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Abstract: There has been a rapid increase in the number of artificial intelligence (AI)/machine
learning (ML)-based biomarker diagnostic classifiers in recent years. However, relatively little work
has focused on assessing the robustness of these biomarkers, i.e., investigating the uncertainty of the
AI/ML models that these biomarkers are based upon. This paper addresses this issue by proposing a
framework to evaluate the already-developed classifiers with regard to their robustness by focusing
on the variability of the classifiers’ performance and changes in the classifiers’ parameter values using
factor analysis and Monte Carlo simulations. Specifically, this work evaluates (1) the importance
of a classifier’s input features and (2) the variability of a classifier’s output and model parameter
values in response to data perturbations. Additionally, it was found that one can estimate a priori
how much replacement noise a classifier can tolerate while still meeting accuracy goals. To illustrate
the evaluation framework, six different AI/ML-based biomarkers are developed using commonly
used techniques (linear discriminant analysis, support vector machines, random forest, partial-least
squares discriminant analysis, logistic regression, and multilayer perceptron) for a metabolomics
dataset involving 24 measured metabolites taken from 159 study participants. The framework was
able to correctly predict which of the classifiers should be less robust than others without recomputing
the classifiers itself, and this prediction was then validated in a detailed analysis.

Keywords: classification; biomarker; machine learning; algorithms; artificial intelligence; omics analysis

1. Introduction

A biomarker is a quantifiable measurement of a biological sample that is characteristic
of a pathological state [1]. However, many conditions cannot be diagnosed by looking
at individual quantities. Instead, multiple measurements are needed for diagnosis. This
is especially so for most “-omics” data where vast amounts of different quantities can be
measured simultaneously [2]. For example, advances in medical research technology such
as mass spectrometry have contributed to an increase in the number of metabolites, or
products of cell metabolism, that can be measured from a single sample [3,4]. This often
results in a complex, high-dimensional dataset with hundreds to thousands of metabolites.
As the data become more complex, there is also a need for more advanced analyses to draw
conclusions [3].

Often, researchers will use artificial intelligence (AI)/machine learning (ML) algo-
rithms to assess the predictive power of metabolites from the data [3,4] to find a panel
of biomarkers. However, as the number of measured metabolites increases, correlations
among the metabolites also increase [3]. If the metabolites are highly correlated, it becomes
more likely that a classifier based upon these metabolites will overfit the data. Given these
reasons, for any identified biomarker based upon machine learning models, there is a
growing concern regarding the robustness of biomarker-based diagnostic tests, i.e., that
the model will not provide accurate predictions for samples that it was not trained on [4],
resulting in inaccurate diagnoses.
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This concern is also reflected in a recent announcement by the National Institutes of
Health (NIH) dealing with the “validation of digital health and artificial intelligence tools
for improved assessment in epidemiological, clinical, and intervention research” [5]. One
motivating factor for this notice is that AI/ML biomarker studies often use many different
methods, and it is difficult to analyze the efficacy of one over another as, e.g., there is no
generally accepted technique to statistically assess how robust these methods are [5,6].
While it is not possible to guarantee the generalizability of any test to new data without
collecting such data, the intent is to adopt approaches to predict if a model’s predictions
are likely to carry over to data from new clinical trials.

Traditionally, research pertaining to the selection of optimal AI/ML strategies often
foregoes an evaluation of classifier robustness and focuses purely on maximizing the
performance (i.e., predictive accuracy) of a classifier. In many of these studies, the dif-
ferences in classifiers’ performance are often marginal [7–9], and little information can
be derived regarding the long-term generalizability of such classifiers. To address the
problem of robustness, some studies have attempted to use different validation techniques
to simultaneously minimize classifier bias and variance [10]. Antonelli et al. suggested
that a sensitivity analysis approach to biomarker studies may be required to ensure the
robustness of the results [11]. In this regard, the sensitivity of a potential classifier is the
degree to which its output accuracy or its parameter values change due to variations in
the inputs.

Recent studies have attempted to characterize this variability or sensitivity in classifiers’
performance and parameters using methods known as uncertainty quantification [12–14].
While many of these studies have focused on methods that can be applied to estimate the
uncertainty of artificial neural network (ANN)-based classifiers, there is comparatively
little focus on methods that can be applied to traditional ML classifiers. This is especially
important because ANN’s are not necessarily the best algorithm for every application [14].
Furthermore, while the studies that do address the uncertainty quantification of traditional
ML techniques focus on so-called instance-level perturbations (subsampling), the impact of
feature-level perturbations (adding noise) on the performance of traditional ML classifiers
and the variance these classifiers’ outputs is much less explored [7,13]. Therefore, there is an
important need to establish a method that can evaluate a classifier’s variability/sensitivity
(or lack thereof) in response to feature-level perturbations, especially for traditional ML
classifiers, as this can have major implications for the classifier’s robustness.

While a high predictive accuracy is desired for classifiers, the aforementioned findings
illustrate that the robustness of the classifiers also needs to be assessed. Measuring only clas-
sifiers’ performance ignores that it is possible to obtain a high accuracy for a specific set of
data while not performing well on out-of-sample data. In other words, if the perturbations
of a dataset of a magnitude that one is likely to encounter in practice will cause significant
changes in the classifier parameters, such as the coefficients of a linear model [15], the
choice of selected features, or the classifier accuracy, then there is a lack of robustness,
and it is unlikely that the AI/ML-based biomarker will perform well on new data. To
address this challenge, the contribution of this work is to (a) investigate components of
a framework for assessing the robustness of AI/ML-based classifiers and (b) to illustrate
these findings on a panel of commonly used classification algorithms that are affected by
noise and training/testing split variations of a dataset for one specific example. The goal of
this framework is to establish a procedure that can evaluate the robustness of a classifier
that has already been constructed from tabular, continuous, and multivariate datasets, such
as data derived from metabolomics, proteomics, or transcriptomics.

