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Abstract: Estrogen and progesterone receptors being present or not represents one of the most
important biomarkers for therapy selection in breast cancer patients. Conventional measurement by
immunohistochemistry (IHC) involves errors, and numerous attempts have been made to increase
precision by additional information from gene expression. This raises the question of how to fuse
information, in particular, if there is disagreement. It is the primary domain of Dempster–Shafer
decision theory (DST) to deal with contradicting evidence on the same item (here: receptor status),
obtained through different techniques. DST is widely used in technical settings, such as self-driving
cars and aviation, and is also promising to deliver significant advantages in medicine. Using data
from breast cancer patients already presented in previous work, we focus on comparing DST with
classical statistics in this work, to pave the way for its application in medicine. First, we explain how
DST not only considers probabilities (a single number per sample), but also incorporates uncertainty
in a concept of ‘evidence’ (two numbers per sample). This allows for very powerful displays of
patient data in so-called ternary plots, a novel and crucial advantage for medical interpretation.
Results are obtained according to conventional statistics (ODDS) and, in parallel, according to DST.
Agreement and differences are evaluated, and the particular merits of DST discussed. The presented
application demonstrates how decision theory introduces new levels of confidence in diagnoses
derived from medical data.

Keywords: biomarkers; decision theory; gene expression; breast cancer; receptor status; precision
medicine; personalized medicine; data science; mathematical oncology

1. Introduction
1.1. Biomarkers: A Cornerstone of Personalized Medicine for Breast Cancer

Biomarkers gain importance in selecting treatments optimized and personalized to
the individual needs of patients, as envisaged in personalized medicine [1–4]. Breast cancer
treatment has also benefited from personalized medicine, via molecular subtyping [5–8], the
Gene expression Grade Index [9], pathway analysis and networks [10–14] and a plethora
of expression signatures [15–22], dedicated to special questions and issues. Well-known
indicators supporting therapy selection for breast cancer are PAM50 [23,24], PREDICT [25],
and the Genomic Grade Index [26].
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For breast cancer, the HER2-status (human epidermal growth factor receptor 2) of a
patient is one of the most important prognostic factors [27,28]. The majority of patients
(75–85%) are HER2-negative and, therefore, have a much better prognosis. In this work, we
focus on these and disregard HER2-positive ones, in order to increase the homogeneity of
data and precision of predictions. HER2 is routinely determined by immunohistochemistry
(IHC). Numerous studies covered the significance and accuracy of estimates [29–36]. In a
previous paper [37], we described, in detail, how to select patients who are HER2 negative
to a high degree of confidence by using the ODDS method. We draw on the very same
database in the current work.

Among HER2-negative patients, the hormone receptor status of estrogen (ER) and
progesterone (PGR) are of focal importance. Clinically, patients are considered receptor-
positive if at least one of both receptors (ER or PGR) is found positive. Since hormone
receptors play a role in promoting cancer, hormone therapy has to be part of an effective
treatment. In patients without metastases, hormone therapy may even render chemother-
apy unnecessary.

However, if the receptor status is accidentally estimated as false positive, hormone
treatment will not work and the patient may be deprived of life-saving chemotherapy.
Therefore, numerous studies have evaluated the quality of receptor assessment [38,39] and
revealed a possible rate of misclassification of 10% to 20% [40–42]. Although standard
operation procedures have been implemented [40,43,44], the improvement of precision is
still desirable [45].

One possibility is adding information from gene expression. Some approaches merely
used visual inspection to set cut-points between positive and negative [46], some used fre-
quency distributions of expression values [42,47], random sampling [48] or fuzzy rules [49]
and other methodological advances in gene expression analysis [50–57].

We have elaborated and improved the above approaches [58,59] by introducing
Dempster–Shafer decision Theory (DST) [60] into personalized medicine [37]. This is
promising, since decision theory has demonstrated its benefit in many technical settings,
such as self-driving cars [61–63], observing a driver’s vigilance [62], aviation security [64,65]
and also in some medical applications, such as image-based decisions [66], diagnosis of
prostate [67] and breast cancer [68]. The specific merit of DST is the capability to handle
unclear or contradicting information obtained from different sources about the same issue
in question (e.g., receptor status). DST is able to combine multifactor and even diverging
evidence, according to exact algorithms, with the potential to increase the precision of
medical decisions.

In the present work, we draw on data from our previous paper [37] and elaborate on
the key differences between classical statistics and DST. Ternary plots are introduced for
the interpretation of probabilities, in case of contradicting evidence—a potent concept from
technics is tailored to the needs of personalized medicine.

1.2. Basic Concepts of Decision Theory for Hormone Receptor Status Assessment

DST is a general theory for reasoning with uncertainty [69]. It starts with the outcome
of measuring processes, rather than from ‘true values’ present in reality, as conventional
statistics does. We present DST in a mode with only two statuses, ‘+’ and ‘−’. This simplifies
the formalism significantly.

Suppose some continuous variable, d, is being measured (e.g., d =̂ deepness of IHC-
staining). Conventional statistics would derive a single number from d, the probability p
for the receptor being positive, given the measured value of d. Consequently, 1 − p would
be the probability for being negative.
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DST provides two numbers to characterize possible predictions based on measuring d:

• The belief α(d), gives the probability (weight) that, upon measuring this particular
value of d, the prediction ‘positive’ can be made based on the quality of measurement
(classification ‘with full right’).

• The uncertainty θ(d), characterizing the probability (weight), that the prediction ‘posi-
tive’ could root in chance and not in quality of measurement. Belief and uncertainty
taken together yield the total probability (termed ‘plausibility’) to obtain the prediction
‘positive’, given the measured value of d (α + θ = pl).

• Finally, a third number can be computed from belief and uncertainty, the probability
β(d) for yielding the prediction ‘negative’ by quality of measurement, given d. We
always have: α + θ + β = 1; hence, β can be computed from α and θ.

In the special case of only two statuses, as considered here, the triple (α, β, θ) is
equivalent to a piece of ‘evidence’. DST not only yields probabilities for a positive versus
negative outcome, but, additionally, incorporates the uncertainty of prediction [70]. This
represents a significant surplus and motivates its introduction into personalized medicine.

A second advantage of DST is its capability of merging evidence from different sources
(see also Figure 1 and the graphical abstract). In our case these will be:

• For estrogen (ER)

m Receptor status predicted from expression of the receptor gene
m Receptor status predicted from expression of a co-gene

n Combining above evidence by Dempster evidence combination rule
⊕D

m Receptor status predicted from IHC

n Combining evidence from gene expression and IHC by Yager evidence
combination rule ⊕Y

• For progesterone (PGR)

m Receptor status predicted from expression of the receptor gene
m Receptor status predicted from expression of a co-gene

n Combining above evidence by Dempster evidence combination rule
⊕D

m Receptor status predicted from IHC

n Combining evidence from gene expression and IHC by Yager evidence
combination rule ⊕Y

• Hormone receptor status is finally obtained by combining the statuses of estrogen and
progesterone using a multiplicative combination rule ⊗
Details and references regarding the above workflow will be given in the following

and are illustrated in Figure 1.

1.3. Ternary Plots: A Novel View on Evidence in Personalized Medicine

Another important point of the current work is to introduce so-called ‘ternary plots’,
as a tailored tool to display not only probabilities, but also the uncertainties involved. We
will evolve the framework step by step, to contrast conventional statistics against DST,
thereby featuring the surpluses of DST.



J. Pers. Med. 2022, 12, 570 4 of 37
J. Pers. Med. 2022, 12, x FOR PEER REVIEW 4 of 39 
 

 

 
Figure 1. Combining evidence. For estrogen (ESR) and progesterone (PGR) similar procedures are 
applied to obtain receptor statuses. First evidence for receptor gene and co-gene are combined by 
Dempster rule (⊕D) and the result is combined with evidence for IHC by Yager rule (⊕Y). Finally, 
receptor statuses for estrogen and progesterone are combined (⊗) to obtain hormone receptor sta-
tus. For detailed illustration of evidence combination (Sections 2.2.1–2.2.4 and Appendix A.6) we 
start with a ‘receptor gene sub-model’ indicated by the dashed polygon.  
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and the concept of responsibility functions are not expanded in the methods sections but 
recapitulated in the Appendix A.1–A.3. These computational procedures equal those de-
tailed in our previous work [37]. Moreover, the methods’ Sections 2.2.1–2.2.4 as well as 
Appendix A.6 are restricted to a single gene for didactical reasons (see the ‘receptor gene 
sub-model’ in Figure 1). In a thorough primary introduction, it seems important to 
demonstrate in detail how evidence from gene expression and IHC intermingle and even-
tually produce remarkable patterns in the data. These patterns demonstrate the dominant 
impact of IHC status on final predictions. Figures in Sections 2.2.1–2.2.4 and Appendix 
A.6 exemplify intricate features on data for estrogen but methods are general and identi-
cally apply to all other parts of the ‘full’ model.  

In the final sections of methods (Section 2.3), we return to the full model shown in 
Figure 1, including co-genes. Line-like patterns are smeared out and do not remain visible 

Figure 1. Combining evidence. For estrogen (ESR) and progesterone (PGR) similar procedures are
applied to obtain receptor statuses. First evidence for receptor gene and co-gene are combined by
Dempster rule (⊕D) and the result is combined with evidence for IHC by Yager rule (⊕Y). Finally,
receptor statuses for estrogen and progesterone are combined (⊗) to obtain hormone receptor status.
For detailed illustration of evidence combination (Sections 2.2.1–2.2.4 and Appendix A.6) we start
with a ‘receptor gene sub-model’ indicated by the dashed polygon.

