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Abstract: In recent years, great advances have been made in the field of collection, storage, and
analysis of biological samples. Large collections of samples, biobanks, have been established in many
countries. Biobanks typically collect large amounts of biological samples and associated clinical
information; the largest collections include over a million samples. In this review, we summarize
the main directions in which biobanks aid medical genetics and genomic research, from providing
reference allele frequency information to allowing large-scale cross-ancestry meta-analyses. The
largest biobanks greatly vary in the size of the collection, and the amount of available phenotype
and genotype data. Nevertheless, all of them are extensively used in genomics, providing a rich
resource for genome-wide association analysis, genetic epidemiology, and statistical research into the
structure, function, and evolution of the human genome. Recently, multiple research efforts were
based on trans-biobank data integration, which increases sample size and allows for the identification
of robust genetic associations. We provide prominent examples of such data integration and discuss
important caveats which have to be taken into account in trans-biobank research.

Keywords: biobank; genomics; GWAS; meta-analysis; allele frequency

1. Introduction

The term “biobank” is defined as a structured collection of biological samples and
associated data, stored for the purposes of present and future research [1]. The first such
collections of biological samples were established long before the beginning of the ge-
nomic era; however, large population-based collections were mostly used in epidemiology
rather than genetics [2]. The advent of multiple omics technologies, mostly based on
next-generation sequencing (NGS) methods [3], substantially increased the role of biobanks
in research. Given this development, modern biobanks are involved in a wide variety of
efforts that range from biosample collection and clinical/lifestyle data storage to complex
trans-biobank collaborative studies. In our review, we summarize the main directions in
which biobanks aid genomic research, and provide successful examples of biobank data
usage in recent scientific endeavors. We also extensively describe the aims of establishing
the largest biobanks, their capacity, sample storage, ways of collecting clinical/lifestyle data,
and potential for genomic studies. Finally, we describe major research efforts involving
trans-biobank data integration, and discuss future prospects for such studies.

2. Applications of Biobanking in Genomic Medicine and Research

Many recent developments in the field of human genetics and genomics would not
have been possible without biobanks. There are many directions in which biobanks benefit
modern human genomics. Such main applications of biobanks in medical genetics and
genomics are summarized in Figure 1.
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Figure 1. A diagram showing five major types of biobank applications for genomic research and
medical genetics.

First, biobank-scale genetic datasets are an excellent source of population frequencies
of genetic variants. Collection of such allele frequency (AF) information was one of the
first motivations for the establishment of genetic data collections and biobanks [2]. Several
successful attempts to construct a “population reference genome” or local AF databases
were performed recently in UAE [4], Japan [5], the Netherlands [6], and Russia [7,8].

Efforts to construct such AF references are motivated by the presence of many population-
specific genetic variants that are not represented in the reference human genome or global
allele frequency databases such as the Genome Aggregation Database [9]. Population allele
frequencies are especially relevant for clinical geneticists who are interpreting the results
of NGS-based tests in molecular diagnostics of inherited disorders. For example, filtering
candidate genetic variants by population maximum (popmax) AF rather than global AF
significantly decreases the burden of variant interpretation [10]. Moreover, allele frequency
information is required for the clinical classification of genetic variants in accordance with
the widely used American College for Medical Genetics and Genomics (ACMG) guidelines
for variant interpretation [11].

Another application of allele frequency information is the analysis of the genetic
structure of human populations. For example, AF data can be used to study migrations and
admixture of ancestral populations (e.g., in a milestone work on the population of modern
India by [12]). Moreover, comprehensive AF resources facilitate the analysis of complex
patterns of evolutionary conservation in the human genome and identification of clinically
significant genes and genome regions [13,14].

Second, whole-genome sequencing (WGS) data collected by biobanks can be used for
the construction of the local reference genotype panels. Such panels provide important
additional information about genetic variation. Examples of biobank-based reference panels
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include the SISu reference panel for the Finnish population (http://sisuproject.fi, accessed
on 6 June 2022) or a recently developed WGS-based panel for the United Kingdom [15].
Reference genotype panels can be used for genotype imputation, i.e., prediction of an
individual genotype at genome locations not covered by the genotyping array. Imputation
increases the power of genome-wide association studies (GWAS) and facilitates meta-
analysis [16]. Furthermore, reference genotype panels enable statistical fine-mapping,
i.e., identification of the actual causal genetic variants at GWAS loci (reviewed in [17]).
Finally, information on linkage disequilibrium (LD) between genetic variants and reference
haplotypes for a population can be important for multiple research purposes, such as the
analysis of recent positive natural selection (reviewed in [18]) or in-depth analysis of the
population structure. For example, a recent analysis of a large set of genomes that revealed
interesting novel details about the British population, including region-specific rates of
relatedness [15]. Another application of the reference haplotype information is genotype
phasing, which is important, in particular, in rare disease diagnostics [19] .

Third, samples collected by biobanks can be used by researchers in various types of
high-throughput assays. Genotyped samples can be used as external controls in GWAS for
rare or common diseases. Integration of external controls in case-control studies has been
shown to improve the power of rare variant association [20]. Such external controls are
frequently drawn from open genotype datasets such as the UK Biobank dataset (discussed
below). Apart from the direct inclusion of external controls in the analysis, reference data
generated by biobanks might be used in other types of analysis. For example, genotype
and phenotype data can be used to define exposures for Mendelian randomization (MR),
a group of methods designed for testing a causal relationship between traits (reviewed
in [21]).

Fourth, information collected by the biobanks, including comprehensive question-
naires, physical measurements, health check-ups, and data from hospital databases and
national health registries, makes an extensive data array for association studies. Numerous
single-trait GWAS have been performed using biobanks, and such studies greatly enhance
our understanding of human genetics and disease biology (reviewed in [22]). The results
of these studies enable the development and evaluation of polygenic risk scores (PRS) (re-
viewed in [23]). Implementation of PRS into clinical practice for the prediction of individual
risk is a cornerstone of present-day personalized medicine [24]. Population-level biobanks
may enable the development of embryonic polygenic risk scoring for preimplantation
genetic testing and implementation of such risk scores in clinical practice [25].

