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Abstract: Utilizing pharmacogenomic (PGx) testing and integrating evidence-based guidance in
drug therapy enables an improved treatment response and decreases the occurrence of adverse drug
events. We conducted a retrospective analysis to validate the YouScript® PGx interaction probability
(PIP) algorithm, which predicts patients for whom PGx testing would identify one or more evidence-
based, actionable drug–gene, drug–drug–gene, or drug–gene–gene interactions (EADGIs). PIP scores
generated for 36,511 patients were assessed according to the results of PGx multigene panel testing.
PIP scores versus the proportion of patients in whom at least one EADGI was found were 22.4% vs.
22.4% (p = 1.000), 23.5% vs. 23.4% (p = 0.6895), 30.9% vs. 29.4% (p = 0.0667), and 27.3% vs. 26.4%
(p = 0.3583) for patients tested with a minimum of 3-, 5-, 14-, and 25-gene panels, respectively. These
data suggest a striking concordance between the PIP scores and the EAGDIs found by gene panel
testing. The ability to identify patients most likely to benefit from PGx testing has the potential to
reduce health care costs, enable patient access to personalized medicine, and ultimately improve
drug efficacy and safety.

Keywords: pharmacogenomics; population health; adverse drug events; phenoconversion;
pharmacogenetics; precision medicine; medication management

1. Introduction

With the introduction of the Right Drug Dose Now Act in the United States Congress [1],
in order to address the barriers into integrating pharmacogenomic (PGx) testing into clinical
practices, it is clear that PGx is becoming a priority for informing drug therapy decisions.
One of the major goals of this new legislation is to reduce adverse drug events caused
by evidence based, actionable drug–gene interactions (EADGIs), which for the purposes
of this study are drug–gene interactions (DGIs), drug–drug–gene interactions (DDGIs),
and drug–gene–gene interactions (DGGIs), with the drug or dose change guidance deter-
mined by the U.S. Food and Drug Administration (FDA) or the Clinical Pharmacogenetics
Implementation Consortium (CPIC) category A or B guidelines [2,3]. Meeting this goal
necessitates the use of genotyping and evidence-based PGx guidelines to predict patients’
responses to medications and toxicity risks [2,4,5]. Panel-based PGx testing can be used
in concert with a clinical decision support tool (CDST) to guide treatment, either contem-
poraneously or as new indications arise [6]. Preemptive PGx has the potential to enable
informed decisions for many patients [7], as PGx variants, resulting in an atypical drug
response, are highly prevalent, exceeding 99% [8,9]. However, the high cost and the lack of
infrastructure both remain barriers to the preemptive testing of all patients [10].

Automated algorithms that identify potential EADGI risks have shown a utility in
determining which patients would benefit most from PGx testing [11–13]. Invitae’s CDST
YouScript, uses a patented PGx interaction probability (PIP) score to predict how likely a
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patient is to have an EADGI [14]. The PIP score highlights patients most likely to benefit
from PGx testing based on their medications and the prevalence of population-based phe-
notypes that may result in an EADGI [11,13,15]. PGx-guided medication management for
patients with medications that would increase the PIP score has resulted in a significant
decrease in hospitalizations, emergency department visits, and healthcare costs in an obser-
vational study [11]. In a prospective randomized trial of patients aged 50 years and older,
PGx profiling with CDST guidance in drug therapy showed reduced re-hospitalizations
and emergency department visits when compared with medication management using a
standard drug information resource, both study arms with pharmacist support [13]. For
patients hospitalized with COVID-19, moderate (25–50%) or high PIP scores (>50%) with
no PGx testing were associated with longer lengths of stay than those whose PIP scores
were low (<25%), while risk adjustment factor (RAF) scores, a standard measure of patient
complexity, were not associated with the length of stay [16].