2. Materials and Methods
2.1. Preliminaries on the Structure of the Methods’ Section

For the sake of readability and to present this paper self-contained, data cleansing
and the concept of responsibility functions are not expanded in the methods sections but
recapitulated in the Appendices A.1–A.3. These computational procedures equal those
detailed in our previous work [37]. Moreover, the methods’ Sections 2.2.1–2.2.4 as well
as Appendix A.6 are restricted to a single gene for didactical reasons (see the ‘receptor
gene sub-model’ in Figure 1). In a thorough primary introduction, it seems important
to demonstrate in detail how evidence from gene expression and IHC intermingle and
eventually produce remarkable patterns in the data. These patterns demonstrate the
dominant impact of IHC status on final predictions. Figures in Sections 2.2.1–2.2.4 and
Appendix A.6 exemplify intricate features on data for estrogen but methods are general
and identically apply to all other parts of the ‘full’ model.

In the final sections of methods (Section 2.3), we return to the full model shown in
Figure 1, including co-genes. Line-like patterns are smeared out and do not remain visible
as clearly as in the single-gene case. This full model was used to obtain the actual results
for the patient cohort (Section 3).

2.2. Estrogen Receptor Gene Sub-Model
2.2.1. Logistic Regression as Prerequisite

Receptor status is related to gene expression (xExpr) as follows: The responsibility
function for positive receptor status, r+, defines the probability for a positive receptor
status, given the expression value xExpr. Likewise, r− relates to negative receptor status.
We used logistic regression

r+
(
xExpr|c0, c1

)
=

exp(c0 + c1xExpr)
1+exp(c0 + c1xExpr)

r−
(

xExpr |c0, c1

)
= 1− r+

(
xExpr|c0, c1

) (1)

and estimated the parameters c0 and c1 against IHC-measurements, separately for each
gene and co-gene, for results see Table A2. Figure 2 shows the responsibility function r+ for
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positive estrogen (red dashed curve). r−, for negative estrogen (blue dashed curve), is based
on the same regression coefficients, see Equation (1). A similar analysis was performed for
progesterone, see Figure A1 for graphics and Table A2 for numerical values.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 5 of 39 
 

 

as clearly as in the single-gene case. This full model was used to obtain the actual results 
for the patient cohort (Section 3). 

2.2. Estrogen Receptor Gene Sub-Model 
2.2.1. Logistic Regression as Prerequisite 

Receptor status is related to gene expression (xExpr) as follows: The responsibility 
function for positive receptor status, r+

, defines the probability for a positive receptor 
status, given the expression value xExpr. Likewise, r −

 relates to negative receptor status. 
We used logistic regression 

( ) ( )
( )

( ) ( )
Expr

0 1 Expr
Expr 0 1

0 1 Expr

0 1 Expr 0 1

exp
r ,

1 exp

r , 1 r ,

c c x
x c c

c c x

x c c x c c

+

− +

+
=

+ +

= −

 (1)

and estimated the parameters 
0c  and 

1c  against IHC-measurements, separately for 
each gene and co-gene, for results see Table A2. Figure 2 shows the responsibility function 
r+ for positive estrogen (red dashed curve). r−, for negative estrogen (blue dashed curve), 
is based on the same regression coefficients, see Equation (1). A similar analysis was per-
formed for progesterone, see Figure A1 for graphics and Table A2 for numerical values. 

 

 
Figure 2. Logistic regression to obtain responsibility functions for decision theory evidence (data for 
estrogen, gene ESR1). Red-shaded area: distribution of gene expression for receptor positive (ac-
cording to IHC) computed from density kernel estimates [71–73]. Blue shaded area: gene expression 
for negative IHC. IHC receptor status ( IHC 1+  , IHC 0−  ) was subjected to logistic regres-
sion versus gene expression (xExpr). Responsibility functions for receptor positivity, r+, (dotted red 
curve) and r− (dotted blue) were thus obtained. It will be shown later (Equation (4)) that r+ has to be 
multiplied by an upper limit, Exprα̂ , to obtain the actual belief αExpr, see the dashed red curve. Like-

wise for βExpr (dashed blue). Uncertainty: ochre. For a given expression value, e.g., xExpr = 10, one can 
read off belief in positive (α), belief in negative (β) and uncertainty (θ). Note that analog concepts 
apply to any other gene of the full model. 

  

Figure 2. Logistic regression to obtain responsibility functions for decision theory evidence (data
for estrogen, gene ESR1). Red-shaded area: distribution of gene expression for receptor positive (ac-
cording to IHC) computed from density kernel estimates [71–73]. Blue shaded area: gene expression
for negative IHC. IHC receptor status (IHC+1, IHC−0 ) was subjected to logistic regression versus
gene expression (xExpr). Responsibility functions for receptor positivity, r+, (dotted red curve) and r−
(dotted blue) were thus obtained. It will be shown later (Equation (4)) that r+ has to be multiplied by
an upper limit, α̂Expr, to obtain the actual belief αExpr, see the dashed red curve. Likewise for βExpr

(dashed blue). Uncertainty: ochre. For a given expression value, e.g., xExpr = 10, one can read off
belief in positive (α), belief in negative (β) and uncertainty (θ). Note that analog concepts apply to
any other gene of the full model.

2.2.2. Evidence of Receptor Status Based on Expression of Receptor Gene

Based on logistic regression, gene expression measurements lend themselves to derive
evidence of receptor status according to Dempster–Shafer decision theory [70]. In the
following, we formulate rules and principles in general terms of ‘gene expression’, xExpr,
to keep notation general (later on, the first example with real data will specifically refer
to estrogen receptor diagnostics. Even later, the very same procedure will be applied
to progesterone).

Assume the variable gene expression, xExpr, is prognostic for receptor status. Given a
measurement of xExpr, DST attributes two independent numbers, as outlined below:

• αExpr
(

xExpr
)
: the belief (sometimes also called ‘degree of belief’ or ‘credibility’ [74]) for

receptor status being positive on good grounds or by quality of the measuring method
that has yielded xExpr;

• βExpr: the belief (probability) for receptor status being non-positive (i.e., negative) on
good grounds or by quality of the measuring method;

• θExpr is a third quantity considered: the probability that the receptor status is uncertain.

α, β and θ are also called ‘masses’ of the respective outcomes. They are by definition
larger than or equal to zero (αExpr ≥ 0, βExpr ≥ 0, θExpr ≥ 0), and if a mass equals zero, in
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our setting zero corresponds to the ‘empty set’, i.e., an outcome that will never be found [75].
Masses always add up to unity, and hence we talk about normalized mass functions [76]:

αExpr + βExpr + θExpr = 1 (2)

Hence a third number is in fact redundant (may always be computed from the other
two). Decision theory even considers a fourth quantity, called plausibility; it is also redun-
dant but intuitive and useful:

plExpr = αExpr + θExpr = 1− βExpr (3)

plExpr indicates the probability of a positive status being plausible, given the measure-
ment xExpr as is. The plausibility of a given outcome sums up everything either supportive
or neutral, but excludes everything advocating the opposite outcome. The exactly opposite
outcome is represented by βExpr.

The output of above procedure is the evidence
(
αExpr, βExpr

)
for receptor status, based

on the expression (xExpr,) of a gene (in general); data in Figure 2 were shown for the receptor
gene of estrogen (ESR1). Note that finally, in the ‘full’ model, 4 such pieces of evidence
(4 pairs of numbers) will be obtained: (1) for the estrogen receptor gene and (2) its co-gene;
(3) for the progesterone receptor gene and (4) its co-gene.

The beliefs in receptor positive, αExpr, and negative, βExpr, may be obtained from
gene expression alone, xExpr, as demonstrated above. Doing so, maximum expression
corresponds to a responsibility function r+(xExpr) close to 1, see Figure 2. However, not
even a gene expression that large can guarantee that the receptor is truly positive. Hence,
the belief in positivity, αExpr, actually must be less than 1.

We chose to model this fact by a factor, α̂, called ‘upper limit for belief’ in Table A2.
For details of calculation see Appendices A.4 and A.5.

All in all we obtain the belief in receptor positivity after measuring xExpr:

αExpr
(
xExpr

)
= α̂Expr · r+

(
xExpr|c0, c1

)
βExpr

(
xExpr

)
= β̂Expr · r−

(
xExpr|c0, c1

) (4)

αExpr is represented by the increasing solid red curve in Figure 2, βExpr by the declin-
ing blue one. The remaining uncertainty, θExpr, is easily computed from reformulating
Equation (2)

θExpr = 1− αExpr − βExpr (5)

and is shown as ochre curve in Figure 2. The two numbers (αExpr, βExpr) are collectively
called ‘evidence’ of receptor status, given a measurement of the continuous variable ‘gene
expression’, xExpr. They enrich the information given by a single number, the probability p,
known from conventional statistics, quantifying the chances of receptor statuses, a similar
procedure applies to the receptor gene of progesterone, see Figure A1.

2.2.3. Combining Evidence from Receptor Gene Expression and IHC

To further increase precision of receptor status diagnostics, evidence from gene expres-
sion (αExpr, βExpr) and evidence from IHC (αIHC, βIHC) are combined by so-called ‘evidence
combination rules’ (ECR). DST offers several such rules [69,74], out of which we consider
two, the ‘Dempster–Shafer’ ECR, ⊕D, and the Yager ECR, ⊕Y [77,78]. We chose the Yager
rule, as it more easily accommodates contradicting items of evidence, see also Section 4.4
in the discussion. Performing some algebra, as detailed in our previous work [37], one
finally obtains:

αRez = αExprαIHC + θExprαIHC + αExprθIHC
βRez = βExprβIHC + θExprβIHC + βExprθIHC
θRez = θExprθIHC + αExprβIHC + βExprαIHC

(6)
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As IHC-evidence is made up of two sets of constants, combination with gene expres-
sion yields two sets of curves, one for IHC− and one for IHC+, see Figure 3.
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Figure 3. Combining receptor gene expression and IHC. Taking the estrogen receptor as an example,
we demonstrate the principles of combining evidence from gene expression and IHC by the Yager
evidence combination rule. (a) For IHC-negative estrogen receptor status. (b) For IHC-positive
estrogen receptor status. Dotted lines represent beliefs merely based on gene expression, without
considering IHC estimates (identical to the beliefs in Figure 2). Beliefs for gene expression combined
with IHC estimates (via Yager evidence combination rule) are shown in solid lines. Clearly, a negative
IHC estimate (a) strengthens the belief in negative (solid blue runs above dotted blue) and weakens
the belief in positive (solid red runs below dotted red) for a given expression value, xExpr. As
opposed, a positive IHC estimate (b) strengthens the belief in positive (red) and weakens the belief in
negative (blue).

