Moderate COVID-19: Clinical Trajectories and Predictors of Progression and Outcomes
Abstract
:1. Key Messages
2. Introduction
3. Patients and Methods
Statistical Analysis
4. Results
4.1. Patients’ Clinical and Laboratory Characteristics
4.2. Treatments, Clinical Trajectories and Outcomes
4.3. Link between Clinical/Laboratory Features and Disease Progression or Outcomes
5. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. China Novel Coronavirus Investigating and Research Team. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Fontanet, A.; Autran, B.; Lina, B.; Kieny, M.P.; Karim, S.S.A.; Sridhar, D. SARS-CoV-2 variants and ending the COVID-19 pandemic. Lancet 2021, 397, 952–954. [Google Scholar] [CrossRef]
- CDC COVID-19 Forecasts: Deaths, Updated 18 Auguest 2021. Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/forecasting/forecasting-us.html (accessed on 1 September 2020).
- Vahidy, F.S.; Drews, A.L.; Masud, F.N.; Schwartz, R.L.; Askary, B.; Boom, M.L.; Phillips, R.A. Characteristics and Outcomes of COVID-19 Patients During Initial Peak and Resurgence in the Houston Metropolitan Area. JAMA 2020, 324, 998–1000. [Google Scholar] [CrossRef] [PubMed]
- Truog, R.D.; Mitchell, C.; Daley, G.Q. The Toughest Triage—Allocating Ventilators in a Pandemic. N. Engl. J. Med. 2020, 382, 1973–1975. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Management of COVID-19: Interim Guidance 27 May 2020; Table 2; World Health Organization: Geneva, Switzerland, 2020; Chapter 3; p. 13. [Google Scholar]
- Al Hassan, H.; Cocks, E.; Jesani, L.; Lewis, S.; Szakmany, T. Clinical Risk Prediction Scores in Coronavirus Disease 2019: Beware of Low Validity and Clinical Utility. Crit. Care Explor. 2020, 2, e0253. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhang, X.; Ding, W.; Xuan, N.; Tian, B.; Huang, T.; Zhang, Z.; Cui, W.; Huang, H.; Zhang, G. The Prognostic Accuracy of National Early Warning Score 2 on Predicting Clinical Deterioration for Patients With COVID-19: A Systematic Review and Meta-Analysis. Front. Med. 2021, 8, 699880. [Google Scholar] [CrossRef]
- Mylona, E.; Evangelia, M.; Eleftheria, K.; Vasilios, V.; Vana, S.; Vissaria, S.; Evangelos, B.; Ioannis, K. Clinical features and outcomes of hospitalized COVID-19 patients in a low burden region. Pathog. Glob. Health 2021, 115, 243–249. [Google Scholar] [CrossRef]
- Kuswardhani, R.T.; Henrina, J.; Pranata, R.; Lim, M.A.; Lawrensia, S.; Suastika, K. Charlson comorbidity index and a composite of poor outcomes in COVID-19 patients: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2020, 14, 2103–2109. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Sverzellati, N.; Ryerson, C.J.; Milanese, G.; Renzoni, E.A.; Volpi, A.; Spagnolo, P.; Bonella, F.; Comelli, I.; Affanni, P.; Veronesi, L.; et al. Chest radiography or computed tomography for COVID-19 pneumonia? Comparative study in a simulated triage setting. Eur. Respir. J. 2021, 58, 2004188. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Gracia, J.; Giménez-López, I.; Garcés-Horna, V.; López-Delgado, D.; Sierra-Monzón, J.L.; Martínez-Lostao, L.; Josa-Laorden, C.; Ruiz-Laiglesia, F.; Pérez-Calvo, J.I.; Crespo-Aznarez, S.; et al. Point-of-care lung ultrasound assessment for risk stratification and therapy guiding in COVID-19 patients: A prospective non interventional study. Eur. Respir. J. 2021, 58, 2004283. [Google Scholar] [CrossRef] [PubMed]
- Couzin-Frankel, J. The mystery of the pandemic’s ‘happy hypoxia’. Science 2020, 368, 455–456. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, N.; Cao, Z.; Gundrum, J.; Sianis, J.; Safo, S. Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19. JAMA Netw. Open 2020, 3, e2029058, Erratum in JAMA Netw Open. 2021, 4, e2036103. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, S.-S.; Kim, T.; Lee, D.-G.; Kim, D.-W. Lymphopenia as a Biological Predictor of Outcomes in COVID-19 Patients: A Nationwide Cohort Study. Cancers 2021, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chen, X.; Cai, Y.; Xia, J.; Zhou, X.; Xu, S.; Huang, H.; Zhang, L.; Zhou, X.; Du, C.; et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern. Med. 2020, 180, 934–943, Erratum in JAMA Intern. Med. 2020, 180, 1031. [Google Scholar] [CrossRef] [PubMed][Green Version]
