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Abstract: The therapeutic activation of antitumour immunity by immune checkpoint inhibitors (ICIs)
is a significant advance in cancer medicine, not least due to the prospect of long-term remission.
However, many patients are unresponsive to ICI therapy and may experience serious side effects;
companion biomarkers are urgently needed to help inform ICI prescribing decisions. We present
the IMMUNETS networks of gene coregulation in five key immune cell types and their application
to interrogate control of nivolumab response in advanced melanoma cohorts. The results evidence
a role for each of the IMMUNETS cell types in ICI response and in driving tumour clearance with
independent cohorts from TCGA. As expected, ‘immune hot’ status, including T cell proliferation,
correlates with response to first-line ICI therapy. Genes regulated in NK, dendritic, and B cells are the
most prominent discriminators of nivolumab response in patients that had previously progressed
on another ICI. Multivariate analysis controlling for tumour stage and age highlights CIITA and
IKZF3 as candidate prognostic biomarkers. IMMUNETS provide a resource for network biology,
enabling context-specific analysis of immune components in orthogonal datasets. Overall, our results
illuminate the relationship between the tumour microenvironment and clinical trajectories, with
potential implications for precision medicine.

Keywords: immune checkpoint; melanoma; ovarian carcinoma; systems immunology; network
biology; immunotherapy; precision oncology; biomarker; nivolumab; systems medicine

1. Introduction

The immune system functions to eliminate tumour cells; however, immunoediting can
result in the immune response promoting cancer progression [1]. The ‘equilibrium’ and
subsequent ‘escape’ phases of immunoediting involve a selective microenvironment where
cancer cells with the capacity to evade the immune response become dominant. Therefore,
tumour-associated leukocytes can adopt a range of different cellular programmes that may
either impede or contribute to cancer progression [2]. Therapeutic activation of antitumour
immunity has had a huge clinical impact, particularly in producing long-term remission [3].
Immune checkpoint inhibitors (ICIs) exploit the CTLA-4 and PD-L/PD-L1 pathways to
activate T lymphocytes in the tumour microenvironment [3]. ICIs are effective in a range
of cancers, including melanoma, renal cell carcinoma, and non-small cell lung cancer [4].
However, current forms of ICI therapy are also associated with multiple side effects, includ-
ing autoimmune reactions [5]. A response rate varies between cancer types, and a minority
of patients typically respond to single-agent treatment [6]. Factors that correlate with ICI
response include high mutational burden, a T cell-inflamed microenvironment and the
formation of tertiary lymphoid structures with CD20+ B-cells [7,8]. A deeper understanding
of the factors that drive the heterogeneity of clinical response to ICI therapy could inform
patient-specific regimes in order to enhance outcomes and reduce side effects [9]. Indeed,

J. Pers. Med. 2022, 12, 958. https://doi.org/10.3390/jpm12060958 https://www.mdpi.com/journal/jpm

https://doi.org/10.3390/jpm12060958
https://doi.org/10.3390/jpm12060958
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jpm
https://www.mdpi.com
https://orcid.org/0000-0003-1158-8527
https://doi.org/10.3390/jpm12060958
https://www.mdpi.com/journal/jpm
https://www.mdpi.com/article/10.3390/jpm12060958?type=check_update&version=2


J. Pers. Med. 2022, 12, 958 2 of 20

treatment efficacy may be enhanced by combination therapy; for example, by targeting
multiple pathways or by inhibiting tumour plasticity alongside ICIs [10,11]. An early
example of precision oncology measures HER2/neu to inform Trastuzumab treatment in
breast cancer [12]; similarly, the development of companion biomarkers is a key step in
maximising the patient benefit from ICI therapy.

Immunotherapy has been particularly successful in melanoma, a common form of skin
cancer associated with a high mortality rate due to its propensity to metastasise [13]. How-
ever, many melanoma patients do not benefit from sustained responses to ICIs, with median
progression of 12 months or less [14–16]. Characterisation of the molecular networks that
control resistance and response to ICI therapy in poor prognosis cancers may provide
mechanistic insight towards new therapeutic tools and ultimately inform prescribing deci-
sions. Network models provide a useful abstraction of complex biological systems [17] and
may enhance the development of methods for risk stratification in precision oncology [18].
We mapped the activation and differentiation of five different immune cell types in order
to identify molecular correlates of clinical immunotherapy responses by analysing data
from the Immune Response In Silico (IRIS) study [19] and melanoma patients treated with
a PD-1 inhibitor (nivolumab) [20–22]. Our results delineate immunological processes at
the genome-scale and propose candidate immunotherapy response biomarkers that have
prognostic value in independent cohorts of melanoma patients [23].

2. Results

We produced IMMUNETS, a set of five immune cell coregulation networks derived
from the Immune Response In Silico (IRIS) transcriptome data, representing cells from
healthy human donors [19]. The IRIS study captured immune transcriptomes across mul-
tiple activated and differentiated cell states and so provides a basis for modelling the
networks of genes involved in immune regulation and immunotherapy response. Our
approach (Figure 1) utilised transcriptome data from IRIS, melanoma patients treated
with immunotherapy [20,22] and The Cancer Genome Atlas (TCGA) [23]. IMMUNETS
provided for the derivation of immune cell-specific focus networks (Figure 2, Supplemen-
tary Figures S1–S3) and investigation of immune regulation in the context of nivolumab
response (Figure 3). The resulting candidate biomarkers showed clinically relevant expres-
sion differences in an independent dataset (Figure 4).
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Figure 1. Methodological outline. Networks were constructed from genes that were both highly 
correlated and differentially expressed across five cell types (IMMUNETS, top). Genes present in at 
most two of the five IMMUNETS cell networks were input into NetNC, enabling investigation of 
immune regulation in patients with differing nivolumab response profiles (centre). IMMUNETS 
genes that correlated with nivolumab response were validated with an independent melanoma da-
taset (n = 51); the significant genes (BIO_13) were further investigated in risk stratification (bottom; 
TCGA_TRAIN, n = 255) taking cohorts independent of prognostic model selection for validation 
(TCGA_VALID n = 135, MIXED_ICI n = 174). 

