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Abstract: Background: Cardiovascular management and risk stratification of patients is an important
issue in clinics. Patients who have experienced an adverse cardiac event are concerned for their future
and want to know the survival probability. Methods: We trained eight state-of-the-art CNN models
using polar maps of myocardial perfusion imaging (MPI), gender, lung/heart ratio, and patient
age for 5-year survival prediction after an adverse cardiac event based on a cohort of 862 patients
who had experienced adverse cardiac events and stress/rest MPIs. The CNN model outcome is to
predict a patient’s survival 5 years after a cardiac event, i.e., two classes, either yes or no. Results:
The best accuracy of all the CNN prediction models was 0.70 (median value), which resulted from
ResNet-50V2, using image as the input in the baseline experiment. All the CNN models had better
performance after using frequency spectra as the input. The accuracy increment was about 7~9%.
Conclusions: This is the first trial to use pure rest/stress MPI polar maps and limited clinical data
to predict patients’ 5-year survival based on CNN models and deep learning. The study shows the
feasibility of using frequency spectra rather than images, which might increase the performance
of CNNs.

Keywords: cardiac death prediction; CNN; ResNet-50; myocardial perfusion imaging; deep learning

1. Introduction

Myocardial infarction and coronary artery disease are the leading causes of death of
the elderly worldwide [1]. Early detection and intervention to correct the flow-limiting
coronary arteries of jeopardized myocardium have shown improvements, including post-
therapeutic quality of life and prevention of premature death [2]. However, correctly
identifying patients who would benefit from treatment remains a challenge, which is
confounded by the wide spectrum of susceptibility to myocardial ischemia and flow-
limiting vasculopathy [3]. Radionuclide myocardial perfusion imaging has been applied to
detect inducible myocardial ischemia. It is known to be useful for stratifying patients’ risks
of imminent major adverse cardiac events (i.e., cardiac death and myocardial infarction)
and determining appropriate therapeutic strategies. However, the image analysis for
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categorizing the findings still require multiple parametric corrections and comparisons
and also depends on a representative database of healthy subjects in different populations,
which complicates the process of interpreting images and prevents the generalization of
the methodology to different subjects [4].

Some previous studies have used MPI for predicting the obstructive status of three
coronary arteries [5] and determining if a patient has CAD (coronary artery disease) [6].
In [5], the authors used rest/stress MPI for predicting the coronary artery obstruction via a
CNN and deep learning as compared with a total perfusion deficit (TPD) method. They
identified 1638 patients without known coronary artery disease. Their results showed that a
deep learning-based method (with a simple convolution neural network (CNN)) performed
slightly better than traditional TPD measurements. The area under the ROC curve values
for disease (≥70% narrowing of coronary arteries) prediction using CNN and TPD were
0.80 vs. 0.78 (per patient), respectively. In [6], the authors used relatively small images,
reshaped to a size of 23 × 20, as input. Furthermore, they applied a graph convolutional
neural network (GCNN) model (proposed by [7,8]) with only two convolutional layers with
64 and 128 kernels; this was a small GCNN model as compared with other CNN models
for medical diagnosis. The goal was to evaluate the abilities of four different NN models
(FCN, CNN, GCNN v1, and GCNN v2) for classifying a given polar map of a patient,
i.e., whether it was abnormal (presence of CAD) or normal, regardless of localization.
There were two types of comparison baselines: human observations and ground truth
(medical findings). The NN results as compared with human observations were identified
as “agreement”, whereas the NN results as compared with ground truths were identified as
sensitivity and specificity. They collected 946 polar images (503 rest MPI and 443 stress MPI).
Among them, the abnormal and normal ratio was nearly 1:1. They performed four-fold
cross-validation. Their results showed a surprisingly high classification performance,
i.e., the agreement, sensitivity, and specificity in the “rest” mode were 0.89, 0.85, and 0.93,
respectively, whereas those in the “stress” mode were 0.91, 0.86, and 0.96, respectively.
This was the best performance among the four NN models tested. Their contribution was
to evaluate the performance of a GCNN on the classification task of myocardial event
prediction, which was better than a baseline CNN.