The next section (Section 2) introduces the individual components of the framework
and how they are used as part of the evaluation procedure. This is then followed by a
description of the illustrative example dataset used and details regarding how the classifiers
tested in this study were developed. Section 3 outlines the general results of applying the
framework to the computed classifiers. Finally, the implications of this study are discussed
and reflected upon in Sections 4 and 5, respectively. This includes a detailed discussion of
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each individual part of the framework, followed by overall inferences regarding both the
usefulness and limitations of this work.

2. Materials and Methods
2.1. Overview of Methods

The goal of this study was to establish a framework to test if an already-derived
classifier from biological data is robust. To build such a framework, two elements were
required: (1) a method to test the robustness of features included as inputs to the classifier
or identified by a separate feature selection process, and (2) a method that computes the
sensitivity/variability of a classifier’s performance and parameters in response to feature-
level perturbations. To address (1), a factor analysis procedure is detailed in Section 2.2.1
that determines which measurements of a data set are significant features that have a high
potential to be useful for a classifier. In essence, any classifier should only include features
that are deemed significant either by itself or in combination with other features. The
remainder of Section 2.2 addresses (2) with a Monte Carlo approach that makes use of
different types of noise as well as noise levels to compute how the accuracy and model
parameter values change in response to noise. A Monte Carlo approach was adopted
because it assesses the output of classifiers in response to noise while also limiting the
impact of outlier results, i.e., by calculating the average over all trials, and providing a
metric to measure classifier sensitivity/uncertainty, which is in turn achieved by calculating
the variance of all trials. This study serves as a guided use of these methods. To illustrate
the core observations of this framework, the aforementioned methods are applied to an
example dataset. The details of this dataset are explained in Section 2.3. Classifiers were
constructed by choosing hyperparameters and features using the approaches outlined in
Section 2.4. After determining the classifiers to be used, factor analysis was applied to the
full dataset to compile a list of significant features. Next, a Monte Carlo approach was
utilized such that the feature input data of each classifier was repeatedly perturbed with
increasing levels of noise. The average and variance of the classifiers’ performance and
parameters were recorded for each perturbation method for discussion in the next sections.

2.2. Robustness Framework
2.2.1. Factor Analysis Procedure

Metabolomics studies can utilize datasets with many features; therefore, most studies
with high-dimensional data use some form of feature selection. Most robust classifiers will
be constructed only using a chosen subset of the original features as inputs. It is imperative,
however, to test whether the features included in the classifier, i.e., the features chosen by
the feature selection method, are truly statistically meaningful. The purpose of this factor
analysis procedure is to use a series of statistical tests to indicate which features are most
likely to construct a robust classifier. However, this is just a list of potential features and is
not a substitute for feature subset selection, as including every significant feature could
result in overfitting if they are too numerous.

It is important to determine if the inputs of a particular classifier are part of the
significant features of the data set, as most classifiers only make use of a subset of the
available measurements. In this regard, a factor analysis method is employed herein that
pares down the original dataset into a small subset of important features. This subset of
important features should then be compared to the input features to determine if the input
features are statistically meaningful in the data. The workflow for performing the factor
analysis is shown in Figure 1 [16]. The approach consists of three main parts: (1) false
discovery rate calculation, (2) factor loading clustering, and (3) logistic regression variance
calculation. F′, F”, and F* are the remaining features after steps (1), (2), and (3), respectively
(as per Figure 1). Each step removes features until a subset of features is left, and the factor
analysis procedure is focused on achieving certain benchmarks without defining a specific
number of metabolites to screen for.
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until each sample (or pair of samples in the case of leave-two-out) has been left out once. 

Figure 1. Flowchart describing the factor analysis protocol. Dark green ovals represent the beginning
and end of the protocol. Purple diamonds are decision points, light green rectangles are steps where
no features are removed, and red rectangles refer to steps where features are removed.

After standardizing the data, the factor analysis computes the univariate false dis-
covery rate of each variable. For each variable, the p-value is computed according to the
decision tree, shown in Figure 2, while one sample is left out; then, additional p-values for
the variable are computed such that two samples at a time are left out. This is repeated
until each sample (or pair of samples in the case of leave-two-out) has been left out once.
The false discovery rate for each variable is computed as the number of p-values calculated
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to be greater than 0.05 divided by the number of all p-values calculated [16]. As such, the
false discovery rate of each feature f is computed as the following:

FDR f =
Count o f p values > 0.05
Total count o f p values

(1)

All features with FDR greater than 0.1 are removed from further analysis leaving a
subset of m different features to be considered. Principal Component Analysis (PCA) is
performed on the remaining data to attempt to remove redundant or highly correlated
variables [17]. This results in a series of principal components of dimension m. Selection
of the most important principal components can be performed using Horn’s parallel
analysis [18].
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Figure 2. Decision protocol determining which significance test should be used to determine the
p-value of a variable when computing the FDR. Blue ovals indicate the start and end of the flowchart,
purple diamonds indicate decision points, and green rectangles represent intermediate steps.

The contribution of each variable in the data to each principal component can be
found by inspecting its corresponding element in the component vector. For example,
the first element of each principal component vector marks the contribution of the first
feature column in the original data, the second element marks the contribution of the
second feature column, and so forth. These can be considered “factor loadings”. As such,
the factor loading matrix, A, for all original variables can be computed, given that the
matrix containing eigenvectors only of the selected principal components, P, and the matrix
containing eigenvalues of selected principal components on the diagonal, V:

A = PV−1/2 (2)

K-means clustering is subsequently performed to group the factor loadings [19].
The grouping of the clusters is determined via computing the silhouette score [20]. The
silhouette score was chosen as a clustering metric because it is a measure of how tight
a cluster is and does not require ground truth labels, as opposed to the adjusted rand
index and adjusted mutual information, which both require preexisting labels [20–22]. The
silhouette score for cluster c is computed via Equation (3). Given the average distance
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between points within the same cluster, a, and the average distance from a point within the
cluster to a point of the next cluster, b:

sc =
bc − ac

max(ac, bc)
(3)

If the silhouette score for a cluster is sufficiently high, a subset of three variables is
taken from that cluster for further analysis. The idea behind this approach is to remove
excessively similar variables from a tightly knit cluster [23]. This results in another, smaller
set of features.