Figure 1. Methodological outline. Networks were constructed from genes that were both highly
correlated and differentially expressed across five cell types (IMMUNETS, top). Genes present in
at most two of the five IMMUNETS cell networks were input into NetNC, enabling investigation
of immune regulation in patients with differing nivolumab response profiles (centre). IMMUNETS
genes that correlated with nivolumab response were validated with an independent melanoma
dataset (n = 51); the significant genes (BIO_13) were further investigated in risk stratification (bottom;
TCGA_TRAIN, n = 255) taking cohorts independent of prognostic model selection for validation
(TCGA_VALID n = 135, MIXED_ICI n = 174).
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Figure 2. T cell and B cell focus networks. Node colour shows the overlap of genes with other cell 
types in IMMUNETS and genes present in a single network are shown in blue. Edges were signifi-
cant according to NetNC-FTI analysis (methods). The coloured circles around clusters indicate 
broad annotation classes where significant GO terms were identified; red corresponds to general 
immune GO annotations, blue represents cell-type specific immune processes and green shows clus-
ters with annotation terms that are not immune-specific. (A) Most clusters in the T cell focus network 
represent processes important for cell proliferation. A ‘regulation of lymphocyte proliferation’ clus-
ter (red) contains multiple T cell genes (IL17A, CD5, IL13, IL5, IL2, CD8A, CD28). (B) The B cell 
focus network has one cell-specific immune cluster (blue) ‘B cell activation’, including CD79A, 
CD79B and CD19. The four clusters annotated with general immune processes (red), such as ‘in-
flammatory response’, contain important B cell genes for example IL22, IL10RB, IL20RA, and 
IL22RA1. Cytoscape sessions for the IMMUNETS focus networks are available in Supplementary 
Data File S1. 

Figure 2. T cell and B cell focus networks. Node colour shows the overlap of genes with other cell
types in IMMUNETS and genes present in a single network are shown in blue. Edges were significant
according to NetNC-FTI analysis (methods). The coloured circles around clusters indicate broad
annotation classes where significant GO terms were identified; red corresponds to general immune
GO annotations, blue represents cell-type specific immune processes and green shows clusters with
annotation terms that are not immune-specific. (A) Most clusters in the T cell focus network represent
processes important for cell proliferation. A ‘regulation of lymphocyte proliferation’ cluster (red)
contains multiple T cell genes (IL17A, CD5, IL13, IL5, IL2, CD8A, CD28). (B) The B cell focus network
has one cell-specific immune cluster (blue) ‘B cell activation’, including CD79A, CD79B and CD19.
The four clusters annotated with general immune processes (red), such as ‘inflammatory response’,
contain important B cell genes for example IL22, IL10RB, IL20RA, and IL22RA1. Cytoscape sessions
for the IMMUNETS focus networks are available in Supplementary Data File S1.
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Figure 3. IMMUNETS genes stratify melanoma cohorts by response to nivolumab. Genes shown 
were found in at most two IMMUNETS networks and were differentially expressed between the 
response groups in (A) MEL_NAI (n = 23) and (B) MEL_PROG (n = 26). Clinical response is shown 
(top) and a cluster of responsive patients is found on the left of each heatmap. Blom-transformed 
gene expression is visualised on a yellow (highest) to blue (lowest) scale, thus lighter colours repre-
sent higher expression values. 

 

 

Figure 3. IMMUNETS genes stratify melanoma cohorts by response to nivolumab. Genes shown
were found in at most two IMMUNETS networks and were differentially expressed between the
response groups in (A) MEL_NAI (n = 23) and (B) MEL_PROG (n = 26). Clinical response is shown
(top) and a cluster of responsive patients is found on the left of each heatmap. Blom-transformed gene
expression is visualised on a yellow (highest) to blue (lowest) scale, thus lighter colours represent
higher expression values.
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Figure 4. Candidate immune biomarkers from IMMUNETS are differentially expressed in inde-
pendent datasets. (A): HOMER1 expression between responsive (PRCR, n = 15) and non-responding 
(PD, n = 14) groups in VALID_NAI. Significant expression differences were also observed in 
MEL_NAI, however the correlation with clinical response was not conserved, possibly arising from 
splice variation. (B) Twelve genes differentially expressed in VALID_PROG that were significant in 
MEL_PROG. The colour-coding for clinical response values is shown on the right-hand side. 
Heatmap colours represent Blom-transformed gene expression from yellow (highest) blue (lowest), 
values in the key represent a log scale. 
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We built IMMUNETS with data from the IRIS study, which assayed key immune cell 

types in multiple states of activation and differentiation [19]. There are five different IM-
MUNETS networks, each focused upon a broad class of immune cells (T cells, B cells, NK 
cells, Monocytes, and Dendritic cells). Each network connects genes that are both differ-
entially regulated in immune cell function and are highly correlated within the cell group-
ing for which the network was constructed. Differentially expressed genes were identified 
either between or within immune cell types and were used to construct correlation net-
works for T cells (T-net: 3069 genes, 54,108 edges), Natural Killer (NK) cells (NK-net: 5944 
genes, 65,426 edges), B cells (B-net: 4626 genes, 105,349 edges), Monocytes (Mono-net: 2867 
genes, 55,150 edges) and Dendritic cells (Dend-net: 5071 genes, 58,995 edges). Together, 
the five correlation networks cover 9668 genes in total, of which 3262 are found in only 
one network and 2820 are present in exactly two of the five networks (Table 1, Supple-
mentary Data File S2). The representation scope of IMMUNETS is defined by regulation 

Figure 4. Candidate immune biomarkers from IMMUNETS are differentially expressed in indepen-
dent datasets. (A): HOMER1 expression between responsive (PRCR, n = 15) and non-responding (PD,
n = 14) groups in VALID_NAI. Significant expression differences were also observed in MEL_NAI,
however the correlation with clinical response was not conserved, possibly arising from splice varia-
tion. (B) Twelve genes differentially expressed in VALID_PROG that were significant in MEL_PROG.
The colour-coding for clinical response values is shown on the right-hand side. Heatmap colours
represent Blom-transformed gene expression from yellow (highest) blue (lowest), values in the key
represent a log scale.