However, the real power of biobanking lies not in single-trait analyses, but rather
in the ability to perform comprehensive analyses using multiple traits in the phenotype.
For several biobanks, such as the UK Biobank or the FinnGen project, GWAS results
for thousands of phenotypes are made publicly available to the scientific community.
Aggregation of such publicly available data allows for phenome-wide association studies
(PheWAS), as well as identification of genes that affect several traits or diseases in the
phenotype (such genes are termed pleiotropic) (e.g., [26,27]).

Finally, biobanking facilitates the movement of healthcare facilities toward precision
medicine. Genome-informed approaches are being established by returning genomic re-
sults to participants of cohort studies. As shall be outlined below, such efforts are made by
the Tohoku Medical Megabank Organization [28], Estonian Biobank [29], and All Of Us
Research Program [30]. There are many concerns about which genes should be examined
without a specific diagnostic purpose, and which results are to be returned. The results
should be clinically significant, which implies that the functional impact of the variant
and its connection to the disease have to be carefully ascertained. Furthermore, the health-
care system should have protocols for managing patients with diseases associated with
selected genes.

As mentioned above, germline variant pathogenicity is determined according to the
ACMG guidelines for the interpretation of sequence variants [11]. The somatic variants
are classified by the International Agency for Research on Cancer (IARC) [31]. Among five

http://sisuproject.fi
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groups of variants the most arguable in clinical practice are variants of uncertain significance
(VUS). The guidelines of EuroGentest and the Canadian College of Medical Geneticists
suggest the necessity of periodic reanalysis of VUS, but do not advise on whether these
variants should be reported or not [32]. According to the ACMG, VUS should not be
considered in the clinical decision-making process [11].

Another concern of analyzing genomic data is unsolicited (or incidental) findings
(UFs)—variants that are out of the scope of the initial purpose of genetic testing, but medi-
cally significant for the patient or family member(s) [33]. There is still a lack of consensus
about reporting UFs. European Society of Human Genetics recommends limiting genomic
analysis “as targeted as possible”, and recent updates suggest the necessity of overall
evaluation of exploring UFs before introducing it in general practice. The Genomics of
England and ACMG developed an approach of reporting findings on the basis of informed
consent in a deliberate clinically significant set of genes, which do not correspond to the
primary purpose of genomic test [34]. The ACMG published the guidelines devoted to
managing such secondary findings and periodically updates the list of medical valuable
genes in which all disocvered variants with sufficient support for pathogenicity should
be reported. The genes were prioritized by the high penetrance and presence of effective
preventative measures on the asymptomatic stage of associated disease [35]. Despite the
fact that these recommendations are devoted to clinical genetic testing, the mentioned
criteria could be assumed in the policy of returning genomic results to participants by
biobanks as well. Moreover, ethical, psychological, and security issues should also be
considered when designing such policies.

3. World’s Largest Biobanks and Genomic Research

Due to the rapid development of biobanking, economically developed countries
possess at least 11 biobanks per million population [36]. Such a number makes it impossible
to review all projects and provide an extensive list of studies that are based on biobank data.

Hence, in the following sections we will focus on the largest and most well-known
biobanks and multi-biobank projects that not only collect samples and abundant phenotypic
information, but also participate in large-scale multi-biobank research initiatives (see below).
We will describe in more detail, the biobanks that have been extensively used in genomic
research or have a future prospect of becoming a rich genomic resource (Table 1).
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Table 1. Candidate genetic variants associated with COVID-19 related quantitative traits in a cohort of Russian patients.

Biobank Location Number of
Participants a Cohort Biosamples Sample Availability Omics Data Example Studies

UK Biobank UK 500,000 closed, population
aged 40–69 blood, urine, saliva yes

genotyping array,
WGS, WES,

metabolomics,
telomere length

Bycroft et al., 2018 [37];
Wells et al., 2019 [38];

Watanabe et al.,
2019 [26]; van

Hout et al., 2020 [39];
Shikov et al., 2020 [27];

de Vincentis et al.,
2022 [40];

Halldorsson et al.,
2022 [15]

BioBank Japan Japan 267,307 closed, patient-based serum, DNA, tumor
tissues yes genotyping array,

WGS, metabolome
Ishigaki et al., 2020 [41];
Matoba et al., 2020 [42]

FinnGen Finland 538,600
open, general
population, 15

disease-specific cohorts

depends on sample
collector b

depends on sample
collector b genotyping array

Desch et al., 2020 [43];
Kurki et al., 2022 [44];
Sun et al., 2022 [45]

Estonian biobank Estonia 200,000 open, adult population whole blood and
fractions, DNA, RNA yes

WGS, WES,
genotyping array,

metabolomics (NMR),
RNA seq.,

genome-wide
methylation arrays,
genome-wide gene

expression array

Alver et al., 2019 [29];
Reisberg et al.,

2019 [46]

China Kadoorie
Biobank China 512,891

closed, residents of 5
urban and 5 rural

provinces aged 30–79
blood no genotyping array, WGS

Spracklen et al.,
2020 [47];

Giannakopoulou et al.,
2020 [48]; Zhu et al.,
2021 [49]; Li et al.,

2022 [50]
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Table 1. Cont.

Biobank Location Number of
Participants a Cohort Biosamples Sample Availability Omics Data Example Studies

Tohoku Medical
Megabank Project Japan 157,000

closed, adult residents
of Miyagi and Iwate

Prefecture,
three-generation

cohort

blood fractions, urine,
saliva, breast milk,

dental plaque,
stimulated T-cells,

and EBV-transformed
B-cells

yes

WGS, genotyping
array, metabolomics

(NMR, LC-MS),
genome-wide

methylation arrays

Watanabe et al.,
2018 [51]; Tadaka et al.,
2019 [52]; Tadaka et al.,

2021 [53];
Kawame et al.,

2022 [28];
Ohneda et al.,

2022 [54]; Park,
2022 [55]

Taiwan Biobank Taiwan 181,635 open, population aged
20–70, patient-based blood, urine, saliva yes

genotyping array,
WGS, DNA

methylation, HLA
typing, metabolomics

Wei et al., 2021 [56];
Lee at al., 2022 [57];

Juang et al., 2021 [58]