A definite decision for positive receptor status is obtained if the combined evidence
exceeds 0.5 (α > 0.5). In that case the belief in positive surmounts the sum of both other
beliefs (β + θ ≤ 0.5) and dominates. Hence, the dotted line α = 0.5 represents a decision
border and will be analogously outlined in the following figures.

2.2.4. Ternary Plots of Evidence for Personalized Medicine: A Primer

Note that belief, plausibility and uncertainty are not independent but always sum
up to unity for a given sample, see Equation (2). This mathematical property allows for
a special graphic display, called ‘ternary plot’, as follows. When plotting these data in
an ordinary 3-dimensional scatter plot with coordinates (α, β, θ), points of all samples lie
within a single plane (of evidence), see Figure 4a. This is due to Equation (2), which—in
mathematical terms—is nothing else than the equation of a plane in three dimensions [79].
This ‘plane of evidence’ may be viewed in orthogonal projection (https://en.wikipedia.
org/wiki/Orthographic_projection (accessed on 26 March 2022)) which still contains all
information but fits into two dimensions and is called ‘ternary plot’, see Figure 4b.

Ternary plots are widely used in technology and science but have only marginally en-
tered the medical sciences [80]. They might also gain importance in personalized medicine
but deserve some skillful understanding. Hence we provide a short primer.

A ternary plot is powerful whenever three quantities (hence the name ‘ternary’) add
up to a constant, for each individual considered. For example, a biological fluid (say
milk) may be composed of water, protein and fat (three components) and nothing else.
Clearly, the percentages of water, protein and fat must then add up to 100%. For a set of
milk samples, these percentages may be visualized by points in a 3D scatter plot, such as
Figure 4a. If we consider mixtures of different composition (e.g., skimmed, normal and
fat milk and many other possible kinds) and plot their corresponding 3D points, we will
be surprised to realize that all these points lie within a single flat plane in 3-dimensional
space. The reason is a mathematical one: if coordinates always add up to a given constant,

https://en.wikipedia.org/wiki/Orthographic_projection
https://en.wikipedia.org/wiki/Orthographic_projection
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this is the very representation of a plane in mathematical terms [79]. This may be fruitfully
exploited for personalized medicine as follows:
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Figure 4. 3D plot and ternary plot of evidence for estrogen receptor status. (a) ordinary 3D plot.
(b) ternary plot. Orthogonal projection of the 3D scatter plot (as indicated) in panel (a) yields the
ternary version, panel (b). In each corner, one piece of evidence dominates and both others are
zero, e.g., (α = 1, β = 0, θ = 0 in the lower right corner). Note that the baseline of the ternary runs
along the diagonal through the bottom plane of the 3D plot: along this bottom side, α runs from
zero to 1 from left to right and β in reverse (right to left), hence sides of a ternary triangle do not
represent usual ordinate axes, please refer to the tutorial (2.2.4). Midway points of triangle sides
mark decision boundaries, e.g., α = β = 0.5 between positive and negative. Triangular areas contain
definite results, either positive (α ≥ 0.5, shaded red) or negative ones (β ≥ 0.5, shaded blue). The
kite-shaped area (white) represents undecided status according to DST. For each value of ERIHC see
labeling (ER+

IHC, ER−IHC, ERu
IHC ) evidence lies on a specific straight line due to mathematical reasons;

samples with known IHC are shown as dots, samples with unknown IHC as circles. Coloring of
samples according to ODDS method, not DST. Samples positive according to ODDS (red) may well lie
within the undecided region according to IHC, etc.
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What is true for three components of a substance (milk) is also true for evidence
composed of three numbers, α, β and θ, since they also add up to unity due to Equation (2).
Hence, points of evidence (α, β, θ) for any single patient, lie within the same (2-dimensional)
plane in 3D. This plane always lies in the same, specific position and orientation, for the
following reason: the point (α = 1, β = 0, θ = 0), represents a valid point of evidence (adding
up to unity) and must be part of the plane. Therefore, the plane cuts the α–axis at α = 1, see
Figure 4a. Likewise, the plane also cuts both other axes at β = 1 and θ = 1, respectively. This
uniquely defines an equilateral triangle in the 3D coordinate system, see Figure 4a.

Even though the plane of evidence lies embedded in a 3D coordinate system, it is
by itself just a 2-dimensional object, as every flat plane is. Therefore, without any loss of
information regarding the location of points (representing evidence) we may perform an
orthogonal projection along the heavy arrow shown in Figure 4a. This yields a so-called
‘isometric view’. The triangle, viewed face-on, appears equilateral, now in two dimensions,
see Figure 4b.

A ternary plot does not have its axes at right angles, as ordinary plots do. To read off
the coordinates of a point from such a ternary plot, several methods are available, out of
which we propose the following (altitude method), illustrated in Figure 5:
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Figure 5. Principles of a ternary plot: obtaining coordinates by the altitude method. Decision border
α ≥ 0.5: ‘positive to the best of our knowledge’ or ‘positive is more likely than anything else’.

Each of the three components of evidence, e.g., α, the ‘belief in positive’, has its own
scale, see the dashed heavy line in orange; it starts on the left with α = 0 at a right angle
from a triangle’s left side and runs towards the opposing corner, where α = 1 (indicating
‘surely positive’). See also the scale with numerical values aside. The two other scales, for β
and θ, are defined analogously (not shown for simplicity).

Given some point within the ternary plot (see the heavy black dot in Figure 5), corre-
sponding evidence components (α, β, θ) can be read off as follows. Note the lines being
drawn perpendicular to each side of the triangle (light dashed lines in red, blue and beige)—
they represent the axes for quantification. Values α, β, θ (red, blue, and beige, respectively)
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can be read off from the corresponding axis’ scale. In this example (Figure 5), the plotted
point of the evidence produces a reading of α ∼= 0.22.

Note also the following intriguing features of this ternary plot:

• Parallel lines at right angles with one axis represent constant values for the respective
variable (as with ordinary right-angle axes). In particular, the line crossing the α–axis
at α = 0.5 (dotted red) discriminates points with α ≤ 0.5 (left upper) from those with
α > 0.5 (towards lower right corner), and hence represents a decision border; points
right of this border are predicted ‘positive’, since their evidence for positive is greater
than for all other options (‘negative’ and ‘uncertain’) taken together.

• Decision borders segregate subsets of samples. For example, all samples within the
triangle in the lower right of α = 0.5 (shaded light red) comprise samples predicted
positive. Similarly, the subsets of negative and uncertain samples may be defined, see
Figure 4b.

• In each corner one piece of evidence totally dominates, assuming a value of unity
(α = 1: ‘surely positive’; β = 1: ‘surely negative’ and θ = 1: ‘totally uncertain’).

• Conversely, the footing point of each axis (e.g., α = 0) means that there is no indication
whatsoever for the prediction at opposing corner. For example, α = 0 along the left side
of the triangle, means that there is no indication whatsoever for a ‘positive’ prediction.
All evidence is shared between ‘negative’ and ‘uncertain’ (β and θ). In this case
β + θ = 1.

• A special role is played by the triangle’s bottom edge, running from β = 1 (left) towards
α = 1 (right): for each sample along this line uncertainty θ equals zero, and all evidence
is shared between belief in positive (α) and belief in negative (β), e.g., α = 0.6 and
β = 0.4, while θ = 0. One may legitimately ask: “Does this mean that the prediction
was made for sure?”. Since α > 0.5 and dominates both other options, we consider this
prediction clearly positive. However, α = 0.6 is no more than a probability and not
that much larger than the probability of the opposite outcome, β = 0.4. In reality, the
outcome may well result in a negative prediction. If θ = 0, evidence masses revert back
to ordinary probabilities: p+ = 0.6 for positive and hence p− = 0.4 for negative, without
indicating any uncertainty about the estimates of these two numbers. Thus, for θ = 0,
decision theory’s evidence coincides with ordinary probabilities. In DST terminology
the evidence is said to turn ‘Bayesian’ [74].

• In general, for θ > 0, decision theory not only gives estimates for probabilities (α, β)
but additionally indicates the uncertainty of those (θ). It hence offers a wider scope of
evidence, valuable in particular for personalized medicine.

Ternary plots allow for a highly transparent comparison of our two classification
methods (ODDS versus DST) for each single sample:

• The location of the point indicates the prediction according to DST shown by the respective
area: red triangular area for positive (+), blue for negative (-) and the white, kite-shaped
area for inconclusive (inc).

• At the same time, coloring of points indicates prediction according to ODDS. For most
samples, both predictions match. For some samples however, they differ, thus perfectly
outlining the contrast between the two prediction methods.

Although ternary plots may seem somewhat unusual for medical application, they
offer the unique capability to display three variables in two dimensions, provided their sum
is constant, which is true for evidence and many other variables. We think it worth the
effort to introduce ternary plots into the field of personalized medicine. They are the most
adequate tool for quantitatively presenting evidence, and may in the future represent a
cornerstone of personalized medicine.



J. Pers. Med. 2022, 12, 570 11 of 37

2.3. Full Model: Evidence, Based on IHC, Genes, Co-Genes

In Sections 2.2.1–2.2.4 and Appendix A.6 description was restricted to the receptor
gene (no co-gene considered) in order to explain more transparent details. Now we revert
to the whole model, including co-genes, see the flow chart of evidence in Figure 1.