2.1. IMMUNETS: Modelling Immune Cell Differentiation and Activation

We built IMMUNETS with data from the IRIS study, which assayed key immune
cell types in multiple states of activation and differentiation [19]. There are five different
IMMUNETS networks, each focused upon a broad class of immune cells (T cells, B cells,
NK cells, Monocytes, and Dendritic cells). Each network connects genes that are both
differentially regulated in immune cell function and are highly correlated within the
cell grouping for which the network was constructed. Differentially expressed genes
were identified either between or within immune cell types and were used to construct
correlation networks for T cells (T-net: 3069 genes, 54,108 edges), Natural Killer (NK) cells
(NK-net: 5944 genes, 65,426 edges), B cells (B-net: 4626 genes, 105,349 edges), Monocytes
(Mono-net: 2867 genes, 55,150 edges) and Dendritic cells (Dend-net: 5071 genes, 58,995
edges). Together, the five correlation networks cover 9668 genes in total, of which 3262
are found in only one network and 2820 are present in exactly two of the five networks
(Table 1, Supplementary Data File S2). The representation scope of IMMUNETS is defined
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by regulation in the 214 samples assayed by IRIS for the five immune cell networks [19],
and our network inference protocol. For example, the secreted cytotoxic proteases termed
granzymes are key effectors of cytotoxicity found in T-net (GZMB, GZMM, GZMH) and
NK-net (GZMA, GZMB, GZMK, GZMM). GZMA and GZMK are present in NK-net, which
aligns with single-cell analysis of NK cells [24]; however, these genes are also important
in T cell functions [25]. Genes found only in one of the five IMMUNETS networks have
highly coordinated expression changes in IRIS for the corresponding cell grouping, but the
genes may also be expressed in other cell types. Therefore, a gene is only represented in
IMMUNETS if it shares a pattern of expression with at least one additional gene across the
cell states assayed in IRIS. IRIS contains a further 14 samples for plasma cells; however, the
protocol applied here did not produce a network for these samples, and therefore plasma
cells are not represented in IMMUNETS.

Table 1. Unique pairwise overlap between IMMUNETS cell types. Counts are shown for genes
that are represented in only one (diagonal) or exactly two (off-diagonal) IMMUNETS networks. For
example, the top left value (for T cell, T cell) identifies 233 genes present only in the T-net network,
the value of 357, immediately below, corresponds to genes found in T-net and NK-net but not present
in any other IMMUNETS network.

T Cell NK Cell B Cell Monocyte Dendritic Cell

T cell 233 - - - -
NK cell 357 935 - - -
B cell 131 535 1022 - -
Monocyte 58 171 120 233 -
Dendritic cell 143 750 333 222 839

NK-net is the largest overall (2748 genes) and has the greatest overlap with the other
networks, for example, sharing 751 and 535 genes with Dend-net and B-net, respectively.
B-net has the most unique genes (n = 1022) and the highest average degree (22.8). We
derived focus networks for each immune cell grouping by taking the IMMUNETS genes
given in Table 1 as input for the NetNC algorithm and using HumanNet as the reference
network [26,27] (Figure 2, Supplementary Figures S1–S3 and Data Files S2 and S3). As
expected, the focus networks have connections between clusters that are annotated with
biologically related terms. For example, the T cell focus network (Figure 2A) connects
clusters for ‘cell cycle process’, ‘DNA repair’, ‘DNA replication’, and ‘RNA metabolic
process’; similarly, there are connections in the B cell network between ‘ion transport’ and
‘transmembrane transport’ clusters.

The T cell focus network covers biological processes required for growth and prolif-
eration (cell cycle, RNA metabolism, translation), including key T cell proliferation genes
(Figure 2A). Indeed, proliferation is central to normal T cell biology [28]. A ‘regulation
of lymphocyte proliferation’ (RegLP) cluster has seven genes that were found only in the
T-net correlation network. The RegLP cluster includes molecules associated with p38 MAP
kinase signal transduction (MAPK11, MAP2K6) [29] and cell surface glycoproteins CD8
and CD28 that have well-known roles in antigen-induced activation [30]. Other cell surface
glycoproteins and interleukins identified in the RegLP cluster are important for a range of
T cell functions, for example, the following: CD7 is a differentiation marker for CD8+ T
cells [31]; CD5 downregulation potentiates T-cell antitumour activity [32]; IL4, IL13, IL5
locate in a cytokine gene cluster on chromosome five and regulate multiple immune cell
functions, including in T helper 2 cells [33,34]; IL17A is produced by activated T cells where
it may impact many processes, notably promoting tumour progression [35,36]. Signalling
through CD3 is important for T cell activation [37]. However, we note that CD3 subunits
are found in multiple immune cell types in IMMUNETS, including T cells, but do not
appear in the T cell focus network, which only contains genes from T-net and at most one
other IMMUNETS network. In particular, CD3E and CD3EAP are represented in three
IMMUNETS networks and therefore were not input to NetNC for the T cell focus network
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generation. Most of the genes in the T cell focus network (76%, 141/185) are coordinately
regulated within other immune cell types in IMMUNETS, especially NK cells. On the
other hand, approximately half of the genes in the B cell focus network (Figure 2B) are
found exclusively in the B-net correlation network (51%, 409/797). These B cell-regulated
genes cover a wide range of cell activities, including ABC transporters, ADAM proteases,
cytochrome P450 family, growth factor receptors, solute transport, and many others (Sup-
plementary Data File S1). A ‘B cell activation’ cluster contains genes involved in B cell
antigen receptor complex (BCR) signaling; for example, CD79A, CD79B, CD19, CD22, CD20
(MS4A1), and transcription factors important for B cell development, including BCL11A,
PAX5 [38–43]. An ‘inflammatory response’ cluster contains IL-20 subfamily interleukins
IL22 and IL22RA1, IL20RA, and IL10RB, which form receptor complexes that bind IL22 or
IL26 [44]. IL22 is important for B cell recruitment to tertiary lymphoid structures [45], and
depletion of B cells reduces IL22 production, which can stimulate cell behaviour typical of
aggressive tumours [46,47]. Therefore, the production of IL22 by B cells might be part of a
positive feedback loop driving poor prognosis in immunoedited tumours.

