533,875 (46.6%) 528,642 (45.0%) 516,383 (45.4%) 529,850 (44.6%)

<0.001
55–64 years 693,974 (14.9%) 167,632 (14.6%) 175,699 (15.0%) 171,566 (15.1%) 179,077 (15.1%)
65–74 years 727,565 (15.7%) 171,271 (15.0%) 184,783 (15.7%) 178,412 (15.7%) 193,099 (16.2%)
75–84 years 668,526 (14.4%) 160,514 (14.0%) 169,815 (14.5%) 163,382 (14.4%) 174,814 (14.7%)
≥85 years 446,668 (9.6%) 112,067 (9.8%) 115,513 (9.8%) 107,532 (9.5%) 111,556 (9.4%)

Gender
Males 2,042,422 (44.0%) 498,284 (43.5%) 514,575 (43.8%) 499,703 (43.9%) 529,860 (44.6%)

<0.001Females 2,602,663 (56.0%) 646,853 (56.5%) 659,848 (56.2%) 637,502 (56.1%) 658,460 (55.4%)
ECI Cluster

ECI = 0 1,670,288 (36.0%) 426,332 (37.2%) 421,696 (35.9%) 403,301 (35.5%) 418,959 (35.3%)
0.0043ECI = 1–2 1,905,336 (41.0%) 470,893 (41.1%) 482,367 (41.1%) 465,062 (40.9%) 487,014 (41.0%)

ECI ≥ 3 1,069,859 (23.0%) 248,135 (21.7%) 270,389 (23.0%) 268,913 (23.6%) 282,423 (23.8%)
Primary expected payer

Medicare 1,877,544 (40.5%) 458,255 (40.0%) 479,524 (40.9%) 457,512 (40.3%) 482,252 (40.6%)

0.1328

Medicaid 679,442 (14.6%) 169,790 (14.8%) 170,883 (14.6%) 171,253 (15.1%) 167,515 (14.1%)
Private

insurance 1,514,372 (32.6%) 376,475 (32.9%) 377,400 (32.2%) 370,989 (32.7%) 389,507 (32.8%)

Self-pay 393,866 (8.5%) 94,992 (8.3%) 99,525 (8.5%) 95,935 (8.4%) 103,413 (8.7%)
No charge 14,042 (0.3%) 3299 (0.3%) 3,948 (0.3%) 2864 (0.3%) 3931 (0.3%)

Other 159,652 (3.4%) 41,594 (3.6%) 40,110 (3.4%) 37,654 (3.3%) 40,293 (3.4%)
Death/Alive

Alive 4,643,245 (100.0%) 1,144,608 (99.9%) 1,173,888 (100.0%) 1,136,846 (100.0%) 1,187,904 (100.0%)
0.0027Died in ED 1309 (<0.01%) 464 (<0.01%) 330 (<0.01%) 227 (<0.01%) 288 (<0.01%)

Died in the
Hospital 929 (<0.01%) 287 (<0.01%) 235 (<0.01%) 203 (<0.01%) 204 (<0.01%)

ECI = Elixhauser Comorbidity Index cluster, computed from the weighted sum ECI score which in calculated
from the thirty-one individual comorbidities.

3.2. Prediction Model Performance for Short and Long LoS after Syncope

As stated in Section 2.4, we built five models with various target variable cutoffs for
hospital LoS. The results reflecting the prediction performance for all the models are given
in Table 2.

Table 2. The predictive performance of hospital length of stay.

Length of Stay AUC * Precision Recall F1 Average Accuracy

≤0 days # 0.78 0.70 0.72 0.71 0.71

≤24 h 0.79 0.72 0.72 0.72 0.72

≤48 h 0.81 0.72 0.76 0.74 0.73

≤4 days 0.84 0.76 0.75 0.76 0.76

≤7 days 0.88 0.78 0.83 0.81 0.80
* AUC—Area Under the Curve. # <0 days indicates discharge from ED. The AUC for each cutoff point ranged from
“fair” to “good”. In order to reflect the most pressing clinical relevance, the LoS cutoff value of ≤48 h versus > 48 h
was considered to be the most practical in the real-world setting (Figure 2c—AUC 0.81; precision 0.72; recall 0.76;
F1 0.74, average accuracy 0.73).
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Figure 2. Receiver Operator Characteristics (ROC), corresponding AUC, and F1 score values are given
for each of the five LoS prediction models: (a) ≤0 days (indicating ED discharge) versus >0 days,
(b) ≤24 h versus >24 h, (c) ≤48 h versus >48 h, (d) ≤4 days versus >4 days, (e) ≤7 days versus >7 days.

3.3. The Receiver Operator Characteristics for Short versus Long LoS

Receiver Operator Characteristics (ROC) were determined for each of the five ANN
models. As depicted in Figure 2, a fair (AUC of 0.78) to good (AUC of 0.88) prediction
performance was achieved based on sequential analysis at different cutoff points, starting
from the shortest LoS ≤0 days (indicating ED discharge or same day discharge from the
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hospital) versus >0 days (Figure 2a) and ending at the longest analyzed cutoff LoS ≤7 days
versus >7 days (Figure 2e), accordingly.