A related study by [9] used machine learning (ML) techniques combined with clinical,
stress test, imaging variables, and MPI to predict the 3-year risk of major adverse cardiac
events (MACEs). A total of 2619 consecutive patients (48% men) with MPI were monitored
for a MACE. Ten-fold cross-validation was used. They used 28 clinical variables, 17 stress
test variables, and 25 imaging variables to train the ML models. Among them, they
found “age” to be the most significant clinical variable; peak heart rate at stress, peak
SBP (systolic blood pressure), and peak DBP (diastolic blood pressure) were the most
significant variables in the stress tests. They did not use MPI images directly, instead,
they used imaging variables. Here, a p-value < 0.0001 was considered to be significant.
From their results, Figure 3 in [9], we note that the performance of the prediction was at
specificity = 0.7 and sensitivity at about 0.76. The best score for the area under the curve
(AUC) of the receiver operating characteristic curve (ROC) they reported was 0.81.

The same group published a 5-year all-cause mortality prediction study in 2017 [10].
They identified 10,030 patients at multiple centers with their coronary computed tomo-
graphic angiography. The performance of mortality prediction was measured by AUC of
ROC, where the ML method showed the best performance with AUC = 0.79. We simply
included their findings here, without more details, because we used image data that was
different from their data.

In the mortality prediction studies, electronic health records (EHR) data have been
used as materials combined with either ML or NN deep learning techniques. The following
studies used EHR data from different datasets or data in-house. In [11], they included a
cohort of 5436 admissions, patients diagnosed with acute myocardial infarction or post
myocardial infarction syndrome, in the Medical Information Mart for Intensive Care III
database (MIMIC-III) [12]. In the results, they reported using 79 variables and they found
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that the deep feedforward neural network (FNN) outperformed all machine learning
algorithms. Some studies have used ML and EHR to predict mortality rates in a variety
of other disease outcomes such as progression to type 2 diabetes [13], intensive care
readmission [14], and the development of Alzheimer’s disease [15].

More recently, artificial intelligence has been implemented in many fields, including
healthcare systems, and is expected to improve and reshape workflow and even our
way of life. Especially in medical applications, many CNN-based studies have been
published, such as in lung nodule detection [16,17], cancerous bone metastasis detection
and classification on bone scintigraphy images [18,19], COVID-19 screening on X-ray
images [20], and breast cancer detection on mammograms [21]. More state-of-the-art
studies using CNN and deep learning in cardiovascular images can be found in [22].

In this study, we aimed to explore the feasibility of using artificial intelligence to
assisting in classifying the risk of 5-year all-cause mortality in patients who had recently
experienced an adverse cardiac event by direct analysis of basic acquisition of myocardial
perfusion imaging without the need to compare the predefined normal database from the
healthy subjects or to acquire additional advanced images with specific processing module
(e.g., electrocardiogram gated images with compatible processing software). The results
might have the potential to create a new pathway of personalized assessment that could
contribute to establishing tailor-made healthcare plans.

Our innovation, in this study, is using the frequency spectra of bull’s-eye images
as the input of CNN model, instead of using raw images. This inspiration comes from
GCNN [7,8]. More details are given in the Discussion Section.

2. Materials and Methods
2.1. Materials

From November 2007 to October 2018, a total of 1162 consecutive patients were re-
ferred for thallous-201 chloride (Tl-201) stress/redistribution myocardial perfusion single
photon emission computed tomography (SPECT). Two hundred and ninety-two patients
were excluded from further analysis, including 7 pediatric subjects (unlikely underlying eti-
ologies of atherosclerotic coronary disease), 18 patients with inappropriate image qualities,
and 267 patients lost for further clinical follow-up. Of the remaining 870 patients, 577 were
dead in 5 years after myocardial perfusion SPECT and the remaining 293 patients were
alive, according to the death data of the clinical research database of the China Medical
University Hospital. The pharmacologic cardiac stress method was used with dipyridamole
administered at 0.56 mg/kg intravenously over a 4-min period. Tl-201 was injected with
2.5 millicuries (mCi), 3 to 5 min after the completion of dipyridamole infusion. Stress imag-
ing started 10 min after completion of dipyridamole infusion and redistribution images
were acquired 4 h later. The SPECT acquisition was performed with a Millennium MG dual-
head gamma camera, Infinia/Hawkeye 4 SPECT/CT, or Discovery NM/CT 670 SPECT/CT
(GE Healthcare, Waukesha, WI, USA) equipped with low energy or extended low energy
general purpose collimators. The SPECT images were acquired with 32 projections, 40 s per
projection, and 180◦ arc (from 45◦ right anterior oblique to 45◦ left posterior oblique) and
stored in a 64 × 64 matrix. For further interpretation, three-orthogonal sections along the
short, horizontal, and vertical long axes of the left ventricular images were reconstructed,
and polar maps of the short axial images were also created with the vendor-provided
Xeleris Workstation (GE Healthcare, Waukesha, WI, USA). This study was approved by the
Institutional Review Board (IRB) of the China Medical University and Hospital Research
Ethics Committee (DMR99-IRB-(CR-9)).