First, we supplement estrogen expression evidence (αGen, βGen) by evidence (αCo, βCo)
from its co-gene, AGR3; the very same procedure outlined in Sections 2.2.1 and 2.2.2 is
carried out to obtain these results, see Table A2.

2.3.1. Progesterone Evidence

Numerical results of the logistic regression for progesterone are shown in Table A2,
for responsibility functions, see Figure A1. The co-gene of progesterone, incidentally, was
estrogen, see Table A2.

2.3.2. Combining Evidence Form Genes and Co-Genes

Next, evidence from genes and co-genes are combined by the Dempster Evidence
Combination Rule (⊕D) to obtain the joint evidence from gene expression:(

αExpr, βExpr
)
= (αGen, βGen)⊕D (αCo, βCo) (7)

In detail, the Dempster rule [77] reads:

αExpr =
αGenαCo + θGenαCo + αGenθCo

1 − αGenβCo − βGenαCo

βExpr =
βGenβCo + θGenβCo + βGenθCo

1 − αGenβCo − βGenαCo

θExpr = 1− αExpr − βExpr =

= θGenθCo
1−αGenβCo−βGenαCo

(8)

Combination of gene and co-gene is carried out along the same lines for estrogen
and progesterone.

2.3.3. Combining Evidence from Gene Expression and IHC

As outlined in Section 2.2.3 for single gene case, we now combine the full gene evidence
for estrogen with its IHC counterpart according to the Yager rule, see Equation (6), to obtain
(αER, βER, θER). The very same is done for progesterone, yielding (αPGR, βPGR, θPGR).

2.3.4. Combining Estrogen and Progesterone Receptor Status

In the step to follow, evidence for different targets—estrogen and progesterone—will
be combined. Clinically, a breast cancer patient is considered receptor positive, if either the
estrogen ‘OR’ the progesterone receptor (or both) is/are positive, and treatment is assigned
accordingly. Corresponding decision borders will be shown below (Figure 6). While clinical
SOP (Standard Operating Procedure) draws on a crisp logical ‘OR’, as implemented in
the ODDS-method, DST offers a wider scope of possibilities. Evidence for estrogen (αESR,
βESR, θESR) and progesterone (αPGR, βPGR, θPGR) may be combined to obtain evidence for
the overall hormone status (αH, βH) as follows [37]:

αH = αESR + αPGR − αESRαPGR
βH = βESR · βPGR

(9)
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Figure 6. Hormone receptor status classified by ODDS versus Decision Theory. The same patient 
data were classified twice, along ODDS (left panels) and DST (right panels), for comparison. Data 
are shown as open circles if at least one IHC status is unknown. All other IHC statuses are shown 
as dots. Panels (a,b) include all 2519 patients of the cohort while panels (c,d) only display those 95 
patients with predictions diverging between ODDS and DST, for easy comparison. Note the legends 
highlighting those patient samples which benefit from enhanced information or safety, respectively, 
conferred by DST. (Left panels): sample data arranged according to orthogonal ODDS score axes, 
but colored according to DST prediction. Light blue area: negative by ODDS. Light red area: posi-
tive. White L-shaped area: inconclusive by ODDS. (Right panels): sample data arranged according 
to ternary DST evidence axes, but colored according to ODDS prediction. Light blue triangle: nega-
tive by DST. Light red triangle: positive by DST. White kite-shaped area: inconclusive by DST. 
(Lower panels): only patients with diverging predictions are shown. Note two important groups 
marked by legends, corresponding to two cells in Table 1. 
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Predictions via conventional statistics (ODDS) and decision theory (DST) are directly 
compared for the whole patient cohort in Figure 6. To address clinical relevance, we high-
light patients for which DST adds information (see legend), as well as those for which DST 
increases safety (see legend). For compactness, we abbreviate notation of the IHC receptor 

Figure 6. Hormone receptor status classified by ODDS versus Decision Theory. The same patient
data were classified twice, along ODDS (left panels) and DST (right panels), for comparison. Data
are shown as open circles if at least one IHC status is unknown. All other IHC statuses are shown
as dots. Panels (a,b) include all 2519 patients of the cohort while panels (c,d) only display those
95 patients with predictions diverging between ODDS and DST, for easy comparison. Note the
legends highlighting those patient samples which benefit from enhanced information or safety,
respectively, conferred by DST. (Left panels): sample data arranged according to orthogonal ODDS
score axes, but colored according to DST prediction. Light blue area: negative by ODDS. Light red
area: positive. White L-shaped area: inconclusive by ODDS. (Right panels): sample data arranged
according to ternary DST evidence axes, but colored according to ODDS prediction. Light blue
triangle: negative by DST. Light red triangle: positive by DST. White kite-shaped area: inconclusive
by DST. (Lower panels): only patients with diverging predictions are shown. Note two important
groups marked by legends, corresponding to two cells in Table 1.
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Table 1. Prediction by DST (Dempster–Shafer decision Theory) versus ODDS (conventional statistics).
Predictions negative (neg), inconclusive (inc) and positive (pos). No samples are classified as fully
contradicting (positive versus negative). Differences arise from samples predicted ‘inconclusive’:
144 (5.7%) via DST compared to 69 (2.7%) via ODDS. DST predicts more conservatively than ODDS.
Cells with numbers in bold represent patients with ‘gain of information (10)’ and ‘gain of safety (40)’,
respectively. As an overall measure of agreement we computed Cohen’s kappa: κ = 0.9287 [81].

Number of Samples
DST

neg inc pos sum

ODDS

neg 999 45 0 1044

inc 0 59 10 69

pos 0 40 1366 1406

sum 999 144 1376 2519

percentage
DST

neg inc pos sum

ODDS

neg 39.7% 1.8% 0.0% 41.5%

inc 0.0% 2.3% 0.4% 2.7%

pos 0.0% 1.6% 54.2% 55.8%

sum 39.7% 5.7% 54.6% 100.0%

3. Results
3.1. Contrasting Predictions by ODDS versus DST

Predictions via conventional statistics (ODDS) and decision theory (DST) are directly
compared for the whole patient cohort in Figure 6. To address clinical relevance, we
highlight patients for which DST adds information (see legend), as well as those for which
DST increases safety (see legend). For compactness, we abbreviate notation of the IHC
receptor status, e.g., ER−IHC, PGR+

IHC(−,+) or ER+
IHC, PGRu

IHC(+, 0), with ‘0’ representing
‘undefined’. Likewise, we denote predictions (via ODDS or DST) as ‘neg‘, ‘pos’ and ‘inc’,
with ‘inc’ representing ‘inconclusive’.

Note the following features in Figure 6:

• In the left panels, samples are geometrically located according to ODDS scores, but
color-coded according to DST prediction.

• Decision borders in ODDS can be directly displayed in an orthogonal, 2-dimensional
plot of ‘scores’, see Figure 6, left panels. Decision borders are defined by specific
values for each receptor score (ER score, PGR score), see our previous paper [37], and,
hence, appear as vertical lines for estrogen and as horizontal lines for progesterone,
respectively. The rectangular region (in faint blue) denotes receptor status predicted
definitely negative, the L-shaped stripe (no color) denotes inconclusive status, and the
L-shaped stripe (in faint red) definitely positive predictions.

• ODDS scores incorporate IHC evidence in an additive fashion. Each of the nine
possible IHC statuses (+ +, − −, + −, − +, + 0, 0 +, − 0, 0 −, 0 0) merely differ in shifts
along the respective ODDS coordinate (ER score, PGR score). ODDS decision borders
are, hence, valid for any combination of IHC statuses.

• In the right panels, samples are geometrically located according to DST evidence,
but color-coded according to ODDS.

• Decision borders in DST are most appropriately displayed in ternary plots of evidence,
see Figure 6, right panels. Decision borders run along evidence α = 0.5 and β = 0.5,
respectively, which appear as straight lines in a ternary plot. DST evidence also
incorporates IHC information, and decision lines, hence, also represent unique borders
in the ternary plot, valid for any combination of IHC statuses (+ +, − −, + −, − +, + 0,
0 +, etc.).

• In the ternary plot, DST evidence for subsets of patient samples appear in polyg-
onal areas. In fact, these areas root in respective combinations of IHC statuses for
estrogen and progesterone (+ +, − −, + −, etc.), as will be scrutinized in the appendix,
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for those interested in mathematical details. Indeed, these polygonal areas are gen-
eralizations of those simple straight lines already seen with single gene expression
data (Figure 4). Since each receptor may assume three values (+, −, 0), there are 32 = 9
possible IHC status combinations for two receptors. Some IHC statuses give rise to
very distinct arrangements of samples, such as ‘lines’. Other IHC combinations give
rise to more polygonal-shaped areas. Details will be discussed below. Data samples
along these lines or polygons are seen to cross DST decision borders (dashed lines
at α = 0.5 and β = 0.5, respectively). For example, if such a subset of samples crosses
from inconclusive to decided, this indicates that IHC on its own was inconclusive, but
adding evidence from (increasing) gene expression finally rendered a decision:

m A stripe of red points originates within the DST-inconclusive, kite-shaped area
and protrudes into the positive triangle.

m The stripe of blue points originates in the DST-inconclusive, kite-shaped area
and protrudes into the negative triangle.

Crossing decision borders for given IHCs underpins the importance of information
from gene expression being added.