As the incidence of complex diseases that require polypharmacy is increasing, as-
sessing, and mitigating PGx risk can reduce the length of hospital stays, decrease the
healthcare costs, and improve patient outcomes. The aim of this study is to further validate
the accuracy of the PIP score in predicting patients who may have EADGIs and would
benefit most from PGx testing. This retrospective analysis of approximately 36,000 patients
compared the pretest PIP scores with the PGx multigene panel test results and highlighted
the common risks detected.

2. Materials and Methods
2.1. Study Population

Individuals residing in the United States, who underwent provider-ordered PGx
testing, at minimum for CYP2C19, CYP2C9, and CYP2D6 through Invitae (Seattle, WA,
USA previously Genelex) from May 2013 to March 2022, were included in the study. The
specific PGx genes tested varied, ranging from 3 to 25 genes based on provider ordering
preferences and the tests that were available at the lab. At the time of testing, patients must
have had at least one medication reported on their requisition form or have had a current
medication list sourced from the attached electronic health record, in order to allow for the
calculation of PIP scores based on the medication regimens. A complete list of the drugs
used to calculate the PIP scores in this study, and their respective clinical areas is available
in the Supplementary Material (Table S1).

All patient data were de-identified and recorded in a Health Insurance Portability
and Accountability Act (HIPAA)-compliant electronic database. Review and analysis of
de-identified and aggregated data were approved for waiver of authorization by WCG IRB
(Puyallup, WA, USA).

2.2. YouScript Algorithm: Pharmacogenomic Interaction Probability

PIP scores were calculated for each patient as previously described [15,16]. Briefly,
each PIP score was generated based on two sets of information: (1) the list of medications
prescribed to the patient and (2) the prevalence of certain pharmacokinetic and pharma-
codynamic phenotypes in the North American population. Race and ethnicity were not
accounted for in the PIP scores due to the limitations in the self-reported patient data. In
addition, age was not factored into calculating the PIP scores as this would not impact
EADGI detection, unless a criterion, such as Beers was applied, and this optional factor
was not included in this analysis. The PIP algorithm used this information to calculate the
probability that one or more EADGIs with moderate, major, or contraindicated severity
would be detected for each patient (Figure 1). Moderate EADGIs can result in substantial
clinical effects and are associated with clinically actionable recommendations, such as
adjusting a dose or prescribing an alternative drug. Major or contraindicated EADGIs are
typically associated with drug change guidance or drug avoidance, when the risks of using
a particular drug likely outweigh the benefits. Actionable recommendations are based on
FDA labeling or CPIC guidelines category A or B [2,3].
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Figure 1. Workflow for calculating PIP scores. a The ability to detect the presence of an increased
interaction severity for any EADGI or to identify any EADDGIs and EADGGIs is based on the
YouScript knowledge base and patents [14]. b Only phenotypes such as ultrarapid metabolizer,
intermediate metabolizer, or poor metabolizer with an increased interaction severity, are included in
Step 2.

Certain interactions were not included in the PIP score calculations, including interac-
tions that required monitoring and interactions that would not increase the severity of an
already detected drug–drug interaction because the added information from PGx testing
would not change the clinical management.

Importantly, phenoconversion, predicted by incorporating published evidence in
changes in the area under the curve (AUC) for DGGIs and DDGIs, was accounted for in
PIP scores.

Another YouScript algorithm was used to determine the likelihood and severity of
all potential EADGIs (i.e., DGIs, DDGIs, DGGIs) plus additional drug–drug interactions
(DDIs) and drug–drug–drug interactions (DDDIs).

2.3. Analysis

For each individual in the cohort, two PIP scores were calculated. First, a 25-gene
PIP score was calculated using the medications listed for the patient at the time of testing.
However, because the 25-gene PIP score did not necessarily reflect the genes selected by
the clinicians, or the genes available at the time of testing, the second PIP score was an
adjusted PIP score, as determined using only the PGx genes for which the patient received
a laboratory test. After PGx testing, interpreted phenotypes and the presence of EADGIs
were determined for each patient.