2.2. IMMUNETS Genes Stratify Melanoma Patients by Response to Nivolumab

Genes found in at most two of the five IMMUNETS cell types were investigated as
candidate biomarkers in a cohort of advanced melanoma patients [20] (Figure 3). Data were
analysed from tumour biopsies taken before treatment with nivolumab, an inhibitor of
PD-1 [20,21]. The following two cohorts were considered: patients previously treated with
ipilimumab that had progressed (MEL_PROG, n = 26) and those that were ipilimumab-
naive (MEL_NAI, n = 23). Both cohorts were part of the NCT01621490 trial, which took
patients that were refractory, intolerant to, or had refused standard therapy [48]. MEL_NAI
and MEL_PROG, respectively, had a total of 30 and 136 differentially expressed IMMUNETS
genes between nivolumab responders and non-responders (Mann-Whitney test q < 0.05,
2-fold change). Therefore, we identified differentially regulated immune cell genes that
correlate with response to nivolumab in vivo and stratified treatment response in unsu-
pervised clustering (Figure 3). A ‘good response’ cluster emerged in MEL_NAI and in
MEL_PROG, respectively, containing 0/6 and 2/8 patients with progressive disease (PD).
Similarly, a ‘poor response’ cluster in each cohort, respectively, has 1/17 and 0/18 patients
with either a complete or partial response. We reasoned that immunotherapy response
mechanisms would likely be represented within IMMUNETS genes that are upregulated in
patients who responded to nivolumab. In contrast, a range of biological processes which
drive or correlate with tumour aggressiveness could be upregulated in non-responders,
and so appear a less attractive pool for the discovery of candidate immunotherapy response
biomarkers. Therefore, we focus on genes upregulated in tumours that respond well to
therapy because we expect that these are more pertinent to molecular control of therapy
response.

Immune tolerance is mediated by the expression of PD-L1 in many cell types and
PD-1 in T cells, which is therefore critical in preventing autoimmune disease [49]. While
nivolumab binds to and inactivates PD-1 [21], PD-L1 expression is a more informative
predictor of clinical response than PD-1 [50,51]. PD-1 and its ligand PD-L1 did not pass
the criteria for inclusion in IMMUNETS and therefore do not appear in Figure 3. The
genes found only in the T-net network and upregulated in the MEL_NAI nivolumab re-
sponse group are CENPI and PIP5K1A. Upregulation of the CENPI gene that functions in
cell proliferation typically confers poor prognosis in colorectal cancer [52,53]. Therefore,
elevated CENPI levels in nivolumab-responsive patients likely reflect expression in tumour-
associated immune cells; indeed, proliferation is integral to an effective T cell immune
response [54]. This correlation of immune proliferation with immunotherapy response is
suggestive of pre-existing immune activation that is enhanced by immunotherapy, aligning
with reports that responsive patients have inflamed or ‘immune hot’ tumours [55]. PIP5K1A
functions in phosphatidylinositol signalling, which impacts multiple cell processes, in-
cluding T cell activation [56]. Thus, the elevation of PIP5K1A in nivolumab responders
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is also consistent with ICI treatment acting to enhance pre-existing T cell inflammation.
Our results also highlight genes regulated in B cell and dendritic cell biology that correlate
with response to nivolumab in treatment-naive melanoma. For example, the cytokine
GREM1 was found only in B-net and upregulated in the MEL_NAI treatment response
group. GREM1 is a BMP antagonist and VEGF agonist and is downregulated in human B
cells exposed to the toxin TCDD, which causes immunosuppression in addition to other
harmful effects [57,58]. The presence of G protein gamma subunit GNG4 in the B-net
and upregulation with response to therapy suggests a role in B cell activation, consistent
with the importance of G-protein coupled receptor signalling in the humoural immune
response [59]. NRP2 is one of several genes found in Dend-net that are upregulated in the
nivolumab response group. While NRP2 is expressed in multiple immune cell types, it is
important for dendritic cell maturation, migration, and T cell activation [60]. Overall, our
results in MEL_NAI align with reports that ‘immune hot’ status correlates with response to
ICIs [55] and suggest candidate nivolumab response biomarkers.

A favourable treatment response in MEL_PROG correlates with upregulation of
CD247, the zeta chain of CD3, which forms a complex with the T cell receptor (TCR)
and is central to the T cell immune response [37,61]. CD247 is expressed in a wide range of
leukocytes [62] and is regulated in dendritic cells as well as NK cells in IMMUNETS. CD8α,
produced from CD8A, is a canonical marker for the T cell population involved in tumour
surveillance and forms a heterodimer with CD8β, or may homodimerise [63]; CD8A is
the only gene exclusive to T-net that correlates with nivolumab response in MEL_PROG.
Genes that correlate with MEL_PROG therapy response and are found in only one IM-
MUNETS cell type include the following: ADAM28 from B-net, which controls lymphocyte
transendothelial migration [64]; the hydroxysteroid 11β dehydrogenase type 1 (HSD11B1)
from Mono-net that regulates the resolution of the inflammatory response, including in
macrophages, and correlates with CD4+ T cell activation [65]; IL33 from Dend-net that
stimulates CD8+ T cell antitumour responses and downregulates PD-1 [66]. Therefore,
our analysis with IMMUNETS suggests that dendritic cells could be a source of IL33 in
antitumour immunity, although IL33 is also produced by other cell types [67]. Several
genes upregulated in the MEL_PROG good response group can drive tumour aggres-
siveness when expressed in cancer cells. For example, ADAM28 expression in tumour
epithelium is associated with poor prognosis, but is also important for T cell mobilisation
to metastatic lesions [68,69]. Therefore, upregulation of otherwise poor prognosis genes in
the good response group suggests that their correlation with ICI therapy response arises
from regulation within immune cells rather than within tumour epithelial cells.