3.2. Clinical Relevance of DST versus ODDS

Agreement and divergence between ODDS and DST are summarized in Table 1. Note
that both methods never definitely contradict each another (positive versus negative predic-
tions for a given sample); see the zero counts in the corners off diagonal. Differences only
occur for samples predicted as inconclusive. In 59 cases, both methods agree in yielding ‘in-
conclusive’. However, DST reports almost equal numbers of samples from ODDS-negative
(45) and ODDS-positive (40) as DST-inconclusive, ending up with 144 inconclusive samples.
Conversely, ODDS declares none from DST negative and only 10 from DST-positive as
ODDS-inconclusive, ending up with just 69 samples rendered as inconclusive. In general,
agreement between ODDS and DST is fine, with 999 + 59 + 1366 = 2424 out of 2519 sam-
ples (96.2%), as reflected by the high inter-rater agreement coefficient, Cohen’s kappa:
κ = 0.9287 [81].

Besides good overall agreement, possible advantages of DST may be seen twofold,
cf. the cells outlined with bold face in Table 1. The very same groups of patients are
highlighted with legends in Figure 6:

• For 10 patients, DST predicted a positive receptor status, whereas ODDS had predicted
‘undecided’. Based on the additional information provided by DST, these patients
may, upon careful reassessment, be candidates for milder therapies, possibly without
chemotherapy (chemo). We, therefore, labelled this group with ‘adding information’
in Figure 6, panel (c).

• For 40 patients, DST predicted ‘undecided’, whereas ODDS had predicted ‘positive’.
‘Undecided’ severely questions abstaining from chemo and calls for a re-assessment at
least. We, therefore, labelled this group with ‘increasing safety’ in Figure 6, panel (d).

Hormone receptor diagnostics—in comparison with ODDS and DST—was evaluated
regarding its impact on survival. Figure 7 shows survival, free from recurrence, for several
relevant subgroups listed in Table 1. Acronyms in the legend of Figure 7 correspond to
those in Table 1, and figures in the legend give the numbers of patients with survival
data available and number of events (i.e., recurrences) in parenthesis. Naturally, the two
largest groups are those that ODDS and DST found in agreement (neg/neg, pos/pos)—they
exhibit rich survival curves, with many patients and numerous events. Subgroups with
disagreement between ODDS and DST (fortunately) contain only few patients, reflecting the
fact that, already, ODDS was an advanced, accurate prediction method. The point of largest
possible merit is the subgroup pos/inc: 40 patients considered positive by ODDS could
have been deprived of chemotherapy, although being eventually negative. Within this
group, survival data were available only for seven, relegating statistical testing meaningless.
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Figure 7. Survival free from recurrence. Kaplan–Meier estimates were obtained for several patient
subgroups in Table 1. Legend acronyms refer to cells in Table 1 as ODDS/DST, figures give numbers
of patients with survival data available and number of events (i.e., recurrences) in parenthesis. The
curve ‘IHC+’ refers to patients diagnosed receptor positive according to current clinical standards,
i.e., positive for estrogen or progesterone (or both).

For comparison, the IHC+ group was also evaluated, incorporating patients receptor
positive either for estrogen OR progesterone, see Figure 7. Such patients are considered
receptor positive and treated accordingly by ‘conventional’ clinical therapy allocation.
Compared to these, our pos/pos group enjoyed definitely superior survival (log-rank
p = 0.03). Since all patients considered in our study were actually treated according to
conventional, clinical ‘IHC+’, we might speculate as follows: this actual, former treatment
as ‘IHC+’ was confirmed post hoc in our study (by pos/pos) as correct and, hence, these
patients experienced much better survival.

Over the years, hormone receptor status has become the most important predictive
parameter, which allows for an identification of endocrine-sensitive invasive tumors. The
use of hormone-receptor-targeted treatment strategies is associated with an approximately
50% reduction in recurrences and a reduction in breast-cancer-attributed deaths by ap-
proximately 30%, and receptor status assessment has, therefore, become the single most
important biomarker in early and advanced breast cancer. A correct classification of
endocrine sensitivity by receptor measurement is, therefore, critical for individualized
treatment, since falsepositive results lead to overtreatment and therapy-associated side
effects, which range from menopausal symptoms, infertility and depression, to bone loss
and an increase in fractures, and other significant side effects. False negative results, on the
other side, subject patients to under-treatment and a profound worsening of the long-term
outcome. These profound clinical consequences are contrasted by a number of technical
uncertainties: the hormone receptor status is presently assessed by immunohistochemistry,
and different standards in tissue fixation, varying protocols, the myriad of commercially
available antibodies, inter-observer variability and other technical issues compromise an
objective assessment. Moreover, while some labs use a cut-off of 10% of hormone receptor



J. Pers. Med. 2022, 12, 570 16 of 37

positive cells, others prefer a cutoff of 1%, thus, limiting the value of the current gold
standard in receptor assessment. Within this context, prediction models, such as DST and
ODDS, can add to further ascertainment of the receptor status. The decision of which
model to use could be factored into the decision tree and allow for a more personalized
treatment, in the sense that the more conservative DST could be applied in older and frail
patients, in whom the significant side effects of endocrine therapy need to be balanced
against competing mortalities and might lead to an omission of endocrine therapy, and
an additional IHC, performed by an independent laboratory could be helpful in decision
making and in potentially sparing patients from therapy-associated side effects. By contrast,
ODDS with 0.4% inconclusive rates might be more appropriate in mainstream assessment,
since the need for independent reassessment can be reduced.

3.3. Specific Differences in Prediction between ODDS and DST

As noted above, definite predictions were never seen contradicting between ODDS
and DST. However, decisions deemed definite in ODDS were rendered inconclusive by DST
and vice versa. This becomes evident by contrasting predictions coded by location versus
predictions coded by color in Figure 6:

• Within the plane of ODDS scores (left panel), the L-shaped area (colored faint red) de-
notes samples definitely predicted positive by ODDS (according to location). However,
some of them are inconclusive according to DST (colored beige); in fact, 40 DST-
inconclusive samples invade the positive, and the other 45, the negative domain of
ODDS scores, see Table 1.

• Conversely, the uncolored L-shaped area accommodates samples predicted inconclu-
sive according to ODDS (according to location). However, 10 are colored red, i.e.,
according to DST, decided positive. In fact, these samples, definitely predicted positive
by DST, invade the inconclusive region of ODDS scores and are labelled ‘adding
information’, see Figure 6, panel (c) and Table 1.

• Within the ternary plot of DST evidence (right panel), the triangular shaped areas
denote samples predicted negative (faint blue) and positive (faint red), respectively,
according to DST (by location). However, some samples are color-coded beige, i.e.,
they were rendered inconclusive by ODDS. Note that the very same samples appear in
dual roles along ODDS scores and ternary evidence, respectively (left and right panel).

• Conversely, the uncolored kite-shaped area denotes samples predicted inconclusive
according to DST (by location). However, some of them are color-coded red or blue,
i.e., definitely predicted as positive or negative according to ODDS. In fact, 40 samples
definitely classified positive through ODDS intrude into the ‘inconclusive’ region of
DST and have been labelled as ‘increasing safety’, see panel (d). Another 45 definitely
predicted negative through ODDS intrude into the ‘inconclusive’ region of DST.

All in all, differences in prediction only occur with samples on the brink of predictabil-
ity. While one method yields positive or negative, the other may yield ‘inconclusive’. These
differences turn up in the off-diagonal elements of Table 1, which are small; see also the
percentages. Even if differences are small, they are important for the single patient and
seen at the core of personalized medicine.

Moreover, visual inspection of the ternary plot in Figure 6 reveals samples not being
evenly distributed over the triangular plane of evidence. Samples, rather, appear in groups,
arranged in lines or lengthy polygons. The mechanisms behind the scenes, giving rise to
these effects, are scrutinized in Appendices A.6 and A.7.

4. Discussion

Dempster–Shafer Decision Theory (DST) has been made available for the personalized
therapy of breast cancer in a previous paper [37], in particular, to increase the precision
of receptor status assessment. Unfortunately, we could not map with ground truth in
our papers, since ground truth is not available for the data used. However, we were
able to provide a sound comparison between ODDS and DST and pinpoint particular
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differences in performance. To underpin the usefulness of DST, we have scrutinized the
survival of patients with status corrected from positive or negative predictions by ODDS
towards ‘inconclusive’ by DST, see Figure 7. Since only a small fraction of patients was
to be ‘corrected’ (see Table 1), survival curves degenerate and were included only for
completeness. Even if this percentage is small, it seems mandatory, considering the large
number of breast cancer patients. In practice, patents rendered inconclusive should receive
lab reassessment, in order to reduce false estimates and increase precision.

In addition, we compared patients considered receptor positive according to up-to-
date clinical standards (IHC+, red curve) with those considered positive (pos/pos, light
blue curve) according to both of our proposed methods, ODDS and DST. Patients positive
according to the new methods experienced significantly better survival (log-rank p = 0.03)
than those conventionally diagnosed positive, see the red versus the light blue curves in
Figure 7.

Comparing ODDS and DST, DST was found to be somewhat more conservative
than ODDS. Vice versa, patients considered ‘positive’ by DST, while being considered
‘undecided’ by ODDS, may benefit from this additional information inferred by DST.
However, this gain of information has two sides: the ‘positive’ prediction might not really
hold in the end, and relying on it may cause harm. Hence, re-evaluation remains the only
safe advice in these cases.

4.1. Advantages of Evidence Compared to Probabilities in Conventional Statistics

In addition to our previous work, the implementation of DST is, here, unfolded in
three steps:

First, we demonstrate the simplest case, starting with a single gene (the receptor gene)
and demonstrate how to:

• Obtain DST evidence from gene expression.
• Obtain DST evidence from IHC.
• Fuse both items of evidence above, via the Yager evidence combination rule [78].
• Display results in a ‘ternary’ plot, a genuine format for presenting evidence.
• Show subgroups of patients with given IHC status, giving rise to specific patterns of

samples in evidence space.

In a second step, we demonstrate how to create evidence from co-genes and join them
with evidence of receptor genes and IHC (by Dempster and Yager Evidence Combination
rule, respectively).