4. Discussion

Syncope is a symptom with multiple causes and explicit complexity in management.
Hospitalization to facilitate diagnostic and therapeutic interventions depends on patient
presentation and comorbidities. An accurate prediction of LoS in patients with syncope
would be useful in terms of facilitating patient care and allocating hospital resources.
However, it is difficult to determine a patient’s need for hospitalization, let alone their ideal
LoS even after the rigorous application of available guidelines [1,4,5], physician intuition, a
careful history, a physical examination including orthostatic blood pressures, obtaining a
12-lead ECG and other routine tests available in the ED.

Prior studies have demonstrated significant variations in LoS among patients hospital-
ized for syncope depending on individual physician preference, hospital, and geographic
region [20,21]. To date, no simple clinical calculator has proven effective in predicting LoS
in syncope patients. ML is a potentially attrFactive tool to predict LoS in these patients, as
well as other outcomes, because it can identify non-intuitive patterns from extremely large
datasets, such as the NEDS.

ML has previously been used in patients with inflammatory bowel disease to accu-
rately identify high-need, high-cost patients and LoS [20], as well as ICU mortality and
LoS [21]. Similarly, virtual elements of artificial intelligence can predict LoS in patients
undergoing total knee arthroplasty [22], lumbar decompression surgery [23], craniotomy
clipping, [24] and other conditions.

ANN, a type of ML that mimics the human brain, is capable of handling very complex
tasks derived from non-linear elements. Here, we show that ANN shows potential to
predict LoS for patients with syncope, and for the great majority of these patients, the LoS
will be “short”. Using the NEDS dataset, we can predict short or ≤48 h LoS in syncope
patients with an AUC of 0.81, compared to long (>48 h) LoS. Ultimately, for such a test to
be employed clinically it would need to perform with an AUC of 0.90 or higher.

Various explanations exist to potentially explain deficiencies in our prediction model.
For example, it is likely that certain variables that are critical to predicting LoS do not exist
within the NEDS dataset, or other national retrospective data sets. Including additional
data, such as results from clinical testing and results from longitudinal follow-up would
likely make this ML algorithm even more predictive and may also have the potential to
reveal other clinical insights. Prospective studies will be necessary to test these hypotheses.

Further roles for artificial intelligence in the evaluation of patients with syncope are to
be expected. Determining outcomes based on initial clinical characteristics will likely trans-
late into better understanding of this complex symptom, better patient outcomes, and better
outcome measures. Understanding the relationships between syncope, underlying medical
conditions, and risk factors will also remain a focus. These issues continue to be major
challenges in the assessment of patients with syncope, and despite great efforts, progress
has been slow to curb unnecessary hospitalizations and provide better methodologies for
diagnostic assessments and utilization of hospital admissions.

5. Study Limitations

This study is limited by information available in the NEDS dataset. The analysis
is retrospective and the LoS is not validated as being what is required for patient care.
Nevertheless, these data represent how most US physicians act under the circumstance.
The dataset assumes accurate coding and diagnoses, and lacks important clinically relevant
data (e.g., results from clinical testing). It is also limited to a single patient encounter,
so information regarding re-admission rates is unknown and longitudinal follow-up is
unavailable. As the dataset is created at the end of the hospital encounter, we were not able
to differentiate whether the comorbidity diagnosis was made at the initial encounter or
during the hospitalization.
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The lack of long term follow-up makes identifying relevant, low-frequency events, like
mortality, unhelpful as a classifying feature or outcome. Finally, a patient’s LoS is affected
by medical and nonmedical factors that cannot be fully discerned from the present data.
Whereas other studies have analyzed LoS for a relatively finite number of diagnoses [12],
syncope is a heterogenous diagnosis with numerous and varied etiologies. The variation in
LoS in this population may lead to confounding bias, again, not necessarily expressed in
ICD-10 codes.

6. Conclusions

Syncope, due to the diversity of causes, clinical presentations, and underlying comor-
bidities, remains a challenging and potentially costly problem to manage. Using a large
national database with routinely available clinical parameters, we applied a novel ML
approach to show promise in predicting hospital LoS for patients presenting with syncope
with fair to good performance in AUC ranging from the same day discharge, short, to long
LOS. Challenges remain in improving the predictive accuracy and assessing the need for
hospitalization. Further analyses can help identify which variables are critical in the model
and determine how these variables can predict a multiplicity of outcomes aside from LoS
in a patient-centered, practical, efficient, and clinically relevant manner.

With rapid advancements in personalized medicine and deep neural networks, excit-
ing opportunities exist in the prediction models that would help clinicians understand and
manage complex clinical decisions, such as syncope.
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