BMI | Coronary Artery Disease | 41 (10.68) | Any Cancer | 26 (6.77) | |
<18 | 1 (0.26) | Atrial Fibrillation | 23 (6) | Active | 16 (4.18) |
18–24.9 | 191 (50.39) | COPD | 11 (2.86) | History | 10 (2.6) |
25–30 | 118 (31.13) | Asthma | 17 (4.43) | Chronic Kidney Disease | |
>30 | 69 (18.2) | Tuberculosis | 1 (0.26) | CKD without dialysis | 20 (5.2) |
Smoking Status | Immuno-supression | 25 (6.51) | CKD-dialysis | 9 (2.34) | |
Never | 282 (73.44) | Diabetes mellitus | 81 (21.09) | Cerebrovascular disease | 18 (4.69) |
Current | 35 (9.11) | Type I | 12 (3.13) | Chronic liver disease | 12 (3.12) |
Former | 67 (17.45) | Type II | 69 (17.97) | HBV | 6 (1.56) |
Hypertension | 129 (33.59) | Connective tissue disease | 17 (4.43) | HCV | 4 (1.04) |
Other | 2 (0.52) |
Sore throat/nasal congestion | 27 (7.03) | Malaise | 114 (29.69) | SatO2% | 95.7 (94–97) |
Cough | 221 (57.55) | Headache | 35 (9.11) | Systolic BP mmHg | 120 (110–130) |
Fever | 324 (84.37) | Chest pain | 44 (11.46) | Chest X-ray quartiles | |
Diarrhea/ Vomiting | 69 (17.97) | Abdominal pain | 25 (6.51) | 1 | 74 (19.27) |
Dyspnoea | 73 (19.01) | Temperature °C | 37 (36.6–38) | 2 | 173 (45.05) |
Confusion | 14 (3.64) | RR (breaths/min) | 20 (18–22) | 3 | 71 (18.49) |
Myalgia | 55 (14.32) | BPM | 87 (78–97) | 4 | 66 (17.19) |
WBC/μL | 5670 (4525–7200) | ESR mm/h | 35 (21–50) | ALP IU/L | 60 (48–77) |
Neutrophils/μL | 3865 (2860–5464) | Glucose mg/dL | 108 (97.5–130) | γGT IU/L | 29 (17–51) |
Lymphocytes/ μL | 1210 (895–1580) | Urea mg/dL | 30 (23.5–40) | Billirubin mg/dL | 0.47 (0.35–0.6) |
Platelets X1000/μL (IQR) | 187 (152–241.5) | Creatinine mg/dL | 0.9 (0.8–1.1) | LDH IU/L | 301 (235–375) |
HgB g/dL | 14 (13–15) | Na+ mmol/L | 138 (135–140) | C-Reactive Protein mg/dL | 4.3 (1.5–8.75) |
PT sec | 12.6 (12–13.3) | K+ mmol/L | 4.3 (3.9–4.7) | CPK IU/L | 104 (68–196.5) |
aPTT sec | 31.8 (28.87–35.62) | Corrected Ca2+ | 8.87 (8.6–9.18) | Cardiac troponinepg/mL | 8 (4–15) |
Fibrinogen mg/dL | 521 (446–627) | Albumin g/dL | 4 (3.6–4.2) | PaO2 mmHg | 70 (64–80) |
D-Dimers μg/mL | 0.68 (0.46–1.2) | AST IU/L | 31 (23–45) | P/F Ratio | 331 (301.5–381) |
Ferritin ng/mL | 270 (149–540.3) | ALT IU/L | 24 (16.5–38) | Lactate mmol/L | 1 (0.8–1.25) |
Hospital-Acquired Infection | 52 (13.65) | Liver Dysfunction | Cardiac | 25 (6.51) | |
Pneumonia | 17 (4.46) | AST/ALT elevation | 52 (13.54) | pericarditis | 6 (1.56) |
UTI | 20 (5.25) | γGT/ALP elevation | 11 (2.86) | arrhythmia | 11 (2.86) |
Bacteremia/ Fungemia | 23 (6.04) | both | 36 (9.37) | ACS | 3 (0.8) |
C. Dif. | 6 (1.57) | Thromboembolism | myocarditis | 3 (0.8) | |
Shock | 25 (6.51) | DVT | 3 (0.8) | 2 or more | 2 (0.52) |
AKI | 23 (5.99) | PE | 8 (2.08) | Ketoacidosis | 3 (0.8) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappas, A.G.; Panagopoulos, A.; Rodopoulou, A.; Alexandrou, M.; Chaliasou, A.-L.; Skianis, K.; Kranidioti, E.; Chaini, E.; Papanikolaou, I.; Kalomenidis, I. Moderate COVID-19: Clinical Trajectories and Predictors of Progression and Outcomes. J. Pers. Med. 2022, 12, 1472. https://doi.org/10.3390/jpm12091472
Pappas AG, Panagopoulos A, Rodopoulou A, Alexandrou M, Chaliasou A-L, Skianis K, Kranidioti E, Chaini E, Papanikolaou I, Kalomenidis I. Moderate COVID-19: Clinical Trajectories and Predictors of Progression and Outcomes. Journal of Personalized Medicine. 2022; 12(9):1472. https://doi.org/10.3390/jpm12091472
Chicago/Turabian StylePappas, Apostolos G., Andreas Panagopoulos, Artemis Rodopoulou, Michaella Alexandrou, Anna-Louiza Chaliasou, Konstantinos Skianis, Eleftheria Kranidioti, Eleftheria Chaini, Ilias Papanikolaou, and Ioannis Kalomenidis. 2022. "Moderate COVID-19: Clinical Trajectories and Predictors of Progression and Outcomes" Journal of Personalized Medicine 12, no. 9: 1472. https://doi.org/10.3390/jpm12091472