To validate the performance of the PIP algorithm, the adjusted PIP scores were com-
pared with the proportion of patients who were determined, by PGx testing, to have at
least one EADGI (i.e., EADGI rate). This comparison was made in the overall cohort (i.e.,
3–25 genes ordered) and in the subgroups of patients who had testing with a minimum set
of 5, 14, or 25 genes. In the 5-gene group, patients had to have had at least the three base
genes plus CYP3A4 and CYP3A5 ordered by their clinicians. In the 14-gene group, patients
had to have had at least the genes in the 5-gene panel plus CYP2B6, CYP4F2, SLCO1B1,
TPMT, DPYD, HLA-B*57:01, IFNL3, UGT1A1, and VKORC1 ordered. The 25-gene panel
included all genes in the 14-gene panel plus ADRA2A, COMT, CYP1A2, F2, F5, GRIK4,
HTR2A, HTR2C, MTHFR, NAT2, and OPRM1. Of note, the PIP scores and presence of EAD-
GIs were based on all the genes ordered from the 25 gene list and the listed medications,
instead of being solely based on the minimum set of genes.

For the entire cohort, the EADGIs determined by PGx testing were categorized accord-
ing to the interaction level, estimated change in AUC, and the primary clinical area. The
AUC change was based on the appropriate published literature for any given interaction.
The primary clinical area was assigned according to the most commonly used indication
for each drug, as determined by Invitae’s clinical PGx pharmacist team, utilizing patient-
friendly headings with the Anatomical Therapeutic Chemical (ATC) classification system
as a guide [17]. The number needed to test (NNT), or how many patients who would need
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to be tested to identify one EADGI, was calculated based on the number of patients found
by PGx testing to have EADGIs.

The statistical significance of a single proportion, compared to a population estimate,
was determined using the z-test with a two-sided alpha level of 5% [18]. A p-value of less
than 0.05 indicated statistical significance, and a greater value indicated that no evidence of
a significant difference was found.

3. Results
3.1. Characterization of the Study Population

Among the 36,511 patients included in the cohort, 56.3% were female, 47.2% were
white, and the mean age was 61 years (range, 0–110 years) (Table 1). The mean number
of medications, including vitamins and supplements, per person was 9.4 (range, 1–62).
Although more than three-quarters of patients (78.4%) had the 5-gene minimum gene panel
ordered, only 8.7% and 5.7% of patients had the 14- or 25-gene panel ordered, respectively.
The characteristics of individuals in these three subgroups were generally similar to those
in the overall cohort; however, race and ethnicity were largely unknown in the 14- and
25-gene panel subgroups, and the mean age and the mean number of medications were
lower in the 25-gene panel subgroup than in the others. The overall variant phenotype rate
was high, with 100% of the tested patients having at least one variant detected when at
least 14 genes were assessed.

Table 1. Patient characteristics.

Minimum No. of Genes in Panel 3 (All Study
Patients) 5 14 25

Minimum Genes Included in Panel
CYP2C19,
CYP2C9,
CYP2D6

CYP2C19,
CYP2C9,
CYP2D6,
CYP3A4,
CYP3A5

CYP2C19, CYP2C9, CYP2D6,
CYP3A4, CYP3A5, CYP2B6,
CYP4F2, SLCO1B1, TPMT,

DPYD, HLA-B*57:01, IFNL3,
UGT1A1, VKORC1

CYP2C19, CYP2C9, CYP2D6,
CYP3A4, CYP3A5, ADRA2A, COMT,
CYP1A2, CYP2B6, CYP4F2, DPYD,

F2, F5, GRIK4, HLA-B*57:01, HTR2A,
HTR2C, IFNL3, MTHFR, NAT2,

OPRM1, SLCO1B1, TPMT, UGT1A1,
VKORC1

No. of Patients 36,511 28,613 3192 2068

Mean Age, years * 61 61 60 53

Age Range, years *,** 0–110 0–110 0–101 0–95

No. of Patients ≥ 65 years (%) 18,124 (49.6) 14,603 (51.0) 1721 (53.9) 758 (36.7)