LifeLines Cohort
Study Netherlands 167,000

closed, residents of the
northern part of

country

blood, urine, saliva,
scalp hair yes

genotyping array,
WGS, microbiome

data

Bonder et al., 2016 [59];
Imhann et al.,

2016 [60];
Zhernakova et al.,

2018 [61]
National Biobank of

Korea South Korea 1,051,787 population-based,
patient-based

blood fractions, urine,
saliva, DNA, tissue yes genotyping array Nam et al., 2022 [62];

Moon et al., 2019 [63]

Karolinska Biobank Sweden 700,000 collection-specific
whole blood and

fractions, urine, saliva,
DNA

depends on collection genotyping array Bonfiglio et al.,
2018 [64]

HUNT Biobank Norway 120,000
open, adolescent and

adult residents of
Trøndelag

whole blood, plasma,
serum, urine, saliva,

feces, DNA
yes genotyping array

Nielsen et al.,
2018 [65];

Nielsen et al.,
2020 [66];

Surakka et al.,
2020 [67]
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Table 1. Cont.

Biobank Location Number of
Participants a Cohort Biosamples Sample Availability Omics Data Example Studies

Canadian Partnership
for Tomorrow’s Health Canada 331,359 open, residents of 9

provinces aged 30–74

whole blood and
fractions, urine, saliva,
dry blood spots, nail

fragments

yes genotyping array
Lona-Durazo et al.,

2021 [68]; Joseph et al.,
2022 [69]

All of Us Research
Program USA 348,000 open, adult minority

population
whole blood, urine,

saliva no WGS, genotyping
array n.a.

BioVU USA 275,000 open, pediatric and
adult patient-based DNA yes genotyping array

Zheng et al., 2021 [70];
Goldstein et al., 2020
[71]; Krebs et al., 2020

[72]
Penn Medicine

BioBank USA 52,853 open, adult
patient-based blood, tissue yes genotyping array, WES Park et al., 2021 [73];

Akbari et al., 2022 [74]
a—The number of participants is actual to 2022-07-09; b—FinnGen is based on several biobanks across Finland. Sample collection is coordinated by the Helsinki Biobank.
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3.1. UK Biobank (UKB)

UK Biobank is arguably the most widely known and actively used biobank in the
field of human genomic research. For example, the term “UK Biobank” is mentioned
approximately 47,200 times according to Google Scholar Citations, with the closest com-
petitors having less than 5000 references. UKB is a large prospective population-based
database, which explores the occurrence and development of diseases of middle and
old age [75]. Between 2006 and 2010, primary data from 500,000 UK residents aged
40–69 years were collected [76]. Baseline questionnaires were designed to accommodate
cutting-edge research questions. During the interview, hearing, and cognitive functions
were assessed. In research centers participants underwent anthropometric measurements,
hand grip strength test, spirometry, and densitometry. Additionally, blood and urine were
tested for biochemical parameters. Levels of HbA1c and rheumatoid factors were mea-
sured [77]. Blood, urine, and saliva samples were preserved. Follow-up observations are
designed for 20 years and include data collection from medical and demographic registries.
(https://www.ukbiobank.ac.uk/, accessed on 12 April 2022).

UKB boasts a rich collection of genomic data, including genotyping array, whole-
exome (WES), and WGS sequencing. There are multiple examples of how these datasets
were applied for both singlet-trait and phenome-wide analyses. In 2020, UKB released
a large dataset of 49,960 WES samples that was used to discover previously unknown
associations between pLoF variants in specific genes and different traits, including PIEZO1
for varicose veins and MEPE for Becker muscular dystrophy [39]. Currently, WES and
WGS data are already available for nearly 300,000 and 200,000 participants, respectively.
Analysis of 150,119 whole genomes identified numerous novel SNPs and structural variants,
and revealed notable associations between rare structural variants with various traits (e.g.,
a deletion in PCSK9 was found to be associated with non-HDL cholesterol levels) [15].

Genotyping array data generated by UKB have been extensively used for GWAS.
In its 2018 study, UKB performed GWAS using approximately 850,000 variants in all
participants [37]. New findings from these data are too numerous to cite; one example is
a recent identification of genetic predictors of obesity complications: steatosis, cirrhosis,
hepatocellular carcinoma [40]. Findings include the rs738409 in PNPLA3 and a male-specific
rs58542926 variant in TM6SF2. A notable feature of UKB data is the inclusion of multiple
self-reported traits. For example, such phenotypic information was used in a recent GWAS
for hearing impairment [38]. In this analysis, 44 associated loci reveal the multifactorial
nature of the disorder based on the involvement of these genes in the wide spectrum of
biological functions. A remarkable amount of 34 genes identified in this study were novel
risk loci.

3.2. BioBank Japan (BBJ)

BBJ was the first patient-based biobank, which initially focused on 47 common dis-
eases. From 2003 to 2008, it recruited approximately 200,000 participants with newly
developed diseases and ones who were diagnosed and treated before the project began [78].
Additionally, in 2013-2017 60,000 participants with at least 1 of 38 chosen diseases were en-
rolled (https://biobankjp.org/en/info/nbdc.html, accessed on 5 June 2022). In a baseline
survey, BBJ collected information about lifestyle, medical history, and results of physical
measurements. DNA, serum, and tumor tissues were collected and stored. Follow-up data
were obtained by analyzing medical annual records, and vital statistics were requested
from hospital and national registries [78].

BBJ provides large-scale genomic data for discovering genes and variants’ associations
with common diseases. SNPs data are available for approximately 180,000 BBJ participants.
WGS has already been performed for 3,000 DNA samples, metabolome/proteome analyses
have also been conducted (https://biobankjp.org/en/info/nbdc.html, accessed on 5 June
2022). Massive GWAS of 42 diseases revealed several novel loci [41]. As an example,
the identified association of missense variants in ATG16L2 and coronary artery disease had
not been identified in previous studies of European populations. In another interesting

https://www.ukbiobank.ac.uk/
https://biobankjp.org/en/info/nbdc.html
https://biobankjp.org/en/info/nbdc.html
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study, GWAS of food and beverage preferences uncovered ALDH1B1 and ALDH1A1 genes
linked to enzymes of alcohol metabolism [42]. Missense rs8187929 in the ALDH1A1 had
not been previously found in European ancestry individuals. These examples illustrate the
power of biobank-driven discovery of population-specific risk factors for common disease.