The collected MPI images were in DICOM format, only age and gender information
were preserved, and all private connections were removed. The spatial resolution of the raw
images was 1024 × 512 pixels. However, only bull’s-eye ROIs were extracted for follow-up
preprocess, and the heart/lung ratio was extracted. The heart/lung ratio was computed by
selecting two ROIs from the heart and lung regions. This process was performed manually
by a physician (co-author Y.C. Lai) and confirmed by two other physicians (co-authors
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C.H. Kao and T.C. Hsieh). The remaining parts of an image were ignored. The 862 patients
were aged between 28.2 and 99.6 years, with an average age of 69.2 ± 12.3 years; there
were 487 males. These 862 cases were used to perform Experiment 1, i.e., the baseline. The
lung/heart ratios were: (min, max, and mean ± std) = (0.2, 1, and 0.39 ± 0.11) for stress
and (0.21, 1, and 0.41 ± 0.09) for rest. Since the outcome was death or not in 5 years after
an adverse cardiac event, this was a retrospective study and traced by patient records.

We noted that 7 cases showed poor perfusion quality; therefore, these 7 cases were
removed, and the remaining 855 patients were used to perform Experiment 2, i.e., our
novelty finding. The patient data structure is shown in Figure 1.

Figure 1. The patient data structure and flowchart.

2.2. Methods
2.2.1. Image Preprocessing

The bull’s-eye region was extracted by a circle detection algorithm, i.e., Hough circle
transform [23] using python package function %cv2.HoughCircles%. Since the raw images
were saved by different radiographers, the image resolution could be slightly different. We
simply chose the radius of the majority as a standard radius. All other sizes were rescaled
to fit this standard. After the circle detections, all bull’s-eye regions were extracted and
fitted to an image of size 220 × 440. We referred to this image as a “raw bull’s-eye” image.
There were 862 “raw bull’s-eye” images.

The raw bull’s-eye images needed to contain pure heart perfusion information. How-
ever, due to the skill variations of different radiographers, the “raw bull’s-eye” images
could contain information outside the heart area. This was not expected, and therefore we
developed an algorithm to fix the problem, as shown in Figure 2. After this process, the
bull’s-eye images contained pure heart perfusion information without other noises, and we
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referred to these as “pure bull’s-eye” images. These 855 “pure bull-eye” images were used
in Experiment 2.

Figure 2. The image preprocess algorithm. The purpose of this algorithm is to exclude the region
outside the heart, and therefore the bull’s-eye image contains only heart perfusion information. It is a
type of noise-removal technique. The resulting “pure bull’s-eye” images were used in Experiment 2.

In Experiment 2, we applied Fourier transform to extract the frequency spectra from the
“pure bull-eye” images. The zero frequency was removed, and the remaining frequencies
were preserved to test different CNN models.

2.2.2. Convolutional Neural Networks (CNNs)

There have been many CNN models developed in recent years, for example,
ResNet50V2 [24–26], ResNet101V2 [24–27], MobileNetV1 [28,29], MobilNetV2 [28,30], Xcep-
tion, VGG16, EfficientNetB0, and DenseNet169. These are current state-of-the-art CNN
models. A CNN model can extract image features fully automatically from the training data
(images and clinical data) and perform a classification task in a network. In our neural net-
work, we input: (1) bull’s-eye image, (2) lung/heart ratio, (3) patient’s age, and (4) patient’s
gender; the output was: survival in 5 years, either yes or no. The image and clinical data
were combined through a “concatenation” technique, using the python package function
%keras.layers.concatenate%. The age was normalized by dividing by 100, the gender used
one-hot encoding, and the lung/heart ratio was directly used after normalization.