In the third step we demonstrate how to join evidence from estrogen with that from
progesterone, using a formula imitating the clinical criterion ‘positive ER or positive PGR’
for ‘receptor positivity’, in terms of Dempster–Shafer mathematics.

This stepwise approach allows for a detailed introduction into ternary plots, demon-
strating their applicability to clinical decision making, based on evidence. It becomes clear
that evidence not only provides more information about the outcome of a measurement
than conventional probability does, but that probabilities are supplemented by uncertainty.
Evidence also has the property of three numbers summing up to unity for each single
sample considered, and may be advantageously displayed in ternaries. Groups of pa-
tients (different IHC statuses) are segregated by the method itself (being either positive
or negative).

Data quality is a crucial aspect of personalized medicine. In this work, we have never
let gene expression overrule IHC. Technically, this was achieved by selecting the constants
α̂ in our model very conservatively. As a consequence, positive IHC estimates were never
converted into negative, not even a positive progesterone when estrogen was negative
IHC = (−, +). Such IHC estimates occurred in 15 samples, and gene expression by itself
would turn them into (−, −), if we had modeled less weight into IHC and more into
gene expression.
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4.2. How Uncertainty May Help Increase Correctness (Precision)

At first glance, this statement may seem paradoxical. However, DST—in comparison
to ODDS—supports this concept, as can be seen from a vivid comparison:

Suppose we have a ballot between two options (pro, contra). If the voter turnout was
100%, we might obtain 75% for pro and 25% for contra (3:1), and with full right, consider
this a clear decision. The option ‘pro’ would clearly be implemented, having the majority of
voters on its side, see the top bar in Figure 8. Exactly this scenario corresponds to classical
statistics, considering a probability p and the probability 1 − p for its opposite.
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light of high or low voter turnout, respectively. Likewise, probabilities of diagnoses may only be
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Now suppose the voter turnout was only 80%, with exactly the same distribution
between pro and contra, i.e., 60%:20% = 3:1, see the second bar in Figure 8. In this case
also, we would consider it a valid decision, despite 20% non-voters, representing what is
termed ‘uncertainty’ in DST. However, the result would not be considered as ‘robust’ as in
the first case.

Finally, suppose a voter turnout of just 40%, again with the same ratio between pro and
contra of 30%:10% = 3:1, see the third bar in Figure 8. Such a result would not be considered
sound enough to draw conclusions from. An uncertainty of 60%—in terms of DST—may
render the result ‘un-trustable’, even with a large ratio of probabilities p : (1− p) = 3 : 1.
After all, the relative ‘majority’ of 30% is far from absolute (50%). In such a case, a wise
politician would not be confident to implement option ‘pro’, since opposition might emerge
that is too strong to overcome.

Analog concepts hold for medical diagnostics. As DST introduces uncertainty as the
third part of evidence [82,83], borderline or questionable results obtained by classical statis-
tics may be relegated ‘uncertain’, suggesting further assessment and, thereby, increasing
final correctness. In addition, significantly different risks may be inferred by falsepositive
as compared to falsenegative decisions. For example, a falsepositive receptor status may
lead to the avoidance of chemotherapy, in this case, the lifesaving therapy. Accordingly, one
might request very low uncertainty, in order to ‘take a positive status serious’, regarding
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therapeutic consequences. Conversely, a false-negative status might ‘just’ entail unneces-
sary chemo, a comparatively lower risk. All in all, it is but a clinical decision how much
uncertainty seems acceptable.

To allow for evidence-based decisions, the explicit quantification of uncertainty seems
utmost desirable.

4.3. Extensions of Decision Rules

The approach presented here may be expanded by considering more than one co-gene,
since DST allows us to combine more than two items of evidence. Considerable increases
in stability can be expected if such expanded markers are applied to new incoming data.

Another possible extension refers to combination rules.
One basic concept for combining evidence from different sources was introduced by

Dubois [84], hence, termed “evidence combination rule (ECR) after Dubois and Prade”.
In the case of just two outcomes, this boils down to the Yager rule [78]. Smarandache [85]
further generalized combination rules and defined the PCR5 combination rule, relevant for
three (or more) outcomes. Fontani [66] proposed fusing the spaces of events in image pro-
cessing and Denœux introduced weighted combination [69,74,75]. Chen defined distances
between evidence [86]. Yang reviewed a framework of evidence combination rules and
evidence weighting and discounting [65] and Sentz compiled all rules, in a comprehensive
overview [87].

In the present work, we only used the Dempster Evidence Combination Rule (ECR)
and the Yager rule [78]. However, this is not mandatory. In fact, a variety of ECRs exist,
which differ in behavior in certain situations.

4.4. Modelling Sharp and Soft Clinical Decisions

The Dempster Evidence Combination rule advocates fierce decisions—leaving little
uncertainty in the conclusions—even if both pieces of input evidence concede considerable
uncertainty. As opposed, given the same input evidence, the Yager rule follows a much
softer strategy, transmitting larger uncertainty into its conclusion. We illustrate this by a
specific example.

Suppose we have two items of evidence for receptor status: The first piece of evidence,
from gene expression (α = 0.8, β = 0.1, θ = 0.1), strongly favors ‘positive’, via large α and
small β. Moreover, it claims to be quite ‘sure’ in terms of small θ. The second piece of
evidence, from IHC (α = 0, β = 0.7, θ = 0.3), favors ‘negative’, with some larger uncertainty
θ = 0.3. Obviously, these pieces of evidence contradict each other quite strongly, and one
may legitimately ask ‘what should be the synthesis of these two?’ The answer can be
precisely modelled by decision combination rules, according to Dempster (⊕D) or Yager
(⊕Y), which also exemplifies their difference in approach.

For the current example, the Dempster rule (Equations (7) and (8)) yields as combined
evidence ED = (α = 0.54, β = 0.38, θ = 0.068), expressing a quite ‘sharp’ contradiction (large
α, large β), without admitting much uncertainty (small θ). On the contrary, the Yager rule,
Equation (6), yields combined evidence EY = (α = 0.24, β = 0.17, θ = 0.59), expressing only
‘soft’ contradiction (small α, small β), with quite a lot of uncertainty (large θ).

How can these features be exploited for personalized medicine?
Clinical experts have always been looking for the most beneficial balance in decision

making, based on SOPs, their personal experience, and also skill, or even educated guessing,
in particularly difficult cases. It has always been the strength and fame of top clinicians
to decide correctly in a percentage of cases far above average. However, it may not be
fully transparent how such an outstanding clinical performance comes about and could be
transferred to young doctors in training. Decision theory tries to bring such ‘clinical expert
competence’ down to more formally applicable rules. Of course, it will remain the task of
top clinicians to help define and select those rules, based on sound statistical evaluations of
clinical studies. Such decision rules, once established, may be incorporated in SOPs and
will improve their performance significantly.
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While this work exemplifies the use of DST in personalized medicine, related to
the very specific field of breast cancer receptor diagnostics, the methods described are
universal. Decision theory, in particular, the fusion of diverging evidence (sometimes
also called ‘sensor-fusion’), as well as the professional incorporation of uncertainty into
biomarker research, seem valuable for all fields of personalized medicine and medicine
in general.
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Appendix A

Appendix A.1. Download and Cleansing of Data

The Gene Expression Omnibus (GEO) [88,89] was screened for breast cancer studies
using the Affymetrix chip U133A+2.0 [90] and found 38 studies. CEL files and clinical data
(characteristics), such as estrogen and progesterone receptor statuses (ER, PGR) and HER2,
all measured by immunohistochemistry (IHC) were downloaded and curated to arrive at a
clean database [91,92], already described in our previous work [37]. Data cleansing meant,
in particular:

• Only tumor samples were considered, controls excluded;
• Only tissue samples were considered, cell lines excluded;
• Replicates were removed;
• All samples were pairwise checked for being duplicates. CEL files with equal medical

data (expression, clinical) may differ, just in format or container packing. Hence, actual
expression values needed to be compared to safely locate duplicates;

• If duplicates in expression data were found to differ in metadata, these were curated
manually;

• Some GSE studies have been ‘enriched’ with samples from other (previous) GSE
studies. Such samples become duplicates if both of these studies were evaluated in
combination. We always left such samples with their original study and removed its
duplicate from the later GSE study;

• We detected damaged samples by RMAexpress [93] and removed them;

After cleansing, 3753 samples remained to be used for joint evaluation [94].
A plethora of normalization methods for microarrays has been proposed [51,95–98],

as evaluated by Bolstad [57]. Based on the results of our previous work [99], we performed
RMA, using the implementation MATLAB affyrma. We had also evaluated several types of
batch corrections [100–103] (Luo et al., 2010, Leek et al., 2012, Müller et al., 2016, Johnson
et al., 2007) and surrogate variable analysis (SVA) [104–106] (Leek and Storey, 2007, Leek
et al., 2017, Parker et al., 2014) for combined microarray studies. However, no clear benefit
of explicit batch corrections could be clearly demonstrated [99]. Therefore, we preferred to
perform ‘global RMA normalization‘, over all studies being combined.
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Appendix A.2. Selecting HER2 Negative Patients

Next, HER2-negative patients were selected as follows. Patients with positive IHC
estimates for HER2 (HER2+IHC) were excluded right away and samples with negative HER2
(HER2−IHC) retained. For patients with missing IHC estimates for HER2, we attempted
imputation via gene expression, using the ODDS method [37] (see also Table A3). Only ‘safe’
imputations, yielding HER2−IHC, were retained, in accordance with our previous work [37],
yielding 2519 patients in all. The final set of studies considered is listed in Table A1 of
Appendix A.1.