Some genomic and clinical data from BBJ is available on the website of the National
Bioscience Database Center (NBDC). Merged WGS data from the disease-oriented BBJ and
the population-based ToMMo cohort resulted in GEM-J WGA—a publically accessible—
variant variant frequency panel for the Japanese population (https://togovar.biosciencedbc.
jp, accessed on 5 June 2022).

3.3. FinnGen Research Project

FinnGen is a collaborative project of universities, medical clinics, and biobanks in
Finland with the aim of finding genome-disease associations. The significance of the
project for the world community is explained by the relative genetic isolation of the Finnish
population and the high frequency of many initially rare variants [79]. In 2017, FinnGen
launched a study of 500,000 participants. 200,000 samples were chosen from previous cohort
studies devoted to various disorders, and another 300,000 biosamples have been collected
in medical centers or have been taken from healthy volunteers (https://www.finngen.fi/en,
accessed on 10 April 2022). Participants’ data are received from the national health and
hospital databases [44].

To control the quality of obtained phenotypic data, FinnGen used 15 diseases with over
1000 cases in the FinnGen cohort and previously published GWAS results [44]. In addition
to confirming the validity of the data, 30 new associations were found with prevalence
among the population of Finns and neighboring Uralic language families. WGS results
from more than 3500 participants revealed 16,962,023 population-specific SNPs and indels
which were imputed in the genome-wide association analysis. GWAS results for more
than 1900 clinical conditions defined in medical registries have shown the possibility of
detecting associations for variants with low frequency. For example, an association between
a missense variant in STAB2 and venous thromboembolism confirmed recent studies of
this gene as a potential biomarker [43].

FinnGen has collected the genotype-phenotype data of 392,000 participants. After a
one year embargo, summary statistics of GWAS are published in open access on the project
website. Researchers from partner organizations are allowed to access up-to-date information.

3.4. Estonian Biobank (EB)

Estonian Biobank was founded in 1996 to advance medical care through genetic stud-
ies [80]. Nowadays, a cohort of over 200,000 Estonian citizens aged 18 or over represents
the general adult population of the country.

The questionnaire covered topics related to lifestyle, educational background, oc-
cupation, and personal and family health history. A whole blood sample was used for
biochemical profiling, DNA, white blood cells, and plasma isolation, while a buccal swab
was collected for RNA extraction. GWAS results are available for 200,000 samples, as well
as WGS and WES data for more than 2500 samples (https://www.eithealth-scandinavia.eu,
accessed on 15 March 2022). Numerous transcriptomic, metagenomic, and metabolomic
studies have already been conducted using EB samples. In addition, 2700 blood samples
were examined for 42 biochemical tests, telomere length was measured in 5200 participants.
It should be pointed out that the government legislated the Human Genes Research Act
(HGRA), which regulates EB activity. Together with the broad informed consent, it allows
obtaining participants’ information on health status, prescribed medicines, and causes of
death from national registries and hospital databases and implementing it in a broad spec-
trum of studies without re-consent [81]. At the same time, HGRA stated that participants
are entitled to receive their personal data stored in the biobank (except for genealogies),
or decline to receive any such information [82]. These measures certainly support advances
in scientific research and the application of its findings to clinical medicine.

https://togovar.biosciencedbc.jp
https://togovar.biosciencedbc.jp
https://www.finngen.fi/en
https://www.eithealth-scandinavia.eu
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EB provides notable examples of how genetic test results from cohort studies can be
utilized in clinical practice. In a 2019 study, the EB team reported a systematic recall and
(upon receiving a positive response from the participant) re-examination of participants and
their family members with mutations in LDLR, APOB, PCSK9 genes [29]. These pathogenic
variants in these genes are related to familial hypercholesterolemia (FH), which causes a
20-fold increase in the risk of early-onset coronary artery disease compared to the general
population. Among identified carriers of screened FH mutations, only half had already been
diagnosed with nonspecific hypercholesterolemia and took statins. In another notable study,
genotype data obtained through different NGS-based methods in over 44,000 participants of
EB were used to choose optimal methods of discovery, validation, and accounting variants
in genes involved in drug response [46].

3.5. China Kadoorie Biobank (CKB)

CKB is a collaborative cohort study initiated on account of the increased role of
chronic diseases in death and disability among Chinese people [83]. Data about the main
collection of 512,891 individuals aged 30–79 from 5 urban and 5 rural regions of China were
obtained between 2004 and 2008 [84]. The baseline data array included anthropometric
measurements and questionnaires related to general demographic and socio-economic
topics, lifestyle habits, medical history, physical activity, and reproductive history for
women. Blood samples were taken and tested for glucose level and HBs-Ag. The estimated
duration of observations is at least 20 years. Repeated surveys are conducted among
randomly selected 5% respondents [84]. Morbidity, hospitalization, and mortality data are
available from national registries.

CKB has generated large-scale genotyping data for more than 100,000 participants.
Moreover, WGS of the entire cohort, metabolite, and DNA methylation array results are
underway [85]. Available results have already allowed large-scale GWAS for populations of
non-European descent, which are crucial for genetic heterogeneity evaluation. For example,
GWAS of the lung function parameters in the Chinese population identified novel loci for
forced vital capacity (FVC), forced respiratory volume in 1 second (FEV1) and their ratio
(FEV1/FVC) [49]. A higher risk of development of respiratory diseases and reduction of
lung function among subjects with obesity led researchers to discover a shared genetic
component between lung function and obesity in the Chinese and European populations.
CKB participates in large-scale studies of common diseases such as type 2 diabetes [47] and
depression disorders [48] in East Asians. Another interesting example is a recent analysis
of the genetics of fingerprint patterns [50].

3.6. Tohoku Medical Megabank Project (TMM)

Tohoku Medical Megabank was established in 2011 to improve the healthcare system
of the prefectures affected by the Great Japan Earthquake [86]. As thus, the study represents
an important example of how biobanking can be useful for research related to large-scale
crises and natural disasters.