Sex *, No. (%)

Female 20,554 (56.3) 16,298 (57.0) 1674 (52.4) 1075 (52.0)

Male 14,360 (39.3) 10,995 (38.4) 1215 (38.1) 691 (33.4)

Unknown 1597 (4.4) 1320 (4.6) 303 (9.5) 302 (14.6)

Race *, No. (%)

Black 2968 (8.1) 2478 (8.7) 44 (1.4) 44 (2.1)

Asian 387 (1.1) 346 (1.2) 14 (.4) 14 (0.7)

White 17,215 (47.2) 13,339 (46.6) 614 (19.2) 612 (29.6)

Hispanic 3413 (9.3) 2520 (8.8) 74 (2.3) 72 (3.5)

Jewish (Ashkenazi) 145 (0.4) 120 (0.4) 4 (0.1) 4 (0.2)

Unknown 12,383
(33.9) 9810 (34.3) 2442 (76.5) 1322 (63.9)

Mean No. of Medications per
Patient (Range)

9.4
(1–62)

9.8
(1–62)

9.5
(1–62)

9.0
(1–62)

Mean No. of Variants or Variant
Phenotypes per Patient 4.0 3.6 10.4 10.8

≥1 Variant or Variant Phenotype, % 96.9 97.7 100 100

* Age, sex, and race were self-identified on the test order form. ** “0” indicates patient either did not have a date
of birth recorded (n = 4) or was <1 years old (n = 2).
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Among all the patients, 30,471 (83%) were taking at least one high-impact PGx med-
ication that could result in an EADGI (Figure 2). Almost 60% of patients were taking
medications that impacted more than one clinical area. EADGIS were identified in the
clinical areas of behavioral health, cardiology, pain management, hematology and oncology,
infectious disease, gastroenterology, urology, transplant, reproductive and sexual health,
neurology, rheumatology, endocrinology, and miscellaneous. Of note, 2270 patients (7.4%)
were taking medications with a known PGx impact in behavioral health, pain management,
and cardiology concurrently.
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3.2. Comparison of PIP Scores to PGx Test Results

Among the entire cohort (with a minimum of three genes tested), the mean PIP and
the mean adjusted PIP scores were 26.4% and 22.4%, respectively, and 22.4% of patients
(p = 1.0000) were determined by PGx testing to have had at least one EADGI (Table 2). For
a subset of patients, 65 years and older (n = 18,124), the mean PIP and the mean adjusted
PIP scores were 32.6% and 27.3%, respectively, and 27.3% of the patients (p = 1.0000) were
determined by PGx testing to have at least one EADGI. Notably, 11,861 patients (32.5%) had
an adjusted PIP score of 0.0%, which indicated that they were taking no medications with a
high-evidence PGx impact at the time of testing. When these patients were appropriately
removed from the analysis, the mean PIP score among the remaining 24,650 patients
rose to 33.2%, and 33.2% of the patients (p = 1.0000) were found to have had at least one
EADGI, resulting in an NNT of 3.0. A total of 17,703 patients had an adjusted PIP score of
>25%, which based on the previous studies, indicated a moderate (26–50%) to high (>50%)
likelihood of an EADGI being detected [15,16]. Among the subgroups of patients, who had
testing with a minimum of 5, 14, and 25 genes, no significant differences were observed
between mean adjusted PIP scores and EADGI rates (Table 2).

Table 2. PIP scores and EADGIs detected.