A logistic regression classifier is trained using the remaining features (F′′), generating
a vector of weights w with length equal to the number of remaining features in the feature
space. This step ensures that the features chosen are relevant in a classification task. For each
remaining feature, the variance of that feature is calculated by replacing all of that feature’s
values with random samples from a Gaussian distribution and with values from all other
features set to zero. The continuous output is computed by multiplying w with the data.
The variance of the metabolite is then scaled such that the greatest variance is equal to eight.
All features with variance less than two on this scale are considered uninformative and
removed from the dataset. This is because a scaled variance of 8 encompasses approximately
99% of all possible values in a normal distribution. In essence, in an N(0,1) distribution, a
variance of 8 corresponds to a standard deviation of roughly 2.82, where ~99.76% of data
lies within 2.82 standard deviations [24]. All features remaining (F*) after this analysis
can be considered important features for further analysis. When evaluating a classifier for
robustness, one of the first steps should be to investigate if the inputs of the classifier are
taken from the subsets of important features.

2.2.2. Noise Corruption

For AI/ML diagnostic tests to be clinically relevant, they should be applicable to data
not used for training. To measure a model’s generalizability to other potential data, the
existing dataset should be corrupted by some noise factor to determine if similar accuracy
can be achieved with modifications applied to the data [25]. Mass spectrometry data are
subject to two main sources of noise: random errors and systematic errors [26]. Random
errors result from the misinterpretation of faulty signal spikes due to technological errors,
and systematic errors refer to the inaccuracies of measurements caused by drift or batch
effects. Two different types of noise will be considered here to model these sources of error:
(1) replacement noise and (2) Gaussian noise.

Replacement noise refers to the situation where a certain proportion of the data, p,
is replaced by a random value sampled from the original distribution of the data. As
the amount of data replaced by noise increases, the information content in the data set
progressively becomes closer to pure random noise. Therefore, it is expected that the
performance of any model approaches 50% classification accuracy when the data are
completely replaced by noise. The algorithm for applying replacement noise is described
in Algorithm 1.

Gaussian noise is additive to existing data and has been used in previous studies to
model systematic errors [27]. A random value is drawn from a Gaussian distribution with
mean 0 and standard deviation equal to the standard deviation of the variable, σ, multiplied
by some dampening factor, s, such that the noise term distribution has a standard deviation
of σ × s. The noise terms are then added to the original data. If low levels of Gaussian
noise corruption cause a significant decrease in accuracy or a large variance in a classifier’s
performance, it is not likely that the classifier will generalize well to other data. The
algorithm for applying Gaussian noise is described in Algorithm 2. In this study, corrupted
values that were less than zero were corrected to be zero due to the use of metabolomic
concentration data. More details about the dataset can be found in Section 2.3. Dataset.
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Algorithm 1: Replacement Noise Algorithm

Input: Dataset D with N samples and F features
Output: D’, a corrupted dataset with N samples and F features
1: Define noise term p, the proportion of values to replace
2: For each f ∈ F :
3: d f = column f o f Dataset D

4: µ f =
sum(d f )

N

5: σf =

√
(∑N

n=0 dn, f−µ f )
N−1

6: v = p ∗ N
7: Randomly remove v values from column d f
8: Replace each value with a randomly sampled value from N(µ f , σ2

f )

9: End for loop

2.2.3. Severity of Noise

The effect of noise severity on a classifier can be investigated for both replacement
and Gaussian noise by adjusting tunable factors. For replacement noise, the proportion
of values replaced can be adjusted. In this study, the proportion of data points replaced,
p, was adjusted from 0% to 100% of the dataset in increments of 10%. In the instance of
Gaussian noise, the dampening factor, s, was adjusted from 0 to 1 in increments of 0.1. At
each value of the noise level (value of p or s), the dataset was corrupted 1000 different
times. It is important to note that the data are corrupted before standardization. The
data were then split into a training and a testing set. The same samples (patients) were
contained in the training and testing set for each of the 1000 corruptions to maintain
consistency in the sampled noise distribution. Given a specific classification algorithm, the
parameters of the classifier were trained using the training set. The mean Leave-One-Out
Cross-Validation (LOOCV) accuracy of the training set, the mean testing accuracy, and the
values of the model parameters, as well as the variance of these values, were computed
over the 1000 corruptions. This process was repeated for all noise levels under investigation.

Algorithm 2: Gaussian Noise Algorithm

Input: Dataset D with N samples and F features
Output: Noisy dataset D’ with N samples and F features
1: Define noise term s, which scales the standard deviation of the noise distribution x f
2: For each f ∈ F :
3: d f = column f o f Dataset D

4: µ f =
sum(d f )

N

5: σf =

√
{∑N

n=0 dn, f−µ f )
N−1

6: q = s ∗ σf
7: x f ∼ N

(
0, q2)

8: d′f = d f + x f

9: End for loop

2.2.4. Monte Carlo Data Splitting

While metabolite concentration variations can be assessed by perturbing the dataset
with noise, it is also important to investigate different training/testing set splits to ensure
that results are not just representative of one split [28]. First, the dataset is split many times
while maintaining the ratio of 70% of the data in the training set and 30% of the data in
the testing set. For this work, the data were randomly split 1000 times with no additional
noise. Then, the testing accuracy and LOOCV training accuracy were computed for each
split. The average and variance of these performance metrics were computed across the
1000 splits to determine if the training set and testing set result in similar accuracies for
any given training/testing split. Additionally, the model parameters were recorded for
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each split that is followed by computation of the average and variance of the parameters to
determine if the model structure changes for different training/testing splits.