DAVID analysis of the immune-regulated genes from IMMUNETS that are differen-
tially expressed between therapy response groups in MEL_NAI and MEL_PROG (Table 2,
Supplementary Tables S1 and S2) was consistent with results from NetNC (Figure 2) and
the heatmap (Figure 3). Broadly, MEL_NAI has significant functional clusters for processes
involved in cell proliferation, while the differences in treatment response for MEL_PROG
are associated with immune regulation, including T cell signalling and activation. As noted
above, the proliferation genes that correlate with a good response to treatment in MEL_NAI
are regulated in IMMUNETS and therefore may reflect immune cell proliferation in the
tumour. The difference between the mechanisms of therapy response in the two cohorts is
underlined by the four IMMUNETS genes significantly changed in both cohorts. These are
the following: HOMER1, a scaffolding and signal transduction protein that regulates T cell
activation [70,71]; CENPI, a centromere protein that is essential for mitosis [72]; DEPDC1,
a cancer-related gene that is required for cell cycle progression [73]; TRIP13, a regulatory
protein involved in mitosis and DNA repair [74]. Interestingly, these shared genes have
opposite expression patterns between response and non-response groups in MEL_NAI and
MEL_PROG; for example, HOMER1 correlates with good response in MEL_NAI and poor
response in MEL_PROG (Figure 3).
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Table 2. Summary of DAVID clusters for immune-regulated, differentially expressed genes in
MEL_NAI (n = 30) and MEL_PROG (n = 136). Clusters with significant enrichment score (≥1.3) are
shown.

Dataset Biological Descriptor (s) Score Genes

MEL_NAI Cell cycle, Cell division, Mitosis 1.90
BUB1, ERCC6L, CENPF, CENPI, NCAPG2,
KIF14, BIN3, DTL, DEPDC1, PIP5K1A,
CDH1, AKR1C3, STAP2

MEL_PROG Immunoreceptor signaling, ITAM 2.17 CD247, CD79A, CD3G, CD72, CD4

MEL_PROG Immunity, Adaptive Immunity 1.81 CD180, CD79A, SKAP1, CD4, CD209,
C1RL, MAP3K5, CD8A, C3, CLU

MEL_PROG Regulation of immune response,
including T cell receptor signaling 1.79

CD247, SKAP1, CD4, CD8A, CD3G, PRF1,
ITGAL, TRAC, C3, CD72, CD79A,
KIRREL1, PTK7

MEL_PROG Immunity, Innate Immunity 1.44 CD180, CD79A, SKAP1, CD4, CD209,
C1RL, MAP3K5, CD8A, C3, CLU

MEL_PROG Complement pathway 1.38 C1RL, C3, CLU, CD180, CD209, MAP3K5

MEL_PROG Antigen processing and
presentation 1.33 CIITA, CD79A, CD4, CD8A, GZMA, C3

2.3. Investigation of Candidate Nivolumab Response Biomarkers Expression in an Independent
Cohort

We investigated candidate nivolumab response biomarkers identified in IMMUNETS
and regulated in MEL_NAI and MEL_PROG in independent melanoma cohorts (Figure 4).
Gene expression data were available from melanoma biopsies for patients receiving
nivolumab, some of whom had previously received ipilimumab [22]; defining two co-
horts, VALID_NAI (immunotherapy-naïve, n = 30) and VALID_PROG (immunotherapy
progressed, n = 21). The differentially expressed IMMUNETS genes from MEL_NAI and
MEL_PROG were respectively evaluated in VALID_NAI and VALID_PROG. HOMER1 is
the only gene differentially expressed in both MEL_NAI and VALID_NAI, although with
an opposite relationship to treatment response. In MEL_NAI, HOMER1 expression was
higher in nivolumab responders, but higher in non-responders for VALID_NAI. HOMER1
has multiple splice variants with distinct roles, for example in neurological studies where
overexpression of HOMER1A or HOMER1C respectively blunt or enhances response to
cocaine [75–77]. This splice variation might explain the difference in the relationship
of HOMER1 expression values to nivolumab response in MEL_NAI and VALID_NAI,
due to overlapping probes for HOMER1A/HOMER1C. All of the candidate biomarkers
from MEL_PROG that were validated in VALID_PROG had the same expression pattern
with respect to nivolumab response. Nivolumab response genes that were significant in
MEL_PROG and validated in VALID_PROG function in B cell and T cell biology as well
as immune cell recruitment. For example, the ADAM28 metalloproteinase binds to α4β1
integrin and enhances lymphocyte adhesion to endothelial layers and is important for T cell
mobilisation [64,68,69]. Validated B cell genes that correlate with therapy response include
the following: TENT5C, a non-canonical poly(A) polymerase that is highly expressed in
activated B lymphocytes [78]; CD79A, a component of the BCR [79]; CIITA, a transcrip-
tional activator that induces MHC gene expression [80,81]; IKZF3, a transcription factor
that regulates B cell differentiation and function [82]. Validated T cell genes that correlate
with therapy response were as follows: IL2RB, an IL-2 receptor subunit [83]; CD247, which
forms part of the T cell receptor–CD3 complex [84] and CD4, a T-cell surface glycoprotein
that functions as a coreceptor for antigen-MHC class II complex on T cells [85]. Two kinases,
CABYR and MAG2, were downregulated in nivolumab responders in both MEL_PROG
and VALID_PROG, as follows: CABYR is a phosphorylation-dependent calcium-binding
protein expressed in naïve and memory B cells [86]; MAGI-2 is a scaffolding protein and
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membrane-associated guanylate kinase [87] that interacts with the tumour suppressor
PTEN [88].