Minimum No. of
Genes Tested

No. of
Patients

Mean PIP Score
(25 Genes)

Mean Adjusted
PIP Score *

(to Minimum Genes
Tested per Patient)

EADGI Rate ** (No.
of Patients with at
Least One EADGI)

NNT

p-Value
(Mean Adjusted PIP
Score vs. % EADGIs

Detected)

3 36,511 26.4% 22.4% 22.4% (8174) 4.5 1.0000

5 28,613 27.5% 23.5% 23.4% (6707) 4.3 0.6895

14 3192 31.0% 30.9% 29.4% (937) 3.4 0.0667

25 2068 27.4% 27.3% 26.4% (545) 3.8 0.3583

Abbreviations: evidence-based, actionable drug–gene interaction, EADGI; number needed to test, NNT; pharma-
cogenetic interaction probability, PIP. * The adjusted PIP score was calculated using a Python script that created a
small rounding difference. ** Determined by testing, based on FDA labeling or CPIC guidelines category A or B.



J. Pers. Med. 2022, 12, 1972 6 of 13

3.3. Characterization of All Interactions

Figure 3 shows all interactions stratified according to type and severity per patient.
The percentage of patients, with at least one interaction, increased as the adjusted PIP
score threshold increased. A moderate-risk PIP score of >25% is the current minimum in
the two studies that are in process, which utilize the PIP score. Patients with DDGIs or
DGGIs (i.e., phenoconversion) comprised 5.9% of all patients and 14.7% of all patients with
an EADGI. For these patients, the mean adjusted PIP score was 43.2%, with 43.3% of the
patients (p = 0.7882) having at least one EADGI.
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Figure 3. Comparative data on type and severity of interactions. If a patient had multiple identified
interactions, only the interaction with the highest severity rating was considered in the frequency
analysis per section. Abbreviations: drug–drug–drug interaction, DDDI; drug–drug interaction, DDI;
drug–gene interaction, DGI; drug–drug–gene interaction, DDGI; drug–gene–gene interaction, DGGI;
pharmacogenetic interaction probability, PIP.

A total of 9804 EADGIs were detected in 9134 patients; 2444 (24.9%) of these were
major or contraindicated interactions. Table 3 shows the breakdown of EADGIs by level of
severity, according to the clinical area with the most commonly used indication for each
drug. Behavioral health had the highest proportion of major or contraindicated EADGIs
(45.3%) followed by cardiology (35.9%) and pain management (18.7%).

Table 3. EADGIs according to clinical area.

Clinical Area
No. (%) of

Moderate EADGIs
(n = 7360)

No. (%) of Major or
Contraindicated EADGIs

(n = 2444)

No. (%) of All EADGIs
(Moderate, Major,
Contraindicated)

(n = 9804)

Behavioral Health 765 (10.4) 1106 (45.3) 1871 (19.1)

Cardiology 3230 (43.9) 877 (35.9) 4107 (41.9)

Pain Management 470 (6.4) 456 (18.7) 926 (9.4)

Hematology and Oncology 37 (0.5) 3 (0.1) 40 (0.4)

Infectious Disease 0 2 (0.1) 2 (0.0)

Gastroenterology 2634 (35.8) 0 2634 (26.9)

Urology 108 (1.5) 0 108 (1.1)
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Table 3. Cont.

Clinical Area
No. (%) of

Moderate EADGIs
(n = 7360)

No. (%) of Major or
Contraindicated EADGIs

(n = 2444)

No. (%) of All EADGIs
(Moderate, Major,
Contraindicated)

(n = 9804)

Transplant 8 (0.1) 0 8 (0.1)

Reproductive and Sexual
Health 16 (0.2) 0 16 (0.2)

Neurology 42 (0.6) 0 42 (0.4)

Rheumatology 0 0 0

Endocrinology 0 0 0

Miscellaneous 50 (0.7) 0 50 (0.5)

Abbreviation: evidence-based, actionable drug–gene or drug–drug–gene interaction, EADGI.

Medications across multiple clinical areas were typically the cause of DDGIs involving
a cumulative impact on the AUC (Table 4), thus causing a greater change in drug exposure
than in binary interactions.

Table 4. Ten most common EADDGIs (i.e., phenoconversion) with cumulative impact on AUC.