2.3. Dataset

Since a robustness framework will also have to be tested on specific classifiers, this
study makes use of one specific data set. This data set contains metabolite concentrations
from children with an autism spectrum disorder (ASD) diagnosis and their typically devel-
oping peers. Autism is a disorder that currently has no generally accepted biomarker as the
current method of diagnosis is purely by observation [29]. Given the complexity involved in
screening young children by observation only, availability of a physiological test to support
a diagnosis would be desirable. The dataset used in this analysis is derived from 159 blood
samples taken from children aged 3 to 10 [30]. Of these 159 samples, 83 were from children
with an autism diagnosis and 76 were from typically developing children. Furthermore,
both groups of children were age matched. For each blood sample, 24 metabolites from the
folate one-carbon metabolism and the transsulfuration pathways were measured. These
metabolites were analyzed using High-Performance Liquid Chromatography (HPLC). Inter-
nal standards were used to control the batch effects present between runs. A comprehensive
list of the analyzed metabolites is provided in Howsmon et al.’s paper [30]. The ASD diag-
nosis was verified via the Autism Diagnostic Observation Schedule of Childhood Autism
Rating Scales [30]. Typically developing children had no medical history of neurologic
symptoms reported by the parents [30]. The data originated from the Arkansas Children’s
Hospital Research Institute autism IMAGE study, which was approved by the Institutional
Review Board at the University of Arkansas for Medical Sciences [30].

2.4. Classifiers
2.4.1. Classifier Overview

To assess the validity of the presented framework, five commonly used traditional ML
algorithms and one neural network were used to develop classifiers for the dataset from
Section 2.3 and evaluated using the steps described in Section 2.2. The goal of evaluating
multiple classifiers is not to compare the outright performance between algorithms, but
rather to demonstrate that different classifiers for the same dataset may not all be equally
robust. Furthermore, it is useful to illustrate that this framework can be applied to classifiers
constructed using different AI/ML algorithms. Specifically, the ML techniques used were
(1) linear discriminant analysis (LDA) [31], (2) support vector machine (SVM) [32], (3) ran-
dom forest (RF) [33,34], (4) partial least squares-discriminant analysis (PLS-DA) [35,36],
and (5) logistic regression (LOG) [37,38]. While the primary focus of this study is to develop
a robustness evaluation framework for traditional classifiers, a multilayer perceptron (MLP)
was also used as many multivariable biomarkers make use of neural networks [39]. More
details regarding each of these algorithms can be found in Section 2.4.2. Each of these
methods was implemented using the appropriate functions of the scikit-learn package in
Python [40]. Only five features were used as inputs for each classifier to prevent overfitting.
A brief description of the feature selection technique is included in this section.

2.4.2. Classification Algorithms
Linear Discriminant Analysis

Linear Discriminant Analysis (LDA), also called Fisher Discriminant Analysis, aims to
determine the greatest separation between two classes by fitting a vector (or component)
that maximizes the between-class variance, while minimizing the within-class variance [31].
LDA is a latent variable method, as the vector is not a variable that is directly observed but
is synthesized by contributions of the observed variables. The values from the multivariate
dataset are then projected onto this vector, which classifies by defining a threshold as the
decision boundary [31].
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Support Vector Machine

Support Vector Machine (SVM) is a quadratic programming algorithm that aims to
fit a classification boundary such that the width of two vectors parallel to the boundary,
denoted as margins, have the maximum distance between them [32]. The location of these
margins is characterized by the closest point to the potential decision boundary. In the
likely event that the data are not perfectly linearly separable, a regularization term that
allows some of the data to penetrate the decision boundary can be used, with a higher
regularization term allowing for less freedom for the data to penetrate the boundary [32].

Random Forest

Random Forest (RF) is a collection of randomly initialized decision trees that are each
fitted according to the CART algorithm. Effectively, each tree in the forest is initialized with
a node, thresholding a variable and subsequently splitting the data into two groups [33].
This spawns two daughter nodes, where each node represents a threshold in the data.
While RF borrows its tree growth from the CART algorithm, it differs in two important
ways. Each tree in the RF is fit using a randomly selected bag of samples, each selected
with replacement from the original sample space [33]. Rather than exhaustively searching
the feature space for thresholds, the feature used to threshold at the next node is randomly
selected. This results in many uncorrelated models to compare and the most unbiased
estimate from the forest. The threshold is based off the threshold that minimizes the Gini
impurity [33,34]. The Gini impurity is a measure of the probability that a datapoint is
classified incorrectly by the tree. Due to the nonlinear nature of an RF model, there are
no coefficients that can be used to estimate the relative importance of a feature in the
prediction. However, the average decrease in the Gini impurity across all trees for each
feature is representative of that feature’s importance in the model [34]. To obtain a resultant
prediction, each tree predicts the sample’s class membership, and the majority vote is taken
as the overall classifier prediction.

Partial Least Squares-Discriminant Analysis

Partial Least Squares-Discriminant Analysis (PLS-DA) is an extension of the Partial
Least Squares (PLS) regression algorithm. Similar to LDA, PLS-DA is a latent variable
method, making it suitable for high-dimensionality datasets because it can distill informa-
tion from many variables into one vector [35]. Given a data matrix and a response variable
vector, the PLS-DA algorithm finds the vector that maximizes the covariance between the
data matrix and the response. PLS-DA inherently computes a continuous output of values
on the fitted component, so a threshold is defined (for this study, 0.5) that sets all values
above it to one classification outcome, and all values below the threshold as the other
classification outcome [36].