2.2.3. Frequency as Input

In order to explore the difference between using raw color images and their frequency
spectra, we applied fast Fourier transform (FFT, used %numpy.fft.fft2%) on the “pure bull’s-
eye” images. Notably, the zero frequency was deleted after the FFT and the remaining parts
were fed into the CNN models. The real and imaginary parts were combined by using the
package absolute function %numpy.abs%. The three channels (red, green, and blue) were
separately computed. The Log operation was applied to enhance the weights of the high
frequency component by using the %numpy.log10% function.

3. Results
3.1. Image Preprocessing

The raw MPI images were in different sizes and appearances. Figure 3 illustrates
two MPI images as examples with different image sizes. Moreover, we noted that the
heart perfusion information in Figure 3a is correctly captured by the “bull’s-eye” image,
since there is no blue and green color surrounding it, as can be seen in Figure 3b. The red
and orange colors denote good blood perfusion, while the blue and green colors denote
ischemia. These differences might be caused by the skills of different radiographers. An



J. Pers. Med. 2022, 12, 1105 6 of 12

experienced radiographer is able to achieve good image quality. This is a prospective study,
and therefore we were unable to repeat the image capturing process.

Figure 3. Raw MPI images. The heart perfusion information was correctly captured by the “bull’s-eye”
image in (a). However, the heart perfusion information was not put in the center of the “bull’s-eye”
in (b). This is an example of the difficulty encountered in our study.

Figure 4 shows examples of the extracted “raw bull’s-eye” and “pure bull’s-eye” images.

Figure 4. The extracted “bull’s-eye”: (a,b) “raw bull’s-eye” and (c,d) “pure bull’s-eye” after processed
by our algorithm (in Figure 2). (a,c) are Case 2, (b,d) are Case 47.

3.2. Results of CNNs

In total, eight state-of-the-art CNN models were tested. Table 1 (Experiment 1) shows
the accuracy values for prediction performance. Each value was the median of three tests.
In each test, 10% of the data were randomly chosen to be test data, 90% of the data were
training data. The final median value is shown in the bottom row of Table 1. Each CNN
model was tested 13 × 3 = 39 times. This was an ablation study. From the results, we
found that the best CNN model was ResNet, which had a median accuracy of 0.70, i.e., the
baseline result. The best accuracy for each CNN model is marked in bold.
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Table 1. Experiment 1, the baseline. Eight state-of-the-art CNN models were tested. Images were
input. The values in the table show accuracy. Each value was the median of three tests with different
initializations (10% of the data were test data, 90% data were training data, total 862 patients).

Epoch Batchsize ResNet 50V2 ResNet 101V2 Mobile NetV1 Mobile NetV2 Xception VGG16 EfficientNetB0 DenseNet169

40 16 0.71 0.71 0.67 0.61 0.68 0.62 0.64 0.70

60 16 0.71 0.67 0.70 0.67 0.63 0.68 0.72 0.66

60 32 0.69 0.68 0.67 0.68 0.71 0.64 0.69 0.71

60 64 0.64 0.71 0.72 0.69 0.70 0.67 0.76 0.67

80 16 0.70 0.71 0.69 0.69 0.68 0.72 0.71 0.71

80 32 0.70 0.68 0.64 0.69 0.68 0.67 0.68 0.69

80 64 0.66 0.69 0.72 0.63 0.70 0.70 0.71 0.71

120 16 0.70 0.70 0.69 0.74 0.66 0.70 0.64 0.67

120 32 0.71 0.72 0.64 0.72 0.64 0.68 0.69 0.69

120 64 0.61 0.70 0.74 0.70 0.63 0.62 0.68 0.66

160 16 0.69 0.66 0.70 0.68 0.68 0.69 0.70 0.66

160 32 0.68 0.74 0.68 0.67 0.67 0.67 0.68 0.66

160 64 0.75 0.69 0.63 0.70 0.68 0.70 0.67 0.68

Median 0.70 0.70 0.69 0.69 0.68 0.68 0.69 0.68

In order to explore the impact of using the frequency spectra instead of normal images
as input, we designed Experiment 2 (see Table 2). In Experiment 2, seven poor quality
cases were removed. In total, 855 cases were tested. Similarly, 10% of the data were
randomly chosen as test data and the remaining 90% of the data were used as training data.
Surprisingly, all CNN models had better performance and the increments were about 7~9%.
This was a novel finding.