2.4. Candidate Immune Biomarkers Risk Stratify Melanoma by Overall Survival

We sought to identify candidate ICI response biomarkers from genes that are coregu-
lated in IMMUNETS because they may capture the status of tumour-associated immune
cells, which is the primary substrate for ICI therapy. For this purpose, we took the IM-
MUNETS genes that were differentially expressed in treatment response groups in both
the discovery and validation datasets (BIO_13). The prognostic value of BIO_13 was ex-
plored in melanoma TCGA data (n = 390, MEL_TCGA) [23] with univariate analysis of
patient groups defined using unsupervised clustering of BIO_13 expression values (Table 3).
Following correction for multiple hypothesis testing [89], 10/13 genes were significant
in MEL_TCGA (log-rank q < 0.05). Recruitment criteria ensured that MEL_TCGA com-
prised only patients with no previous systemic treatment, excepting adjuvant interferon
≥ 90 days prior, and previous work reports a correlation between immune activation
and good prognosis in this cohort [23]. In agreement with these findings, ten selected
IMMUNETS genes that are upregulated in both MEL_PROG and VALID_PROG therapy
response groups also portend a good prognosis in our analysis of MEL_TCGA (Table 3,
Supplementary Figure S5). BIO_13 was further validated in a metastatic melanoma co-
hort (n = 174, MIXED_ICI) who received either single or combined immune checkpoint
inhibitors and was drawn from four separate studies [90–93]. MIXED_ICI includes diverse
primary tumour sites, for instance, the uveal tract and skin are primary tumour sites in the
Samuel et al. study [90]. Patients in MIXED_ICI also received several different immune
checkpoint inhibitors; for example, in the Gide et al. study, 63 patients received anti-PD1
immunotherapy (Nivolumab/Pembrolizumab) and 57 patients were treated with combined
anti-PD1 and anti-CTLA-4 (Ipilimumab with Nivolumab/Pembrolizumab) [93]. Six of
the BIO_13 genes (ADAM28, CD247, IKZF3, CIITA, CD79A, IL2RB) were significant in
MIXED_ICI (q < 0.05, Table 3). Therefore, we delineate factors that are regulated in immune
cells, which correlate with response to ICI therapy and may drive tumour clearance in
other melanoma treatment pathways.

Table 3. Univariate risk stratification of MEL_TCGA (n = 390) and MIXED_ICI (n = 174) by overall
survival with BIO_13. Log-rank test q-values are shown for risk stratification with groups defined by
regularised Gaussian mixture modelling (please see methods). Asterisks (*) indicates q-value < 0.05.

Gene MEL_TCGA MI × ED_ICI

ADAM28 1.161 × 10−4 * 1.230 × 10−2 *
TGM2 2.368 × 10−3 * 4.607 × 10−1

CD247 8.566 × 10−5* 3.450 × 10−2 *
CD4 1.161 × 10−4 * 3.757 × 10−1

IKZF3 4.098 × 10−6 * 9.800 × 10−4 *
TENT5C 2.593 × 10−4 * 2.015 × 10−1

BTG2 4.684 × 10−2 * 4.607 × 10−1

HOMER1 9.643 × 10−2 1.055 × 10−1

CIITA 2.150 × 10−4 * 6.800 × 10−4 *
CABYR 5.233 × 10−1 2.015 × 10−1

CD79A 1.617 × 10−3 * 6.800 × 10−4 *
IL2RB 1.161 × 10−4 * 2.670 × 10−3 *

MAGI2 1.018 × 10−1 5.875 × 10−1

Stepwise feature selection with Akaike information criterion (AIC) regularisation was
performed for Cox proportional hazards modelling [94,95] of overall survival, taking as
input the BIO_13 genes that were significant in univariate analysis, as well as age and
tumour stage. A significant top-scoring model (tumour stage, age, CIITA, IKZF3, CD247,
TENT5C; likelihood ratio test p = 2 × 10−7) was returned for the MEL_TCGA training set
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(n = 255, TCGA_TRAIN). In all of the selected features, tumour stage, age, CIITA, and
IKZF3 were individually significant in the multivariate model (p < 0.05, Table S4) and taken
forward into the four-factor model shown in Table 4, although IKZF3 was not significant.
The Cox models satisfy the proportional hazards assumption (Supplementary Tables S3 and
S5). The multivariate four-factor model (tumour stage, age, CIITA, IKZF3) was validated
in the MEL_TCGA independent validation data (n = 135, TCGA_VALID). The high-risk
and low-risk groups have strikingly different overall survival in TCGA_VALID (Figure 5,
log-rank test p = 0.00012). Regularisation with AIC ensures that the selected molecular fea-
tures add information over and above the clinical variables analysed. As expected, a higher
tumour stage and age confer a worse prognosis. CIITA is a transcriptional activator of
MHC genes [80,81,96]. MHC molecules play an essential role in activating effector immune
cells such as T lymphocytes. CIITA is shared between B-net and Dend-net and correlates
with lower risk (HR 0.83) in the multivariate model. It may be a surrogate marker for the
activation status of antigen-presenting dendritic cells and B cells in the tumour microen-
vironment during melanoma progression. In contrast, the expression of IKZF3 encoding
the transcription factor Aiolos correlates with a higher risk (HR 1.20) [97]. IKZF3 regulates
apoptosis by inducing Bcl-2, inhibits pre-B-cell expansion by suppressing c-Myc expres-
sion [98,99] and is constitutively expressed throughout NK-cell ontogeny [100]. While
IKZF3 is associated with a higher risk in the TCGA melanoma cohort (Table 4, Supplemen-
tary Table S4), it also correlates with treatment response in MEL_PROG and VALID_PROG
(Figures 3 and 4). These results suggest that IKZF3 marks immune cell populations that
both support immunotherapy responses and are characteristic of aggressive tumours.

Table 4. Cox proportional hazards model for overall survival in the training data (TCGA_TRAIN,
n = 255). Asterisks (*) indicates p-value < 0.05. This model was taken forwards for validation in
TCGA_VALID (Figure 5).