Logistic Regression

Logistic Regression is an iterative method that, given a data matrix and response vari-
able, attempts to find a vector of weights that—when multiplied with a vector containing
the data of one sample—identifies the correct class of that sample [37]. A random vector of
weights is first initialized and is then iteratively updated to minimize the ‘loss’ function,
i.e., the error of the output. This optimization problem is solved using the SAGA solver,
which is an adaptation of stochastic average gradient descent [38]. The SAGA variant
of gradient descent was chosen because it performed the best on the example dataset
presented in the study. Newton’s method or Limited-Memory BFGS are usually the best
choices of optimization algorithm for small datasets [40], but in this specific case SAGA
reached higher accuracy with insignificant differences in convergence time. Additionally,
SAG-based methods also provide faster runtime as the dataset becomes larger, with the
SAGA variant usually being faster than standard SAG.
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Multilayer Perceptron

A multilayer perceptron (MLP) is one type of artificial neural network. Input data,
i.e., features, are connected to outputs, i.e., classification outcomes, through a series of
nonlinear transformations stored as hidden layers [39]. Every hidden layer is composed of
a user-specified number of neurons, which are transformations of the data from the layer
before it. These data are transformed by multiplying the data in the previous layer by a set
of weights that are computed iteratively to minimize a loss function. The architecture used
in this study is a fully-connected neural network with two hidden layers and 32 neurons in
the first hidden layer and 16 neurons in the second hidden layer. The output layer uses
an activation function to threshold the data in order to provide binary information for
the classification.

2.4.3. Classifier Construction

Classifiers’ hyperparameters were established by splitting the data into a 70% training
and 30% validation set split and using a grid search technique among a set of potential
parameters. Optimal hyperparameters were determined by the set of parameters that
yielded the greatest LOOCV accuracy. These hyperparameters are listed in Appendix A.

Feature selection was performed using a wrapper method. Wrapper feature selec-
tion requires evaluating a trained classifier’s performance metric, where the classifier is
trained using a subset of features [41]. For every combination of five metabolites (five was
specifically chosen based on Howsmon et al.’s and Qureshi et al.’s original analyses), the
data are split into the same 70% training and 30% testing set. The optimal feature subset
(for each algorithm) is selected based on the best LOOCV accuracy of the training set. A
total of 5 metabolites were chosen because 6 or more features did not significantly improve
accuracy and increased the risk of overfitting by providing too many features. Capping the
number of input features at 5 maximizes the classifiers’ performance for this dataset while
also minimizing potential overfitting concerns. This is also in line with the findings from
Howsmon’s [30] and Qureshi’s study [42]. To validate the results of this feature selection,
a similar procedure was carried out where the data were split the same way 1000 times
and the combinations yielding the highest testing accuracy from each split were saved.
Those features were then ranked by “prevalence”—the proportion of combinations that
feature was in. Feature subsets with lower accuracy but with greater prevalence among
(top 1/3rd) the features were considered over feature subsets with high accuracy but less
prevalent features.

The feature subsets selected this way for each classifier were evaluated for their
robustness by comparing them to the features identified as statistically significant by the
factor analysis described in Section 2.2.1.

3. Results

The first step of the robustness assessment was to compare the features identified
as statistically significant by the factor analysis to those that were selected as inputs for
each classifier. A deeper analysis of the feature selection results is present in Appendix C.
A total of 11 metabolites of the original 24 were identified as significant by the factor
analysis protocol. These metabolites were % DNA methylation, 8-OHG, fCystine/fCysteine,
Nitrotyrosine, Tyrosine, Glu-Cys, Cys-Gly, GSSG, tGSH/GSSG, %Oxidized Glutathione,
and Chlorotyrosine. All 7 metabolites identified by Howsmon et al.’s classification analysis
were present among these 11 metabolites. Using that panel of seven metabolites, Howsmon
was able to achieve a cross-validatory accuracy of 96.9% using LDA [30]. In a more
recent study using the same dataset, Qureshi et al. was able to achieve a cross-validatory
accuracy of 97% using SVM and five metabolites [42]. Again, all features used in this
classifier were present among the 11 identified by the factor analysis. The features selected
as inputs for each classifier in this study are included in Table 1. For LDA, MLP, and
LOG, all the features used as inputs were among the metabolites deemed important
by the factor analysis protocol. In the case of PLS-DA and SVM, four out of five were
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identified as important (% DNA Methylation, 8-OHG, Glu-Cys, and fCystine/fCysteine),
whereas in the RF classifier only two were considered important (%DNA Methylation and
fCystine/fCysteine). Therefore, it is expected that the RF classifier is more sensitive to
variations than the other classifiers due to the fact that it contains less statistically relevant
features. To a lesser degree, these concerns also exist for the SVM and PLS classifiers.

Table 1. Features included as inputs for each classifier. Green text features were included in Factor
Analysis (F.A.).

Algorithm Feature 1 Feature 2 Feature 3 Feature 4 Feature 5 # From F.A.

LDA % DNA Meth. 8-OHG Glu-Cys fCystine/fCysteine % oxid. Glut. 5
SVM % DNA Meth. 8-OHG Glu-Cys fGSH/GSSG fCystine/fCysteine 4
RF Methionine % DNA Meth. tGSH fGSH/GSSG fCystine/fCysteine 2

PLS-DA % DNA Meth. 8-OHG Glu-Cys fGSH/GSSG fCystine/fCysteine 4
LOG % DNA Meth. 8-OHG Glu-Cys fCystine/fCysteine % oxid. Glut. 5
MLP % DNA Meth. 8-OHG Glu-Cys fCystine/fCysteine % oxid. Glut. 5

After assessing the quality of the features used as inputs for the classifiers, the behavior
of the classifiers in response to noise was analyzed. A summary of the average accuracy and
sensitivity, i.e., the variance of the accuracy, in response to the replacement noise, Gaussian
noise, and varying training/testing split is shown in Table 2. For the uncorrupted data, each
algorithm results in a similarly high accuracy. In response to replacement noise, the testing
accuracy followed an approximately linear trend from the original classifier with an above
90% accuracy at p = 0, i.e., no values replaced, to approximately random chance at p = 1,
i.e., all the values replaced, resulting in an approximately 50% classification accuracy. This
represents an approximately 4% accuracy decrease per 10% of values replaced. This trend is
displayed clearly in Figure 3 for all the classifiers. The LOOCV training accuracy was found
to exhibit the same trends as the testing accuracy, and the corresponding Figure A1 can be
found in Appendix B. Figure 4 shows the variance of the testing accuracy, which increases
approximately linearly with the replacement noise (corresponding Figure A2). Overall, this
behavior is expected as the dataset is being progressively replaced by random noise until it
is just random noise, at which point no classifier should be able to discriminate well.