Recruitment into the population-based TMM CommCohort, and the TMM BirThree co-
hort began in 2013 [87]. In the TMM CommCohort study, about 84,000 residents of Miyage
and Iwate prefectures aged 20–74 were asked to complete a baseline questionnaire, supple-
mented with an inquiry about disaster impact. Participants underwent eye examination,
dental checkup, hearing test, spirometry, densitometry, and hand grip strength test. Blood
and urine tests were performed. Some respondents provided MRI data. Follow-ups consist
of periodic questionnaires and collection of information from vital databases and medi-
cal registries [88]. The TMM BirThree Cohort Study has recruited about 73,000 pregnant
women and their family members, with the aim to study common diseases in disaster-
affected areas (e.g., infectious, allergic diseases, developmental disorders). TMM stores
blood samples, urine, saliva, breast milk, dental plaque, stimulated T-cells, and EBV-
transformed B-cells (https://www.megabank.tohoku.ac.jp/, accessed on 2 April 2022).
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TMM established the jMorp database to integrate proteome, metabolome, genome,
methylome, and transcriptome data from the cohort participants. The database includes
population frequencies of SNPs from 14,000 WGS samples [53]. Using the jMorp Multi-
Omics Panel, the total carrier frequency of Pompe disease in Japanese has been evalu-
ated [55]. The jMorp AF reference also enhanced filtering of false positive findings of
NGS-based tests, imrpoving the diagnosis of rare diseases in Japan [52].

The results are also being used in pharmacogenomics. For example, seven novel SNPs
in CYP2B6 were identified in 1070 TMM participants. The variants were tested for their
effect on the enzymatic activity of the gene product, cytochrome P450 2B6, which partici-
pates in the metabolism of common drugs (e.g., bupropion, efavirenz, cyclophosphamide,
ketamine) [51,89]. The information on the patient’s genotype and the corresponding vari-
ants’ effect on drug metabolism could influence drug selection, minimize adverse effects
and maximize therapeutic efficacy.

A series of pilot studies of returning individual genetic results to patients was
launched by the TMM project. Two studies on relatively small cohorts of TMM participants,
who met the inclusion criteria and confirmed their agreement by signing informed consent,
have been published recently. The first study focused on familial hypercholesterinemia
(FH)—monogenic and high-penetrant disorder [28]. The second pilot experiment was
devoted to implementing pharmacogenomics results into clinical practice. Persons, who
were identified as carriers of polymorphisms in the chosen genes—MT-RNR1, CYP2C19,
or NUDT15—received recommendations both for themselves and healthcare workers [54].

3.7. Taiwan Biobank (TWB)

One more prominent East Asian biobank was established in Taiwan in 2012. The
prospective community-based cohort represents the population structure and involves
citizens 20–70 years old with no prior diagnosis of cancer, among whom 99% belong to Han
Chinese ancestry. The baseline data were collected through questionnaires with culture-
specific sections, anthropometric measurements, medical imaging (abdominal ultrasound,
bone densitometry, ECG), as well as collection and analysis of blood and urine samples.
TWB expands data collection by active follow-ups every 2–4 years and future integration
to National Health Insurance Research Database and over 70 health registries. At present,
the information from the aforementioned sources could be accessed only upon demand
after an institutional review board approval. WGS, DNA methylation, metabolomics, and
HLA typing data are available for subsets of the community cohort [90].

To improve the imputation efficiency, a population-specific TWB reference panel was
generated based on the WGS data from 1445 cohort participants. Two custom genotype
arrays were designed on which about 103,000 samples have been genotyped [56]. A recent
study revealed the NOTCH3 p.R544C variant as a valuable risk factor of ischemic stroke
in Taiwan population [91]. In another study, PheWAS of 10 diseases and 34 quantitative
traits identified more than 900 significantly associated loci among which 100 loci are
population-specific [57].

TWB shares genomic summary results on Taiwan View website (https://taiwanview.
twbiobank.org.tw/index, accessed on 13 November 2022). Depersonalized individual-level
data could be obtained upon request, except information about Taiwanese indigenous
peoples. (https://www.twbiobank.org.tw, accessed on 13 November 2022). In addition,
TWB has been working on the legislation of returning UFs to the cohort participants [92].

3.8. LifeLines Cohort Study

LifeLines is a multigenerational cohort study of the inhabitants of the northern part
of the Netherlands, which is aimed to study the issues of healthy aging and the etiology of
chronic diseases that are relevant to the European population [93]. The prospective cohort
parameters represent the population of the region [94]. People without severe psychiatric
or physical illness were recruited and asked to attract family members to the study. As a
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result, 51% of study participants were part of a two-generation relationship and 12% of a
three-generation relationship.

Phenotypic and environmental data were obtained through age-adapted question-
naires, anthropometric measurements, laboratory sample tests, spirometry, electrocardiogra-
phy, cognitive tests, and skin autofluorescence [93]. Cohort participants received the results
of a medical examination. Follow-ups are estimated for at least 30 years. The database
is extended by data from administrative health databases (cancer registries, vital statis-
tics, and health insurance databases). Every one and a half years participants fill out a
questionnaire and every 5 years are invited to a health check-up.

Among notable projects run by LifeLines, it is important to mention the Digestive
Health project that focuses on the gut microbiome, metabolome, and transcriptome stud-
ies. The collected data have already allowed scientists to analyze the effects of human
genome-gut microbiome interaction on the regulation of blood proteins associated with
cardiovascular diseases [61]. Numerous associations of variants, diet patterns, and gut
microbiota composition have been identified [59]. Proton pump inhibitors have been shown
to reduce the diversity of the gut microbiota more than other common drugs, increasing
the risk of intestinal infections [60].

3.9. Other Biobanks

As mentioned at the beginning of the section, the total number of biobanks makes
it difficult to provide an exhaustive list of these projects and their application examples.
However, several other projects deserve a brief discussion.

Karolinska Biobank was established in 2004 at Karolinska Institute [95]. The biobank
includes project-specific cohorts, with LifeGene and TwinGene studies being the most
remarkable examples. The TwinGene cohort comprises phenotypic data and biological
samples of twins born before 1958 ([96], https://ki.se/en/research/biobanks-and-registrie,
accessed on 2 June 2022). This cohort is a very promising resource as twins have long been
used as the main model in human genetic epidemiology [97]. The TwinGene cohort was
used in a recent GWAS meta-analysis which identified many new risk loci for irritable
bowel syndrome [64,98].