Prognostic Factor p-Value Hazard Ratio 95%
Confidence Interval

Age 0.00492 * 1.0189 1.00–1.03

Tumour stage 0.017 * 1.3205 1.05–1.66

CIITA 0.012 * 0.8602 0.76–0.97

IKZF3 0.976 1.0015 0.91–1.11
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Figure 5. Performance of the four-factor prognostic model in blind test data (TCGA_VALID, n = 135).
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stage, CIITA, and IKZF3. The x-axis shows time in months. The high-risk and low-risk groups have
significantly different overall survival (p = 0.00012).
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3. Discussion

We present five immune cell networks (IMMUNETS) which model gene coregulation
in T cells (T-net), B cells (B-net), NK cells (NK-net), monocytes (Mono-net), and dendritic
cells (Dend-net) (Table 1, Supplementary Data File S2). IMMUNETS provide a resource for
understanding the pathways and protein complexes that control immune cell activation
and differentiation, including systems immunology approaches [101]. Our analysis is
complementary to tissue-based resources such as ImSig [102]. We took IMMUNETS genes
that are coregulated in at most two cell types as a basis for the derivation of immune cell
focus networks, which capture key biological processes regulated within each immune cell
type, including immune-specific gene clusters (Figure 2, Supplementary Data Files S1 and
S3). We find that regulation of proliferation is a major theme within the T cell focus network
and where 76% of genes are overlapping with at least one other cell type in IMMUNETS.
In contrast, the majority of genes in the B cell focus network are not covered by another
IMMUNETS cell type; a wide range of cell functions found only in the B-net are present in
the B cell focus network; BCR complex signalling, for example.

Analysis with IMMUNETS genes revealed correlated nivolumab responses in two
advanced melanoma cohorts (Figure 3). The MEL_PROG cohort had progressed on ip-
ilimumab, whereas MEL_NAI had not received prior immune checkpoint therapy [20].
The biological mechanisms underlying nivolumab response differ between the two co-
horts, clearly demonstrated in functional clustering (Table 2); MEL_NAI immunotherapy
response genes broadly function in proliferation, while the response in MEL_PROG is char-
acterized by immune regulation. Genes that associate with poor prognosis when expressed
in epithelial tumour cells, for example, drivers of proliferation, were upregulated in patients
who responded well to nivolumab; therefore, these genes most likely mark immune cell
proliferation in our analysis. Results evidence differences in the tumour microenvironment
for ipilimumab-naive and ipilimumab-progressing patients, as well as in differing ICI
response trajectories. Thirteen genes that were both immune-regulated in IMMUNETS and
differentially expressed in MEL_NAI or MEL_PROG (BIO_13) were validated in pseudo-
matched independent cohorts (VALID_NAI, VALID_PROG) [22]. Twelve genes in BIO_13
were discovered and validated in treatment-progressed melanoma cohorts (MEL_PROG,
VALID_PROG respectively); these twelve genes have functions important for leukocyte
recruitment, B cell and T cell biology. Reassuringly, validated immune response genes that
were upregulated in nivolumab responders include key T cell genes, for example, CD4 and
CD247. Additionally, our findings emphasise the importance of B cells in immunotherapy
success. For example, a BCR component, CD79A, in BIO_13, was upregulated in nivolumab
response. Our results also align with an independent study of a combined anti-CTLA-4 and
anti-PD-1 immunotherapy cohort [93] where five of the BIO_13 genes (CD247, ADAM28,
CIITA, IKZF3, and CD79A) correlated with immunotherapy response.

Eleven of the BIO_13 genes correlate with the overall survival of TCGA melanoma
patients [23] in univariate analysis, in line with the established importance of immune reg-
ulation in melanoma [103]. Furthermore, in a mixed immunotherapy cohort (MIXED_ICI),
six of the BIO_13 stratified patients with diverse treatments (ADAM28, CD247, IKZF3,
CIITA, CD79A, IL2RB). Only 5% of TCGA melanoma patients were identified as stage
IV (metastatic), while MIXED_ICI represents metastatic melanoma patients [23,90–93].
Multivariate regularised Cox regression with stepwise feature selection produced a model
containing the variables age, tumour stage, CIITA, and IKZF3 with significant p-values
individually (Supplementary Table S4), demonstrating added value for these genes over the
clinical variables examined, and its significance was validated in a testing set of MEL_TCGA.
Higher expression of the CIITA transcription factor correlates with lower risk; CIITA func-
tions to upregulate MHC genes, and so lower CIITA expression might facilitate immune
evasion [81,104]. IKZF3 encodes Aiolos, a transcription factor that is important in B lympho-
cyte development [100]. Increased IKZF3 expression confers higher risk in the multivariate
model, which is the opposite to the relationship with survival from univariate analysis
(Supplementary Figure S5). The Programmed Death Ligand 1 (PD-L1) is one of two ligands
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of the Programmed Cell Death 1 (PD-1) protein, which is expressed in a variety of cells,
including tumours, where it functions to modulate immune reactions [105]. PD-L1 is an ap-
proved predictive biomarker for immune checkpoint therapy in multiple cancers, including
bladder cancer and breast cancer, and also has prognostic significance [106–108]. Our anal-
ysis excluded PD-L1 in the IMMUNETS network construction step because it did not pass
the stringent statistical tests that were designed to select markers specific to the individual
immune cell types analysed. PD-L1 was significant in univariate survival analysis with
both the MEL_TCGA and MIXED_ICI cohorts (Supplementary Figure S6). Overall, survival
analysis in further independent cohorts aligns with the expected importance of immune
genes in melanoma progression [13] and specifically identifies significant prognostic value
for six of the BIO_13 genes. Our analysis with IMMUNETS has facilitated the identification
of candidate biomarkers in multiple diverse melanoma cohorts and suggests mechanisms
whereby different immune cell types in the tumour microenvironment could influence
disease progression. Further investigation of candidate biomarkers presented in our study
would be valuable across multiple ethnically diverse cohorts in order to advance precision
medicine across a breadth of different populations.