Table 2. Summary of testing accuracy average and variance results.

Classifier Accuracy
No Noise

Accuracy
p = 1

Variance
p = 1

Accuracy
s = 1

Variance
s = 1

Accuracy
MC Split

Variance
MC Split

Runtime
MC Split

LDA 93.8% 50.4% 4.88 × 10−3 94.4% 1.78 × 10−4 96.4% 1.40 × 10−4 2.80 min

SVM 93.8% 50.6% 4.30 × 10−3 93.8% 1.35 × 10−4 95.4% 1.93 × 10−4 2.77 min

RF 91.7% 50.4% 4.99 × 10−3 84.7% 2.67 × 10−3 92.0% 3.71 × 10−4 36.95 min

PLS-DA 93.8% 50.5% 4.91 × 10−3 91.1% 2.18 × 10−3 96.3% 1.43 × 10−4 2.56 min

LOG 95.8% 50.6% 4.79 × 10−3 95.4% 3.38 × 10−4 96.0% 1.33 × 10−4 3.46 min

MLP 95.8% 50.3% 5.17 × 10−3 95.1% 3.65 × 10−4 95.2% 3.13 × 10−4 46.60 min

The change in the feature importance in response to replacement noise was assessed
by the change in the average classifier parameter values with an increasing noise level p
(Figure 5) and the variance of these parameters across 1000 noise corruptions of the same
value of p (Figure 6). All the parameters effectively start at separate and distinct values, and
they all converge to become approximately the same as p increases. Essentially, as more
data are replaced by random noise, the differences between the information in each feature
is less pronounced. For each classifier, the parameters tend to follow the same trends for
the parameter variance with an increasing p. It should be noted that the parameters that
had a greater overall increase in variance and demonstrated such an increase at a lower
proportion of replaced values were the parameters of RF that were not identified by the
factor analysis procedure, including the coefficients of Methionine, tGSH, and fGSH/GSSG.



J. Pers. Med. 2022, 12, 1314 12 of 26

However, in the PLS and SVM classifiers, the parameters of the feature not identified by
the factor analysis procedure (fGSH/GSSG) did not deviate significantly from the behavior
of the other parameters.
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While Gaussian noise corruption caused a decrease in classifier accuracy in response
to increasing noise level(s), this decrease was less severe than the accuracy decreases due
to the replacement noise. Similar trends for the classifier accuracy are present for the
testing accuracy and LOOCV accuracy, which are shown in Figures 7 and A3, respectively.
Figure 8 shows that the variance in the classifiers’ performance increases marginally for
the LDA, MLP, SVM, and LOG classifiers in response to Gaussian noise (Figure A4 for
cross validation). However, the variance of the performance increases significantly with
increasing Gaussian noise levels for the RF classifier, and to a lesser extent the PLS-DA
classifier. This further validates the idea that these classifiers are more sensitive to noise.
Conversely to replacement noise, the classifier parameters were largely unchanged in
response to Gaussian noise, shown in Figure 9. The variance of the parameters (Figure 10)
still increased with respect to the Gaussian noise level, s; however, a trend as to which
parameters varied the most for each classifier was not apparent.
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Figure 5. Average classifier parameter values over 1000 replacement noise corruptions at increasing
noise level p. Noise level was varied from 0 to 1.0 in steps of 0.1. Parameter values were measured for
(A) LDA, (B) SVM, (C) RF, (D) PLS, and (E) LOG.
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of the noise term s from 0 to 1 in intervals of 0.1. Data are the average classifier accuracies over 1000
Monte Carlo noise corruptions on the same data.
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Figure 8. Variance of testing accuracy under influence of Gaussian noise and varying of the standard
deviation of the noise term s from 0 to 1 in intervals of 0.1. Data are represented as the variance
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Figure 9. Average classifier parameter values over 1000 Gaussian Monte Carlo noise corruptions at
increasing noise level s. Noise level was varied from 0 to 1.0 in steps of 0.1. Parameter values were
measured for (A) LDA, (B) SVM, (C) RF, (D) PLS, and (E) LOG.
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at increasing noise level s. Noise level was varied from 0 to 1.0 in steps of 0.1. Parameter values were
measured for (A) LDA, (B) SVM, (C) RF, (D) PLS, and (E) LOG.

The last step of the evaluation procedure was to examine the effect of varying the
training/testing split on the performance of the classifier, which is visualized in Figure 11
and summarized in Table 2. There was no significant difference between the average
testing accuracy and the LOOCV training accuracy across the 1000 training/testing splits
for any classifier. The testing and LOOCV accuracies were computed to be, on average,
the lowest for the RF classifier (92.0% accuracy and 92.4% accuracy, respectively) among
the six classifiers investigated. This is significantly less than the average accuracies for all
the other classifiers across the 1000 testing splits (p < 0.05). For all the cases, the variance
of the LOOCV training accuracy was significantly lower than the variance of the testing
accuracy for each classifier. This indicates that using LOOCV is less of a stress test than
choosing different testing/training sets, yet there are obvious advantages to using LOOCV
for small data sets. The performance variance was relatively low for all classifiers except for
RF, further raising doubts about the robustness of the determined RF-based classifier. The
accuracy of this classifier was maximally computed to be 100% and minimally computed to
be 77.1%, corresponding to a 12.5% accuracy variance. Comparatively, no other classifier-
computed accuracies were below 85% for any training/testing split or had a variance
greater than 8.5%. The connection between the variance in the performance and robustness
is investigated further in the Discussion section.
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4. Discussion

The major motivation for this work was to present a robustness evaluation framework
for AI/ML-based classifiers. This proposed framework was then subsequently used to
assess the robustness of several classifiers derived using different methods. A detailed
discussion resulting from this analysis is presented in this Section.