National Biobank of Korea (NBK) is a cross-country biobank platform that manages
population-based cohorts (Korean Genome and Epidemiology Study (KoGES), the Korea
National Health and Nutrition Examination Survey) as well as regional hospital-based
collections, which store samples and associate data from 439,602 and 612,185 participants
respectively. NBK and 2 collaborative biobanks are parts of the Korean Biobank Net-
work (https://nih.go.kr/biobank/cmm/main/engMainPage.do, accessed on 16 November
2022), which was established to provide security to biobanks’ data and implement unified
guidelines for biobanks’ procedures ranging from sample collection to biospecimen distri-
bution. Based on large-scale NBK data, a genotyping array was designed and optimized
for the identification of trait-associated variants specifically in the Korean population [63].
KoGES data contributed to a better understanding of the genetic architecture of electrocar-
diographic characteristics [99], T2D [100], and several other traits in Asians [101].

Among other large biobanks, the HUNT Biobank in Norway and the Canadian Part-
nership for Tomorrow’s Health (CanPath) are also worth mentioning. The HUNT Biobank
was established in Nord-Trøndelag, and four separate studies (HUNT1–HUNT4) were
being conducted since 1984 [102]. In the most recent iteration, samples of saliva and feces
were collected for microbiome studies [103]. The HUNT cohorts were used for GWAS for
atrial fibrillation [65], impaired mineral metabolism [67], and LDL levels [66]. CanPath also
possesses a rich set of data which was used for association analyses of kidney dysfunc-
tion [69] and other traits such as hair color [68]. In this study, loci associated with hair color
also affected skin cancer development.

Several large biobanks store large amounts of phenotypic and environmental data,
but are not used for public genomic research. Biobank Graz stores a wide variety of biosam-
ples (e.g., whole blood, CSF, tissue samples) and data for more than 1,200,000 patients of

https://ki.se/en/research/biobanks-and-registrie
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the departments of University Hospital Graz (https://biobank.medunigraz.at/en/who-
we-are, accessed on 6 April 2022). The collection consists of over 20 disease-specific cohorts
as well as a healthy control group [104]. Among others, Shanghai Suburban Adult Cohort,
and Biobank are unique resources for studying a population response to sudden changes
in lifestyle, ecology, and economy due to worldwide urbanization [105]. This resource,
however, has not yet been applied for genomic analyses.

Another noteworthy study was initiated by the National Institutes of Health (NIH) to
implement precision medicine into the health system of the USA. The particular concern of
the All of Us Research Program is demographic groups that have been and remain under-
represented in biomedical research [30]. The program is expected to recruit at least 1 million
people into the cohort [106]. In March 2022, the first genomic dataset with 98,000 WGS and
nearly 165,000 genotyping array results were released (https://www.nih.gov/, accessed
on 2 April 2022).

Several initiatives were run in Russia, where numerous biobanks were created or
formed from existing collections of human and environmental biospecimens. In December
2018 biobanks were united into the Russian National Association of Biobanks and Biobank-
ing Specialists (NASBIO) [107]. A joint genetic project of the Biobank of the National
Medical Research Center for Preventive Medicine (Moscow, Russia) and the Biobank of
Saint-Petersburg State University provided a major boost to the project. The joint study
was dedicated to the discovery of novel gene targets associated with obesity and type 2 dia-
betes. Several highly case-specific variants in genes previously not directly linked to type 2
diabetes and/or obesity (e.g., TMC8, PCDHA1, PLEKHA5, HBQ1, VAV3, and ADAMTS13)
were detected [108].

4. Data Integration and Prospects of Trans-Biobank Research

The range of aforementioned benefits of biobanking in various populations in both
research and clinical applications can be further expanded by considering the ever-growing
number of trans-biobank collaborative research. A steady increase of interest in the creation
of biobanks, especially in previously underrepresented non-European descent populations,
provides ample opportunities for meta-biobank studies that could shed the light on the
genetics of diseases, improve our understanding of disease classification and intercon-
nection between clinical conditions and widen the translation of research findings into
clinical practice.

The movement to consolidate biological sample collection already has many prominent
examples [107,109–111]. Aims of such associations are manifold, including consolidation
of biological material to increase its availability to researchers, standardization of research
practices and training of personnel for biobanks, production, and publication of associated
data to the scientific community, and granting access to these data to scientific users.
Networks of biobanks provide immediate benefits of improved functioning resulting from
better organization of data and harmonization of standard operating procedures. Another
advantage in the field of biobanks’ interaction lies in the creation of a shared infrastructure
that includes information systems that address the issue of availability and consistency of
the biobank data [112]. But perhaps most important for genomic research is the connection
of genomic data with a vast compendium of phenotype data coming from electronic medical
records, questionnaires, and other sources. This type of trans-biobank catalog empowers
association studies especially when large cohorts of participants are hard to collect.

Many of such trans-biobank research projects focus on particular conditions and
their genetic determinants across various ancestries. Examples include thoracic aortic
disease [113], type 2 diabetes [114], prostate cancer [115], neurodegenerative diseases [116].
The main mode of usage of genomic data across biobanks in these studies is the meta-
analysis of genome associations found across populations. In most cases, such meta-analysis
is used to replicate associations observed in the discovery cohort. However, the replication
rate is frequently far from perfect. As an example, a recent cross-trait meta-analysis of
CKB and UKB data identified a common relationship between lung function and obesity in

https://biobank.medunigraz.at/en/who-we-are
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the two populations. At the same time, the exact loci associated with these traits in two
populations had a very low degree of overlap [49].

One of the most prominent and global meta-analysis efforts belongs to the COVID-
19 Host Genetics (COVID-19 HG) consortium [117]. The project currently comprises
119 registered studies (https://www.covid19hg.org/partners/, accessed on 4 July 2022).
A meta-analysis included 49,562 patients from 46 studies identified 13 loci associated with
COVID-19 infection or disease severity, including such genes as ABO, SLC6A20, and others.
Associations in ABO and SLC6A20 were later replicated in another association analysis
including multiple large-scale studies [118]. Furthermore, a gene-level trans-ancestry meta-
analysis of whole-exome sequencing data from 21 cohorts identified MARK1 and TLR7 as
novel COVID-19 risk genes [119].