Table 2. Experiment 2. Eight state-of-the-art CNN models were tested. The frequency spectra were
input. The value in the table was accuracy. Each value was the median of three tests with different
initializations (10% of the data were test data, 90% of the data were training data, total 855 patients).

Epoch Batchsize ResNet 50V2 ResNet 101V2 Mobile NetV1 Mobile NetV2 Xception VGG16 EfficientNetB0 DenseNet169

40 16 0.76 0.77 0.77 0.76 0.71 0.77 0.77 0.77

80 32 0.78 0.77 0.70 0.76 0.76 0.76 0.77 0.77

160 64 0.77 0.76 0.77 0.71 0.76 0.77 0.76 0.76

Median 0.77 0.77 0.77 0.76 0.76 0.77 0.77 0.77

We repeated the tests five times using the ResNet50V2 model with epoch = 80,
batchsize = 32, frequency spectra as input, and the confusion matrices are shown in Table 3.
From the results, we observe that the model is stable and has a better performance than
using raw image as input.

Table 3. Experiment 2. ResNet50V2 model was tested 5 times with different shuffles, 10% data were
test data, 90% data were training data. The confusion matrices are listed. Total of 855 patients.

Number 1 2 3 4 5

Prediction Death Alive Death Alive Death Alive Death Alive Death Alive

Ground truth
Death 54 6 50 10 56 8 54 6 54 6

Alive 11 15 13 13 12 10 13 13 11 15

Accuracy 0.80 0.73 0.77 0.78 0.80

Since three clinical parameters were used, we designed an experiment in order to
explore which parameters were significant. Each clinical parameter was removed, and
the experiments were repeated three times using the ResNet50V2 model. The results are
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shown in Table 4. From the results, we observe that the parameters age and gender are
more significant than lung/heart ratio.

Table 4. The significance of clinical parameters.

Parameter
Absent

Lung/Heart
Ratio Age Gender

Number
1 0.79 0.58 0.62
2 0.77 0.62 0.70
3 0.71 0.60 0.70

4. Discussion

In this study, our contributions are two-fold: (1) This is the first trial to use MPI
information and as few as possible clinical data as input for eight state-of-the-art CNN
models for 5-year survival predictions in patients after experiencing an adverse cardiac
event. (2) This is the first trial to use the frequency spectra of images as input for a CNN and
find a better performance. This is a novel finding, which could motivate future researchers
to consider different types of input rather than only raw images. We emphasize that not
all images were suitable for using frequency spectra as the input. The CNN can better
predict 5-year survival rate, while this is a difficult task for humans. This might be a
consideration in deciding if we need to transfer images to frequency spectra and use it as
input. The reason that using spectrum as input outperform raw images as input might be
owing to: We human beings are well-trained to recognize natural and man-made objects
by extracting shapes, colors, and texture features. However, we are not well-trained on
recognize objects in frequency domain. The goal of this study is to predict the risk of 5-year
all-cause mortality of patients experienced an adverse cardiac event. This is a linkage
between MPI and mortality. The spatial information might have less information than the
spectrum. We note that it is very hard for physicians to do the prediction. In other words,
humans cannot extract enough features efficiently from MPI to predict mortality.

Many studies have compared their results with previous studies; however, there are
limited related studies for a comparison with our study. In addition, a fair comparison
should be based on the same dataset, in this case, we did not find an open dataset of
MPI as a benchmark. Therefore, we compared eight state-of-the-art CNN models and we
conducted an ablation study by changing combinations of different epochs and batch sizes.
To obtain reliable accuracy, we reported the median value of many test trials instead of the
best results that might have been due to luck.