To determine if a classifier is robust, one must first determine if the features included
as inputs to a given classifier will be sensitive to changes in the data. This was carried
out via factor analysis, which identified 11 metabolites as statistically meaningful for the
investigated data set. For a classifier to be robust, most or all of the features used to develop
the classifier should be identified by the factor analysis approach as being impactful in
the data. This finding becomes apparent as three of the six investigated classifiers (LDA,
MLP, LOG) have all five of their inputs selected from the set of important features and
show reasonably low variations in accuracy in response to the replacement noise and
Gaussian noise. Random Forest, alternatively, had only two of five inputs come from the
list of important features and its variance was significantly larger than that of the other
algorithms. For example, RF exhibited the greatest variance in accuracy in response to
replacement noise (Figure 4), Gaussian noise (Figure 8), and the random alteration of the
training/testing split (Figure 11). As such, when applying these approaches to future
classifiers, one should be aware that a high variance in the classifier outputs may indicate
that a classifier’s features are overly sensitive to perturbations.

Another finding of this work is that it is possible to assess how much random noise a
classifier can handle before it is no longer considered robust. The classifiers’ performance
diminished approximately linearly after corrupting a dataset with progressively harsher
replacement noise, until the accuracy equates to random chance, as illustrated in Figure 3.
For example, the testing accuracy for this dataset starts out at over 90% for all algorithms
and continuously decreases by approximately 4% accuracy per 10% of the data replaced.
At a 100% data replacement rate, all the algorithms end up at approximately 50% accuracy.
This behavior was expected for each classifier because if the dataset that a classifier is
based upon consists solely of random noise then the classifier should predict correctly
approximately 50% of the time. In this regard, none of the classifiers had significantly
different trends for the accuracy in response to increasing levels of replacement noise. For
clinical significance, an accuracy of at least 80% is often assumed. Given that one can
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compute the accuracy for the nominal dataset, and it is shown that the accuracy decreases
linearly to 50% at 100% replacement noise, one can estimate how much random error can
be in a dataset to still obtain meaningful results.

This study also examined the robustness of classifiers to systematic errors. Systematic
errors in metabolomics data often take the form of small perturbations of the existing
data and have been previously modeled using Gaussian noise [26,27]. Therefore, it would
be desirable for a classifier to maintain a high performance and relatively unchanging
parameter values due to Gaussian noise. This was found for most of the classifiers, as the
mean and variance of the accuracy did not change much for the LDA, MLP, SVM, and LOG
classifiers, as can be seen in Figures 5 and 6, indicating that their performance is not as
sensitive to Gaussian noise as the PLS-DA and RF classifiers, which showed noticeable
decreases in accuracy and greater variance. For RF, this can be explained by the fact that
individual decision tree classifiers are known to overfit to noise. While most RF classifiers
use a sufficient number of trees to mitigate overfitting, the RF classifier used in this study
uses very few (16) to decrease computational load. On the other hand, PLS-DA is based on
a threshold, and a high severity of Gaussian noise can cause frequent penetration of this
boundary (especially at s > 0.4). Notably, both of these classifiers, i.e., PLS-DA and RF, are
classifiers for which the robustness was at least partially a concern due to the discrepancy
between the classifier input features and statistically meaningful features determined by
the factor analysis.

When assessing the impact of using many training/testing splits, varying the train-
ing/testing split is an important aspect for determining the generalizability of a classifier to
new data. Essentially, a classifier will likely perform poorly on new data if the classifier’s
performance greatly changes by just changing which samples are in the training set. While
the LOOCV accuracy was not significantly different from the testing accuracy for any
classifier, the variance of the LOOCV training performance for each classifier was signifi-
cantly lower than the testing performance variance, shown in Figure 11 and summarized in
Table 2. This indicates that using different training/testing sets to evaluate the robustness of
performance is a more stringent requirement than using LOOCV. This observation is along
the lines of what was mentioned by Vabalas et al., who commented that training/testing
set performance is less biased than K-Fold Cross Validation performance [10]. That be-
ing said, for small sample sizes, LOOCV may be more precise than generating separate
training/testing sets as these sets would contain too few data points.

By observing the behaviors of classifier parameters in response to noise, one can gain
an understanding of how sensitive the classifier is to that source of noise. While maintaining
the same average parameter values in response to noise is important, the variance of the
values of the classifier parameters should also be used to consider a classifier’s robustness.
If the parameter variance is high, this indicates that the classifier is overfitting noise as the
classifier parameters are changing frequently due to noise corruption. The parameters in
the RF classifier corresponding to the features not identified as significant by the factor
analysis showed higher variance in response to the replacement noise than the other
parameters (Figure 6C), thus exhibiting an increased sensitivity to replacement noise.
While the classifier parameters of RF changed significantly in response to replacement noise
(Figure 5), the values of the same parameters show much less variation due to Gaussian
noise (Figure 9). Similarly, the variances of the parameter values in response to replacement
noise (Figure 6) was greater than those in response to Gaussian noise (Figure 10), indicating
that the classifier parameters values change less frequently in response to Gaussian noise
than replacement noise. This is consistent with the expectation that replacement noise is a
more severe form of perturbation of a dataset than Gaussian noise.

While it has been demonstrated that the developed RF classifier (and in some respects
the PLS classifier) is less robust than the other classifiers, it should be emphasized that the
purpose of this study was not to find the optimal classifier from a suite of classifiers. Rather,
the goal was to demonstrate the use of the proposed robustness evaluation framework
by comparing several different classifiers. Using this framework, one can state whether a
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developed classifier is reasonably robust, but not necessarily if one method for developing
a classifier is superior to others. For instance, in Table 2, all the algorithms perform similarly
towards the dataset with regard to their prediction accuracy. However, even classifiers
that achieve the same performance under a no-noise scenario, such as LDA and PLS-DA,
have been demonstrated to perform differently when the dataset is corrupted by noise.
Therefore, using a Monte Carlo perturbation-based approach to evaluate robustness can
serve as a validation step for classifiers generated from tabular biomarker data. Using
these methods, this discussion has identified the RF classifier in this study as being less
robust than the other classifiers. This does not necessarily make RF a worse classification
method than the others, but the RF classifier developed for this particular dataset was
demonstrably less robust than the classifiers developed using other methods. On the other
hand, the LDA, SVM, and logistic regression classifiers were shown to be robust to the
perturbation methods in the framework. The developed method is generally intended for
use on biological datasets such as RNA expressions, metabolite concentrations, or protein
concentration data because these types of datasets involve similar noise characteristics to
the ones investigated here [43–45].