Appendix A.3. Selecting Genes and Probe Sets for Estrogen and Progesterone Receptors

Several genes are mentioned in the literature [22,107] to be relevant for estrogen and
progesterone. In addition, we used the limma-package [55] to screen CEL files (of those
2519 HER2-negative patients) for probe sets, discriminating between positive and negative
IHC statuses, separately for ER and PGR, and sorted results by ascending p-values. After
mapping back from probe sets to genes, we finally adopted the very receptor gene and one
co-gene, in addition, for ER and PGR, respectively. For details, please refer to our previous
work [58], and Table A2.

Table A1. Microarray studies used. N: number of samples. All: total number of samples in study.
ERIHC: number of samples with IHC measurement of estrogen receptor status. PGRIHC: likewise for
progesterone. For reference see also our previous work [37,59,99].

N

Study City All ERIHC PGRIHC

GSE5460 Boston 17 17 0
GSE6532 Toronto 78 78 77

GSE12276 Rotterdam 118 0 0
GSE16391 Toronto 50 50 50
GSE16446 Toronto 84 84 0
GSE18728 Seattle 15 15 14
GSE18864 Lyngby 60 60 60
GSE19615 Manhattan 79 79 79
GSE20685 Taipei 163 0 0
GSE20711 Toronto 52 52 0
GSE22035 SAINT-CLOUD 27 27 0
GSE23177 Leuven 80 80 0
GSE26639 Paris Cedex 05 144 144 142
GSE27120 Brussels 26 26 26
GSE29431 Barcelona 23 23 23
GSE31448 Marseille 286 286 271
GSE36771 Auckland 86 86 85
GSE42568 Dublin 65 63 0
GSE43358 Brussels 43 43 43
GSE43365 Boston 98 98 98
GSE46222 Washington 26 26 0
GSE47389 Rotterdam 47 47 47
GSE48390 New Taipei City 34 34 0
GSE48905 Hørsholm 20 20 0
GSE50567 Gliwice 25 25 0
GSE58792 New York 33 33 0
GSE58812 Saint Herblain 107 107 107
GSE61304 Singapore 41 38 33
GSE65194 PARIS 70 67 41
GSE71258 Missouri 94 77 77
GSE76124 Houston 198 198 198
GSE76274 Houston 44 44 44
GSE87007 Brussels 24 24 24
GSE88770 Brussels 108 108 107
GSE95700 Taipei City 54 54 54

∑ 2519 2213 1700
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Table A2. Probe sets and logistic regression for receptor genes and co-genes. c0 and c1 are coefficients
from logistic regression for IHC values (dependent variable) versus gene expression (independent
variable) [37,58]. Probe sets refer to the Affymetrix chip U133A + 2.0. For ‘deviance of fit’, see p. 118
in McCullagh [108]. Upper limits for beliefs (α̂, β̂) are explained in Appendices A.4 and A.5. See
Equations (A1) and (A2) for computing the limits, and Equation (4) for their application.

Logistic Regression Parameters Logistic Regression Quality Upper Limits for Beliefs

Probe Set c0 c1
Deviance of

Fit
Number of

Samples
^
α

^
β

estrogen
gene ESR1 205225_at 9.905 −1.061 1086.6

2213
0.814 0.887

co-gene AGR3 228241_at 5.582 −0.710 1253.1 0.794 0.840

progesterone
gene PGR 208305_at 7.449 −0.983 1107.4

1700
0.753 0.702

co-gene ESR1 205225_at 8.617 −0.834 1249.8 0.618 0.817

Table A3. Probe sets and logistic regression for gene and co-gene of HER2. c0 and c1 are coefficients
from logistic regression for IHC (dependent variable) versus gene expression (independent variable)
[37,58]. Probe sets refer to the Affymetrix chip U133A + 2.0. For ‘deviance of fit’, see p. 118 in
McCullagh [108].

Logistic Regression Parameters Logistic Regression Quality

Probe Set βGE
0 βGE

1 Deviance of Fit Number of
Samples

HER2
gene ERBB2 216836_s_at 15.963 −1.408 1421.2

2430
co-gene PGAP3 221811_at 17.756 −2.168 1330.6
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Figure A1. Logistic regression to obtain responsibility functions for progesterone, gene PGR. Distri-
bution of gene expression for positive receptor (according to IHC) computed from density kernel
estimates [71–73], shown red shaded, for negative IHC, blue shaded. Responsibility functions for
receptor positivity, r+ (dotted red curve) and r− (dotted blue) were obtained in this way. Belief in
positive (α): solid red, belief in negative (β): solid blue and uncertainty (θ): solid beige.
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Appendix A.4. Tailoring Beliefs in Receptor Gene Expression to a Given Accuracy of IHC

It is intuitively understandable that such an upper limit for the belief in ‘positive’ must
relate to true and false positive rate (TP, FP), as well as true and false negative rate (TN, FN)
of the measuring process in question. It was one of the main achievements in our previous
work [37], to coin this qualitative argument into the following Equation:

α̂Expr =
TP · TN − FP · FN

(TP + FP) · (TN + FP)
(A1)

β̂Expr =
TP · TN − FP · FN

(TN + FN) · (TP + FN)
(A2)

α̂Expr and β̂Expr quantify the remaining doubt, even if measurements seem perfectly
clear (maximum gene expression). TP, FP, TN and FN can be obtained from the dis-
crepancies between IHC and the prognosis obtained from gene expression, according to
conventional statistics, using a cut-point of 0.5 in the logistic regression.

Appendix A.5. Formulating IHC Data in Terms of Evidence

Gene expression, xExpr, is a continuous variable, and so is evidence derived thereof:
αExpr

(
xExpr

)
, βExpr

(
xExpr

)
, θExpr

(
xExpr

)
, as shown in Figure 2. Opposed to that, IHC yields

binary results (+/−) and, hence, evidence thereof are constants, one set for a positive IHC
result (αIHC+ βIHC+ = 0 θIHC+ ) and a second set for a negative IHC result (αIHC− , βIHC− ,
θIHC− ). How shall these values be chosen?

For a start, we draw on the following findings: Quality assessments of IHC [38,39]
revealed that approximately 85% of IHC estimates can be assumed to be correct and,
consequently, 15% to be false [40–42].

To implement these findings in terms of DST, we first consider all IHC measurements
with positive outcome, as illustrated in Figure A2, upper panel. Among these, some have
resulted true positive, by quality of the measuring method, others resulted true positive by
chance. Both taken together make up the (total) number of true positives (TP), i.e., 85% of
all positive outcomes, according to the above data from the literature. The remaining 15%
of positive IHC outcomes represent wrong results, namely false positives (FP), i.e., samples
negative in reality. We may now assume (on good grounds) that 15% is also a reasonable
estimate for the fraction of samples being true positive by chance, not by quality of the
method, see Figure A2, upper panel.

Accordingly, given a positive IHC measurement (IHC+), the total evidence comes
about as follows:

• Due to the positive IHC measurement, there is no evidence at all for the status being
(truly) negative due to quality of the method, hence β IHC+ = 0.

• Being measured as true positive by chance or as false positive by error represents all
measurements not being true by quality of the method. Together they make up 30%,
represented by θIHC+ = 0.3. We assume that these split in equal parts into 15% true
positive by chance and 15% false positive by error.

• Hence, cases being true by quality make up the remaining 70%, represented by
αIHC+ = 0.7.

• Since all items add up to 1 (Equation (2)), we obtain βIHC+ = 0, and the whole evidence
after a positive IHC result is (αIHC+ = 0.7, βIHC+ = 0, θIHC+ = 0.3).

On the contrary, after a negative IHC measurement, IHC−, we obtain the evidence:
αIHC− = 0.0, βIHC− = 0.7 and θIHC− = 0.3, see panel (b) of Figure A2.
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Figure A2. Results of measurements versus reality, seen along the concepts of Dempter–Shafer
Theory. In panel (a) we focus on positive results only, yielded by IHC measurements (positive results
represent 100%), see upper labels. Out of these, 70% are true positives (see lower labels) and result
due to quality of the measuring technique. Accordingly, the belief in positive α = 0.7. Another
15% have come out as true positives by chance. The remaining 15% of positive outcomes are due
to error, i.e., they are false positives, being truly negative. Both together represent the uncertainty
(θIHC+ = 0.3) of being receptor positive in reality. In panel (b) we focus on negative measurement
outcomes only: 60% of these come about due to the quality of measurement, 20% were correctly
negative by chance and another 20% false negatives, since they are positive in reality.

Appendix A.6. Ternary Plots Reflect Subgroups within Patient Cohort

After introducing the more general features of ternary plots in Section 2.2.4, we now
describe specific features of actual patient data of this study within this framework, see
also Figure 4. Considering just one gene plus IHC as evidence, it is easy to make subgroups
of patients transparent, a possibly valuable feature for personalized medicine, illustrated
by the following features:

a. Evidence for patients is not distributed evenly all over the ‘triangle plain of evidence’,
but samples are grouped in ‘traces’, which deserves explanation: first, we note
that exactly three lines appear and each sample belongs to one of these lines; no
sample is found apart. The fact that we deal with three possible states of IHC values
(+, −, inc) already points towards a possible reason, and this is in fact true: it is
varying IHC statuses, which give rise to these lines. Suppose that, for a given IHC
status, e.g., positive, we consider different values of gene expression, xExpr. When
computing corresponding evidence, α

(
xExpr

)
, β

(
xExpr

)
, θ
(
xExpr

)
, these will appear

along a straight line. This is visually obvious but can, in fact, be formally proven
mathematically, resorting to Equations (1), (4) and (6). Hence, each of the specific
lines may be labeled, accordingly (ER+

IHC, ER−IHC and ERinc
IHC), see Figure 4a.

b. Note also that the red line of ER+
IHC samples starts near the corner α = 1, but not

exactly at the corner: even a positive IHC and large gene expression cannot guarantee
a positive prediction—some small uncertainty (θ) remains. At the same time, for such
a sample, there is no evidence whatsoever for a negative status. Hence β = 0, and the
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line starts at the ternary plot’s side representing β = 0. Such a sample represents the
total opposite to the lower left corner—where β = 1 (surely negative).