4. Methods
4.1. Co-Expression Gene Networks and Focus Network construction

The Immune Response In Silico (IRIS) immune cell gene expression data were obtained
from the Gene Expression Omnibus database, accession GSE22886 [19]. ANOVA with
Benjamini-Hochberg false discovery rate correction was applied to determine significantly
differentially expressed genes across the full IRIS dataset (q < 0.01) [89,109]. Pearson
correlation was calculated separately for each leukocyte dataset and only highly correlated
significant gene pairs were retained (r > 0.9, q < 0.01). Therefore, the correlation values
reflect co-regulation within, rather than between, each of the five cell types. We note that
correlation-based distance measures perform well in separating functionally related genes
from randomly selected pairs [110]. Genes from each of the five correlation networks for
the regulated genes were taken as input to the NetNC algorithm if they were found in no
more than two IMMUNETS networks; in order to produce five focus networks. NetNC
analysis used the ‘FTI’ setting and HumanNet as the base network [26,27]. The five focus
networks output from NetNC-FTI were visualized by Cytoscape and annotated with the
BiNGO plugin using a significance threshold of q < 0.05 [111,112] (Supplementary Data
File S3), all of the expressed genes in IRIS [19] were taken as the background gene list for
enrichment analysis.

4.2. Differential Expression Analysis of IMMUNETS Genes in Melanoma Treatment Response

RNA-seq data from melanoma patients who received treatment with nivolumab
were obtained as FPKM values from the Gene Expression Omnibus database, accession
GSE91061 [20]. Low-expression genes were filtered by using filterByExpr function in
R [113]. Filtering low-expression genes has been demonstrated to be essential in analysing
RNA-seq data to avoid sampling noise and enhance differentially expressed gene detection
sensitivity [114]. Density plots were used to determine the threshold for filtering (Figure S4).
Filtering parameters were 1 for minimum count and 25% for minimum proportion. We
analysed forty-nine patients with complete clinical data, in the following two cohorts:
individuals without prior immune checkpoint inhibitor treatment (MEL_NAI, n = 23)
and those who had received ipilimumab but had progressed (MEL_PROG, n = 26). The
response of patients to nivolumab was defined by the Response Evaluation Criteria in Solid
Tumors (RECIST) version 1.1. Complete response (CR) and partial response (PR) indicate
the elimination or decrease in lesions; stable disease (SD) indicates no significant increase or
decrease; progressive disease (PD) represents significant tumour growth [115]. We classified
CR and PR as ‘response’ and PD as ‘non-response’; patients with SD were not assigned to
either group. The 5898 IMMUNETS genes that were shared by no more than two of the
five cell types and measured in the melanoma RNA-seq data [20] were taken forwards into
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differential expression analysis between the response and non-response groups. Differential
expression was assessed separately in MEL_NAI and MEL_PROG (Mann-Whitney test
q < 0.05, 2-fold change), with appropriate false discovery rate correction [89]. Expression
values for the differentially expressed genes were Blom transformed before hierarchical
clustering with Euclidean distance and visualisation as a heatmap [116]. Differentially
expressed genes for MEL_NAI and MEL_PROG were analysed separately using DAVID
with the 5898 IMMUNETS genes (above) as the reference gene list, Functional Annotation
Clusters with enrichment score > 1.3 were taken as significant [117].

4.3. Validation of Candidate Immunotherapy Response Genes in an Independent Cohort

Significant differentially expressed genes (DEGs) from MEL_NAI and MEL_PROG
were validated in an independent advanced melanoma cohort (n = 51) [22]. Response to
nivolumab was available according to the RECIST [115] criteria. Transcriptome sequencing
data was obtained as transcripts per million (TPM) values and low-expression genes had
already been excluded in the downloaded data [22]. Patients with no prior exposure to im-
munotherapy (VALID_NAI, n = 30) or who had progressed on ipilimumab (VALID_PROG,
n = 21) were taken for validation of DEGs in MEL_NAI, MEL_PROG respectively (Mann-
Whitney q < 0.05, 2-fold change). Validated genes were visualized with Euclidean distance
hierarchical clustering on the heatmap after Blom transformation [116].

4.4. Evaluation of Candidate Biomarkers for Risk Stratification of Melanoma

For univariate analysis, risk groups were defined by Gaussian mixture modelling
(GMM) with unsupervised selection of cardinality [118] using the BIO_13 gene expression
values in MEL_TCGA and MIXED_ICI (n = 174) [90–93]. Log-rank test p-values with
false discovery rate correction [89] identified significant genes (q < 0.05). Multivariate
analysis was conducted with genes that were significant in univariate analysis along
with tumour stage and age. Tumour stage was coded numerically, translating from the
ordinal values of the TNM staging system for melanoma [119]. Stages I, Ia, Ib, and Ic were
assigned a value of 1; stages II, IIa, IIb, and IIc a value of 2; stages III, IIIa, IIIb, and IIIc
a value of 3; stage IV was assigned a value of 4. MEL_TCGA data was split into training
(n = 255, TCGA_TRAIN) and validation data (n = 135, TCGA_VALID) where the proportion
of patients across AJCC tumour stages was held constant between TCGA_TRAIN and
TCGA_VALID. We selected features for Cox proportional hazards modelling using stepwise
backwards elimination and Akaike Information Criterion (AIC) regularisation [94,95]; the
four significant features (Age, stage, CIITA, IKZF3) were taken forwards into a new model
trained on TCGA_TRAIN. The proportional hazards assumption was evaluated using the
Grambsch-Therneau test [120] (Supplementary Table S3). Risk groups in TCGA_VALID
were defined by the score threshold that partitioned TCGA_TRAIN into two similarly sized
groups (n = 128, n = 127).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12060958/s1. Figure S1: Natural Killer (NK) cell focus
network, Figure S2: Monocyte focus network, Figure S3: Dendritic cell focus network, Figure S4.
Density plot of pre-filtered RNA-seq data from 49 melanoma patients, Figure S5: Survival analysis
of BIO_13 in melanoma, Figure S6. Kaplan-Meier plots of PD-L1 univariate model. Table S1:
Functional Annotation Clustering for MEL_NAI, Table S2: Functional Annotation Clustering for
MEL_PROG, Table S3: Grambsch–Therneau test of the proportional hazards assumption, Table S4.
Cox proportional hazards model for overall survival in MEL_TCGA training set (n = 255) selected by
AIC. Supplementary Data File S1: IMMUNETS focus networks Cytoscape session, Supplementary
Data File S2: IMMUNETS networks, Supplementary Data File S3: BiNGO results for IMMUNETS
focus networks.
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