Nevertheless, this work also has some limitations that could be addressed in future
research. First, using an MLP classifier in this study demonstrated that this framework
can only draw limited conclusions from classifiers without clear feature weights or feature
importance measures. Second, this framework is not directly applicable to non-tabular data
such as imaging data [46]. Therefore, the feature weight of a classifier constructed from
imaging data will not yield the same interpretability as for metabolomics or proteomics
data. Additionally, the types of noise that are applied to imaging data extend far beyond
Gaussian noise and can also depend on the imaging modality (MRI, CT, etc.) [47].

5. Conclusions

The aim of this study was to propose components of a framework that can be used for
evaluating the robustness of classifiers. In short, if one is given a dataset and an already
developed classifier, this work investigated how one goes about determining whether the
classifier is indeed robust, with particular attention to AI/ML-based classifiers. Since this
is not a question that can be universally answered, a significant effort was put into the
development and evaluation of six commonly used AI/ML algorithm-based classifiers
given a variety of different perturbations of a metabolomics dataset for supporting autism
diagnoses. These classifiers were not directly compared; rather, they were independently
assessed with regard to their robustness.

This framework first performed a factor analysis to determine which features are
significant and then evaluated if the inputs used in the classifier form a subset of these
important features. Then, it was shown in a case study that classifiers that met this criterion
had lower variance in their performance than, e.g., Random Forest, which had only two
of its five inputs come from this set of significant features. Another finding is that if a
dataset contains replacement noise, then the model prediction accuracy degrades linearly
from its best value (at no replacement noise) to 50% accuracy when the entire dataset
consists of replacement noise. This information can be used to determine which level of
replacement noise a classifier can tolerate to remain above a certain accuracy threshold,
i.e., it is often 80% for diagnostic purposes. Monte Carlo simulations involving Gaussian
noise and variations of the training/testing split also form important aspects that need
to be investigated for assessing classifiers’ robustness. In general, the results from this
investigation indicate that replacement noise is more demanding for classifier robustness
as compared to Gaussian noise and the same holds true for varying training/test splits as
compared to leave-one-out cross-validation.

Further research should take into account which types of noise are applicable to
different domains and determine if this framework should be adapted for those domains.
For example, replacement and Gaussian noise are realistic for metabolomics data, where
there are random and systematic errors, but may not be as applicable to imaging or non-
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biological domains. In addition, neural networks are commonly used, but it is challenging
to assess the impact of uncertainties in specific weights or features due to the nature of
connected hidden layers. As such, research on how to better understand these black-box
models should be performed in the future.
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Appendix A

The following is a list of the scikit-learn python implementations with hyperparame-
ters used to generate each classifier.

• LDA: Linear Discriminant Analysis (

# n_components = 1,
# solver = ‘eigen’)

• SVC (

# C = 0.1,
# kernel = ‘linear’)

• Random Forest Classifier (

# n_components = 16,
# max_features = ‘auto’,
# max_depth = 5,
# min_samples_split = 2,
# min_samples_leaf = 5,
# random_state = 42,
# n_jobs = −1)

• PLS Regression (n_components = 1)
• Logistic Regression (

# C = 0.1,
# solver = ‘saga’,
# random_state = 42)

• MLP Classifier (

# hidden_layer_sizes = ((32,16)),
# solver = ‘adam’,

https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005385#pcbi.1005385.ref038
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005385#pcbi.1005385.ref038
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# activation = ‘relu’,
# learning_rate = ‘constant’,
# learning_rate_init = 0.01,
# alpha = 1 × 10−5,
# random_state = 1,
# tol = 1× 10−3,
# n_iter_no_change = 5)

Appendix B

In addition to the testing accuracy, which is presented in the main study, the leave-
one-out cross-validation accuracy (LOOCV) of the training set for every classifier was also
computed. Figures A1 and A2 show the average and variance of the LOOCV accuracy with
respect to replacement noise for each classifier, while Figures A3 and A4 show the average
and variance of the LOOCV accuracy with respect to Gaussian noise. The overall behavior
of each classifier in response to each type of noise is approximately the same for both the
LOOCV training accuracy and standard testing accuracy even though the exact numbers
are slightly different.
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Appendix C

As the classifiers were generated individually for each algorithm, the predictions and
compositions of all the classifiers were compared. The accuracies of the classifiers for the
same feature subsets were compared using the Student’s paired t-test to determine if each
algorithm was similarly effective in classifying the data Figure A5. This comparison, using
the same feature subset, was performed for the top 100 feature subsets ranked by their
LOOCV accuracy for each classification algorithm, resulting in 600 feature subsets with
which to test the classifiers. RF computed consistently worse accuracies than the other
methods, while MLP and LOG computed greater accuracies (Figure A5A,E). This result
does not necessarily indicate that the other algorithms are objectively better than RF, but
rather that the classifier generated on this specific data with RF was more sensitive to
variations than those derived by other methods.

To determine which features are selected for each classifier, the prevalence of each
metabolite as a feature among the top-performing combinations across the 1000 applications
of noise was computed and is shown in Figure A6. The metabolites were then ranked by
prevalence for each algorithm and compared pairwise via a computation of the spearman
rank correlation coefficient. All the pairs of algorithms showed a spearman rank correlation
coefficient of 0.89 or greater, demonstrating that the algorithms generally found that the
same metabolites performed well in most classifiers. The full set of pairwise spearman rank
correlation coefficients is displayed in Figure A7.
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