However, research efforts involving trans-biobank data aggregation are not limited
to the analysis of individual traits or diseases. For example, a recent study by Sun et al.,
integrated WES data from UKB and genotyping array data from FinnGen to identify
causal coding variants for 744 disease endpoints [45]. This integrated analysis revealed
975 associations; moreover, results demonstrated a role in complex diseases for variants
previously linked to Mendelian disorders.

A notable example of a study involving more than two datasets comes from a cross-
population study of 220 phenotypes matched between UK Biobank (UKB), FinnGen, and
Biobank of Japan (BBJ). The authors studied several parameters of correspondence between
the biobanks. From the standpoint of pleiotropy, BBJ, and European biobanks had similar
loci associated with the largest number of traits even corrected for correlated genotypes or
closely associated phenotypes. Most notably the MHC locus scored highest in European
populations while in the Japanese cohort it was preceded by the ALDH2 locus. Across all
studied biobanks, pleiotropic loci were associated with recent positive selection as measured
by singleton density score, highlighting shared patterns of natural selection in different
human populations. Analysis of genetic correlations also proved that many conditions
shared genetic etiology across human populations, despite differences in populations
themselves and medical and diagnostic practices.

Another benefit from the combination of biobanks comes from the ability to elucidate
and explain common genetic architecture of diseases by application of matrix decompo-
sition of disease GWAS summaries and characterization of resulting hidden components.
This approach may also be applicable to sub-significant associations which are instrumental
to understanding the contribution of common variants to rare diseases and when study-
ing underrepresented populations. In the comparison study of BBJ, UKB, and FinnGen
components resulting from the matrix decomposition explained converging etiology of
multiple similar conditions, allowed to interpret an underpowered GWAS of varicose vein
in BBJ by matching it with more powered GWAS in UKB and provided an approach to
categorize diseases based on matrix decomposition components. The authors additionally
complemented components with results from metabolome GWAS and biomarker GWAS
underscoring the importance of trans-biobank studies, including a combination of biobanks
of different modalities [120].

Integrated data of BBJ, FinnGen, and UKB have also been used for the construction
of PRS for complex traits that could help identify the driver biomarkers affecting human
lifespan [121]. That way genetic data could be translated to the clinic as these complex
factors could be modified through medical treatment. High PRSs of several biomark-
ers were found to be implicated with lifespan across different ethnicities. For example,
high systolic blood pressure (sBP) was significantly associated with a shorter lifespan in
all studied populations, and among cause-specific mortality factors, cardiovascular and
cerebrovascular diseases were associated with sBP. At the same time, hypertension was
not significantly interacting with lifestyle factors, suggesting the high efficacy of lifestyle
interventions even for individuals with high genetic risks. Interestingly, associations of
body mass index (BMI) PRSs with lifespan were different between European (UKB and
FinnGen) and Japanese populations which could be explained by the ethnic differences in

https://www.covid19hg.org/partners/
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the health burdens of obesity between Japanese and European individuals, underscoring
the importance of trans-ethnic studies and warranting further investigations in the field.

Another interesting example of novel insights obtained from cross-biobank data in-
tegration is the recent identification of sex-specific participation biases in biobanks [122].
In this study, genotype, and phenotype data were integrated from UKB, FinnGen, BBJ,
and other projects to analyze genetic variants associated with the participant’s sex. Re-
markably, the authors identified numerous loci showing significant association with sex.
Further analysis of this unexpected result showed that sex differences were substantial
only in projects with active recruitment of participants (23andMe and UKB). Moreover, sex-
differential participation in UKB was linked to educational attainment levels in participants
of the opposite sex.

The largest to date effort to bring together findings from multiple biobanks is repre-
sented by Global Biobank Meta-analysis Initiative (GBMI) [49]. This collaborative network
unites 24 biobanks across four continents representing more than 2.2 million individuals
with both genomic and phenotypic data from six main ancestry groups: approximately
33,000 of African ancestry either from Africa or from the admixed-ancestry diaspora (AFR),
18,000 admixed American (AMR), 31,000 Central and South Asian (CSA), 341,000 East
Asian (EAS), 1.4 million European (EUR), and 1600 Middle Eastern (MID) individuals.
This type of cooperative effort utilizing summary statistics across biobanks makes possible
several types of scientific goals including increasing the power of GWASs for common
diseases, enabling the genetic investigation into less prevalent or understudied diseases,
increasing the ancestral diversity of genetic association studies, and in doing so analyzing a
broader set of genetic variation, cross-validating new findings across biobanks. The authors
conducted a meta-analysis of GWASs on 14 diseases and endpoints, including rare and sex-
specific diseases across a 30x prevalence range. Across all biobanks, more than 70 million
variants were tested for associations including 2.9 million protein-coding variants.

Inverse variance-based meta-analysis replicated previously reported findings and
identified apparently novel associations of which nearly half are either protein-coding or
are in linkage disequilibrium with coding variants. The authors additionally demonstrated
the benefit of adding non-European ancestry samples. Nine out of 499 loci used for effect
size comparison across ancestries showed evidence for heterogeneity of effect sizes. The
difference in effect sizes was also observed in sex-stratified analyses.

In general, GBMI is composed of several scientific groups working on elucidating the
genetic architecture of phenotypic endpoints and its biological implications and characteri-
zation of discovered associations via fine-mapping of loci, studying transcriptome-wide
associations, prioritizing drug targets, and improving disease risk prediction.

There are several important concerns regarding data integration between large-scale
projects. First, population structure is an important factor that may influence the results of
cross-ancestry data integration (reviewed in [123]). Genetic differences between populations
may affect the results of statistical analyses that are reliant on haplotype structure (e.g.,
heritability or genetic correlation estimation by LD-score regression [124]). Another method
that may be biased by population structure is the two-sample MR which is extensively used
to evaluate causal relationships between traits. For example, a recent study of intracranial
aneurysms conducted jointly by multiple groups, including the China Kadoori Biobank
and BioBank Japan [125], discovered a causal relationship between blood pressure and
aneurysms. The latter analysis was done using two-sample MR with UK Biobank data
used as reference exposures. While the results of the analysis corroborate earlier clinical
findings, two-sample MR may yield inadequate results in such studies.