c. After originating close to the lower right corner of (marked with α = 1) the line
for ER+

IHC (red), proceeds across the sub-area indicating receptor positive (shaded
red). These samples have ER+

IHC status (all dots, no circles), being confirmed by
gene expression, ending up as positive predictions. After crossing the decision
border at α = 0.5, this line still represents samples with ER+

IHC, which has obviously
been questioned by gene expression; hence, prediction was rendered ‘inconclusive’
according to DST (samples lie within the kite-shaped area). Coloring these samples,
according to ODDS, most vividly reveals differences in prediction: although located
within the DST-inconclusive region, ODDS predicts some of these samples as positive,
the majority as inconclusive (i.e., agrees with DST), but a few as negative (see the
blue dots towards the end of the line in the upper left).

d. Note that lines for ER+
IHC and ER−IHC never protrude into the opposing definite areas,

for the following reason: given ER+
IHC, gene expression can by no means reverse the

prediction to surely negative. At the most, it may downgrade it to inconclusive. The
same is true for ER−IHC. The white, kite-shaped area segregates the areas of positive
and negative predictions, which is reasonable.

e. Only at one single point, two strongly opposing items of evidence might, in principle,
become close to one another (at the point α = β = 0.5, along the baseline of the ternary
plot, see the tutorial Section 2.2.4 for further discussion). As a matter of fact, such
samples do not occur in reality (in our cohort), and both lines meet farther outside,
within the inconclusive region. In other words, if evidence incorporates contradiction,
DST renders them inconclusive—as a precaution.

f. Finally, the line for ERinc
IHC crosses the whole decision triangle, from surely positive

(right side) through the inconclusive region (mid), towards surely negative (left side).
Since no IHC status is available for these samples (shown as circles), gene expression
is free to render this ample range of predictions.

The characteristics of ternary plots, enhanced data interpretation and its relevance
for personalized medicine, have been introduced along a simple example—featuring only
IHC status and the expression of one single gene—in order to be intuitively clear. In the
following, the ‘full’ model (including co-genes), will be evaluated along the very same
conceptual lines.

Appendix A.7. Evidence Patterns for Subsets of Patients

We have already demonstrated (Section 2.2.4 and Figure 4) for a single gene and IHC
(as the only sources of evidence) that conspicuous arrangements of data points are rooted in
the IHC status: for all patients with a given IHC status, evidence was seen to lie on straight
lines, see Figure 4. Now, considering four genes (two receptor genes, two co-genes), the
situation becomes more complex. More degrees of freedom in the input variables penetrate
into the final prediction, and the lines (as seen for single genes) expand to lengthy polygons.

To scrutinize the underlying mechanism, we first display data separately for distinctive
IHC statuses, e.g., for IHC = (−, −) see Figure A3. Again, we display samples in ODDS
coordinates (left column) side by side with DST ternary coordinates (right column). In the
left panels, the locations of samples indicate their prediction according to ODDS, while
their color indicates their prediction according to DST, and vice versa. Again, differences in
prediction are read off easily. Note that the very same, specific subset of samples (IHC = (−,
−)) is shown in all panels of Figure A3.

The following questions then arise: Do absolute, distinct boundaries exist for the
evidence of samples with given IHC statuses? If yes, where are they located? To find
out, we computed so-called ‘maximum accessible prediction domains’ (MPDs) as follows:
artificial (simulated) samples were generated by scanning each gene and co-gene over the
entire domain of measured expression values (in our data, 2.3 to 15.2) in 100 equidistant
points, yielding 1003 = 106 generated samples. For each generated sample, we computed
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predictions by both, ODDS and DST, and plotted them into the ODDS plane and the
ternary triangle, respectively. These predictions spread out over much larger areas than the
samples of actual patients did, and we, hence, termed these areas ‘maximum accessible
prediction domains’ (MPD). Rather than showing all samples together, we displayed them
separately for each prediction (negative, inconclusive or positive); see the rows ‘negative’,
‘inconclusive’ and ‘positive’ in Figure A3. Using 10,000 simulated samples, MPDs would
be scrammed with points when being plotted. We do not display all of them (would look
like filled areas) but only show the outline of these areas. In each row of Figure A3, the left
panel shows the MPD of DST, arranged in ODDS coordinates. Vice versa, the right panel
shows the MPD of ODDS in DST ternary coordinates. Note the following:

• Since an MPD represents a maximum area, no sample of the same color appears
outside, e.g., no blue sample (predicted negative by DST) may lie outside the blue
MPD in the left panel of Figure A3.

• No blue sample (predicted negative by ODDS) may lie outside the blue MPD in the
right panel of Figure A3.

• While predictions coded in color transgress decision borders according to location,
they never leave the maximum accessible prediction domain of their own prediction
method.

• Samples of real patients were never seen to yield contradicting predictions (e.g.,
negative by DSST and positive by ODDS), but MPDs well intrude into contradicting
domains. For example, the negative MPD of DST (outlined blue) not only reaches
into the inconclusive region, but well overlaps, even with the positive area of ODDS
(Figure A3, left column, row 1). A second example is the positive MPD of ODDS
(outlined red), penetrating into the decisively negative domain of DST (Figure A3,
right column, row 3).

• Note that these ‘contradicting’ overlaps are rooted in extreme expression values,
occurring in generated samples only, but have never been seen in our real data. Thus,
these potential areas of contradiction between ODDS and DST remain a theoretical
possibility to be considered, which does not infringe, however, application of these
methods to data of real studies.

• Note that the dots (evidence) of these 10,000 simulated samples are not evenly dis-
tributed over the MPD. This is similar to the evidence of real samples; these also
appear in fairly restricted zones, well within the respective MPD. One could generate
2-dimensional histograms, showing the density of these simulated samples.

Other IHC statuses are covered in Figure A4 (+, +), Figure A5 (+, −) and Figure A6 (0,
0). More cases are shown in the Appendix, see Figure A7 (−, 0) and Figure A8 (+, 0).
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Figure A3. Real sample data within maximum accessible domains for IHC = (−,−). Left column: Real 
data shown in coordinates of ODDS prediction scores. Square in light blue (bottom left): criterion 
for negative predictions according to ODDS. Area in light red: criterion for positive predictions ac-
cording to ODDS. In between (white): area of inconclusive ODDS predictions. Outlined areas rep-
resent maximum domains accessible for DST predictions, displayed in ODDS coordinates. Sample 
data, located according to their ODDS prediction scores but colored according to DST prediction (neg 

Figure A3. Real sample data within maximum accessible domains for IHC = (−,−). Left column: Real
data shown in coordinates of ODDS prediction scores. Square in light blue (bottom left): criterion for
negative predictions according to ODDS. Area in light red: criterion for positive predictions according
to ODDS. In between (white): area of inconclusive ODDS predictions. Outlined areas represent
maximum domains accessible for DST predictions, displayed in ODDS coordinates. Sample data,
located according to their ODDS prediction scores but colored according to DST prediction (neg =̂ blue,
inc =̂ beige, pos=̂ red). Right column: Real data shown in ternary coordinates of DST prediction
evidence. Triangle in light blue (bottom left): criterion for negative predictions according to DST. Triangle
in light red (bottom right): criterion for positive predictions according to DST. White, kite-shaped area:
criterion for inconclusive DST predictions. Outlined areas represent maximum domains accessible for
ODDS prediction, displayed in DST coordinates. Sample data, while being located according to DST
evidence is colored, however, according to ODDS prediction. Rows 1–3: Negative, inconclusive and
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positive predictions according to DST (left column) and ODDS (right column), respectively. Purpose:
Differences between ODDS and DST predictions can easily be traced for real values as well as for
maximum domains, e.g.: (1) Samples predicted negative by ODDS penetrate into the ‘inconclusive’
area (white kite) of DST (row 1, right panel). (2) The maximum domain for negative evidence by DST
penetrates into the inconclusive (white) and also into the positive (light red) area of ODDS (row 1,
left panel). For more extensive examples and extensive discussion, see text.
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Figure A4. Real sample data within maximum accessible domains for IHC = (+,+). For general fea-
tures of display see caption to Figure A3. 
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Figure A4. Real sample data within maximum accessible domains for IHC = (+,+). For general
features of display see caption to Figure A3.
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Figure A5. Real sample data within maximum accessible domains for IHC = (+,-). For general fea-
tures of display see caption to Figure A3. 
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Figure A5. Real sample data within maximum accessible domains for IHC = (+,-). For general
features of display see caption to Figure A3.
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Figure A6. Real sample data within maximum accessible domains for totally unknown IHC = (0,0). 
For general features of display see caption to Figure A3. 
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Figure A6. Real sample data within maximum accessible domains for totally unknown IHC = (0,0).
For general features of display see caption to Figure A3.



J. Pers. Med. 2022, 12, 570 31 of 37

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 32 of 39 
 

 

in
co

nc
lu

si
ve

 

 

po
si

tiv
e 

 

Figure A6. Real sample data within maximum accessible domains for totally unknown IHC = (0,0). 
For general features of display see caption to Figure A3. 

IHC  
(−,0) 

real data within  
maximum accessible ODDS domain 

real data within  
maximum accessible DST domain 

N
eg

at
iv

e 

  

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 33 of 39 
 

 

in
co

nc
lu

si
ve

 

 

po
si

tiv
e 

  

Figure A7. Real sample data within maximum accessible domains for the IHC case = (−,0). For gen-
eral features of display see caption to Figure A3. 

  

Figure A7. Real sample data within maximum accessible domains for the IHC case = (−,0). For
general features of display see caption to Figure A3.
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Figure A8. Real sample data within maximum accessible domains for the IHC case = (+,0). For
general features of display see caption to Figure A3.
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