Neural network-related methods are often challenged by questioning the mechanism
of computation, especially as to how an NN knows the result and from where an NN could
make such a decision. This is the so-called “black-box” question. An interesting study,
in 2019 [31], provided a technique namely gradient-weighted class activation mapping
(Grad-CAM), which provided an intuitive visualization of where the NN was focusing. We
call the region that the NN focuses on the “hot zone” (or heat map in python program).
The hot zones actually are the weights in NN, if the weights have larger values, then,
the region has a greater influence on making a decision. The hot zone is performed by
color superimposed on the raw image, a hot color representing a greater influence. We
used this technique and provided an intuitive visualization where the CNN was focusing.
Figures 5 and 6 are examples: Figures 5a and 6a are Experiment 1 and Figures 5b and 6b
are Experiment 2. The lower images in the figures are raw images (pure bull’s-eye and
its FFT), and the upper images are their GradCAM visualization. From the hot zones, we
can observe that a hot zone is hard to observe since the raw image also has no hot color
in the bull’s-eye. However, in Experiment 2, we can easily observe that the CNN only
focused on the left bull’s-eye, the stress phase of MPI. This is an interesting finding, which
means that the CNN makes a decision only on the stress phase of the bull’s-eye. Most
results are similar to Figures 5 and 6; however, we observed some rare cases, as shown
in Figures 7 and 8. In Figure 7, we note that the CNN makes a decision based on two
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bull’s-eyes, especially on the right bull’s eye (the rest phase). In Figure 8, the CNN makes a
correct decision, but we do not see any hot region in the heat map. In Case 674, we tend to
believe that the CNN uses guessing, since the heart was not well settled in the center of
the bull’s-eye. An interesting question is, “What is the percentage of guessing in correct
and incorrect classifications?” We found that 18% and 30% guessing existed in correct and
incorrect classifications, respectively. This makes sense, since guessing has a lower rate
of correctness.

Figure 5. The GradCAM plots, Case 60: (a) Results of Experiment 1, the lower image is the “pure
bull’s-eye” image, and the upper image is its GradCAM visualization; (b) results of Experiment 2, the
lower image is the frequency spectrum computed from (a), the pure bull’s-eye image, and the upper
image is its GradCAM visualization.

Figure 6. The GradCAM plots, Case 170: (a) Results of Experiment 1, the lower part is the “pure
bull’s-eye” image, and the upper part is its GradCAM visualization; (b) results of Experiment 2, the
lower part is the frequency spectrum computed from (a), the pure bull-eye image, and the upper part
is its GradCAM visualization.
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Figure 7. The GradCAM plots, Case 595: (a) Results of Experiment 1: the lower part is the “pure
bull-eye” image, and the upper part is its GradCAM visualization; (b) results of Experiment 2: the
lower part is the frequency spectrum computed from (a), the pure bull’s-eye image, and the upper
part is its GradCAM visualization.

Figure 8. The GradCAM plots, Case 674: (a) Results of Experiment 1: the lower part is the “pure
bull’s-eye” image, and the upper part is its GradCAM visualization; (b) results of Experiment 2: the
lower part is the frequency spectrum computed from (a), the pure bull’s-eye image, and the upper
part is its GradCAM visualization.

The accuracies of 5-year survival predictions reached 0.77 for most of the CNN models.
The limitations of this study may be due to the following reasons: (1) Our MPI images were
obtained by different radiographers, who had different experiences. Some MPI images
had poor quality in perfusion information, i.e., the heart perfusion information was not
correctly centered in the image. (2) We used only gender, lung/heart ratio, and patient
age as input clinical data, which is very limited. According to a previous study by [9],
peak heart rate at stress, peak SBP (systolic blood pressure), and peak DBP (diastolic blood
pressure) are significant for predicting adverse cardiac events. In addition, some simple
clinical data, such as body mass index (BMI), should be considered, which did not exist in
our dataset.
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5. Conclusions

In this study, we developed CNN-based models using MPI and data of three clinical
parameters to predict the survival of patients who had experienced an adverse cardiac
event. The accuracy of predictions reached 0.77 for six state-of-the-art CNN models when
the input of CNN was frequency spectra using fast Fourier transform on images. Our
findings could provide direction for future studies to consider different types of input for a
CNN, instead of using the traditional method of raw images.
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