Second, phenotyping procedures and encoding used by different biobanks may vary.
The definition of phenotypes itself is a difficult issue, and different standards have been
proposed for this purpose [126]. Many studies use the International Classification of
Diseases (ICD-10) codes. However, some studies use modified versions of ICD-10 (e.g.,
FinnGen [44]), making it harder to match traits across biobanks. Usage of the Human
Phenotype Ontology (HPO) terms [127] also seems a promising strategy. Today, HPO is
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more frequently used in the field of rare disease diagnostics. At the same time, phenotype
data provided by the biobanks have to be additionally converted to HPO terms (such a
conversion has been applied to UKB data, e.g., [128]). An important advantage of HPO
is that it attempts not only to standardize the description of traits, but also to provide
an accurate classification that allows researchers to use different levels of granularity
in phenotype description and/or data analysis (e.g., when analyzing pleiotropy [129] or
relationships between genes and traits [130]). Hence, as the number of trans-biobank
research efforts grows, it is likely that HPO (or other standardized phenotype description
resources) will be used more extensively, facilitating various types of research. The problem
seems to be especially relevant for predictive model construction and artificial intelligence
(AI) driven discovery.

Third, data preprocessing and statistical tools used for analysis may also result in
biases specific to a particular dataset. For example, the integration of publicly available
GWAS summary statistics from UKB and FinnGen requires two important steps. First, UKB
genotypes are given with respect to the GRCh37 human reference genome assembly, while
FinnGen uses GRCh38. Hence, one of the datasets has to be lifted over to another assembly
prior to any analysis. Second, variations in phenotype pre-processing pipelines may result
in different effect size values for the same trait (Figure 2a). These differences may in turn
affect the results of meta-analysis, at least in some widely used methods such as the inverse
variance-based test in METAL (Figure 2b, left) [131]. Standardization or scaling of effect
size values could compensate for this issue (Figure 2b, right); however, the validity of such
scaling may require rigorous proof.

In addition, it should be considered that the features of sample collection and handling,
as well as the stages and duration of sample storage could vary widely in different biobanks.
Among the omics approaches, genomics is the least sensitive to preanalytical procedures,
while the integration of the different collections with dissimilar processing conditions in
the transcriptomic, metabolomic, or microbiome studies can lead to false findings and
erroneous conclusions. However, even in genomic studies, sub-optimal handling/stor-
age conditions may lead to the decrease of quality of sequencing including sequencing
failure, and increased C>A/G>T errors rate resulting in low-quality of reads. Parame-
ters such as the type of blood vacuum tube preservative, the type of stored biomaterial,
the storage conditions (especially temperature and duration of storage), and transportation
may affect the quality of genomic studies. The availability of a detailed description of
pre-analytical procedures allows us to avoid the aforementioned problems. Representation
of this information in an encoded form, for example, using the Standard PREanalytical
Code (SPREC) system [132], may provide additional advantages. Availability of detailed
sample processing information may enhance efficient correction of batch effects during
data integration.

Taken together, trans-biobank data integration seems extremely important for the
validation of GWAS findings and the identification of robust genetic markers for common
diseases and quantitative phenotypes. At the same time, the integration procedure has a
few important caveats which have to be carefully considered during statistical analyses
and interpretation of findings.
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Figure 2. Bias in meta-analysis due to differences in data preprocessing. (a) Descriptive statistics of
the raw data. Shown are (from left to right) effect size distribution in FinnGen, effect size distribution
in UKB, and a scatterplot of p-values from UKB and FinnGen. (b) Scatterplot showing a comparison
of METAL meta-analysis p-values for (from left to right) inverse variance method using raw data,
sample size-based method, and inverse variance method using scaled data (scaling was performed by
multiplying UKB effect size by the ratio of mean effect size from FinnGen to UKB). Note the extremely
high degree of correlation of meta-analysis p-values and UKB p-values in case of inverse variance test
and original UKB effects. Phenotypes used for analysis: other (seronegative) rheumatoid arthritis,
wide (RHEUMA_OTHER_WIDE) from FinnGen, and other rheumatoid arthritis (M06) from UKB.
Data and code used for the analysis presented in this figure are publicly available in the repository at
https://github.com/TohaRhymes/meta-analysis-methods-comp, accessed on 27 November 2022.

5. Conclusions

The empowerment of biobanks and the expansion of their collections with high-
throughput data facilitates more extensive studies and implementation of their results in
clinical practice. Population allele frequency statistics, genotype panels for imputation
and linkage-based analyses, population-centered PRS, and other aforementioned results of
biobank applications in genomics highlight the importance of biobanks in medical genetics,
genomics, and healthcare.

We reviewed some successful biobank initiatives across the world and illustrated
recent findings obtained using biobank data. Indeed, this review could not cover all
results which were generated with the help of biobanks over the last years. Hence, we
only discussed those publications that, in our opinion, provide the most significant and
noteworthy examples. As indicated by this review, biobanks are more commonly used
in the field of genome-wide association studies. However, recent progress in the field
of functional genomics and metagenomics, such as the rapid spread and introduction
of microbiome analysis in both research and clinical practice, may soon change the way
biobank samples and data are analyzed and handled. Furthermore, the emergence of trans-
biobank, cross-ancestry research projects indicate a general trend towards data integration
and focus on robustness and reproducibility of results. Moreover, the enlargement of
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genomic studies by merging biobank data allowed researchers to investigate both common
and population-specific genomic patterns of health and disease across various populations.

Our analysis was not mostly dedicated to internal issues of biobanking, such as
sample collection, storage space, and capacity, sample and data management, and ways of
communication with participants. These aspects, however, are no less important for the
further full integration of biobanks and genomics into clinical practice. We believe that
tight collaboration between geneticists, medical professionals, and policymakers will bring
biobanking and, therefore, personalized precision medicine to our everyday lives.
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