Affected Drug Gene Drug 2
AUC Change:
Affected Drug

+ − Gene

AUC
Change: Affected
Drug + − Drug 2

Estimated AUC
Change: Affected Drug

+ Gene + Drug 2

clopidogrel
(metabolite)

CYP2C19
Intermediate
Metabolizer

tramadol −31–50% −31–50% −51–80%

citalopram CYP2C19 Rapid
Metabolizer esomeprazole −31–50% 26–75% −0–30%

clopidogrel
(metabolite)

CYP2C19
Intermediate
Metabolizer

oxycodone −31–50% −31–50% −51–80%

amitriptyline
CYP2D6

Intermediate
Metabolizer

bupropion 26–75% 26–75% 76–200%

clopidogrel
(metabolite)

CYP2C19
Intermediate
Metabolizer

morphine −31–50% −31–50% −51–80%

metoprolol
CYP2D6

Intermediate
Metabolizer

dronedarone 76–200% 26–75% >200%

clopidogrel
(metabolite)

CYP2C19
Intermediate
Metabolizer

hydrocodone −31–50% −31–50% −51–80%

clopidogrel
(metabolite)

CYP2C19 Poor
Metabolizer tramadol −51–80% −31–50% −81–100%

amitriptyline CYP2D6 Poor
Metabolizer bupropion 76–200% 26–75% >200%

citalopram CYP2C19 Rapid
Metabolizer fluvoxamine −31–50% 26–75% −0–30%

Abbreviation: area under the curve, AUC.

Medications found to have EADGIs were ranked according to the frequency with
which they were prescribed within a calendar year, as determined by the 2019 ClinCalc
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DrugStats Database [19]. The top five drugs with EADGIs are shown in Table 5, and the
top five drugs with major or contraindicated EADGIs are shown in Table 6. Codeine
and tramadol were two of the medications most commonly involved in major EADGIs.
Clopidogrel was the second most common medication to have a major EADGI, while es
(citalopram) was most likely to flag a major EADGI (Table 6).

Table 5. Top five medications with EADGIs.

Drug
(Clinical Area)

No. of Moderate
EADGIs

Proportion of All
EADGIs

Medication PIP
Score NNT Rank among Top 200 Most

Commonly Prescribed *

metoprolol
(Cardiology) 2852 29.1% 48% 2.1 5

omeprazole
(Gastroenterology) 1673 17.1% 29% 3.4 8

es(citalopram)
(Behavioral

Health)
1038 10.6% 32% 3.1 19, 30

(10 combined)

clopidogrel
(Cardiology) 872 8.9% 29% 3.4 36

pantoprazole
(Gastroenterology) 635 6.5% 29% 3.4 16

Abbreviation: evidence-based, actionable drug–gene or drug–drug–gene interaction, EADGI. * Drugs are ranked
according to the 2019 ClinCalc DrugStats Database [19].

Table 6. Top five medications with major or contraindicated EADGIs.

Drug
(Clinical Area) No. of EADGIs

Proportion of Major
or Contraindicated

EADGIs

Medication PIP
Score NNT Rank among Top 200 Most

Commonly Prescribed *

es (citalopram)
(Behavioral

Health)
966 39.5% 32% 3.1 19, 30

(10 combined)

clopidogrel
(Cardiology) 873 35.7% 29% 3.4 36

Tramadol
(Pain

Management)
305 12.5% 9% 11.1 35

codeine
(Pain

Management)
98 4.0% 9% 11.1 173

amitriptyline
(Behavioral

Health)
76 3.1% 50% 2.0 94

Abbreviations: evidence-based, actionable drug–gene or drug–drug–gene interaction, EADGI. * Drugs are ranked
according to the 2019 ClinCalc DrugStats Database [19].

4. Discussion

The results from this study, of more than 36,000 patients, demonstrate that the PIP score
is an accurate predictor of how frequently EADGIs are detected, based on the comparison
with PGx testing results. Importantly, the accuracy of the adjusted PIP scores to PGx test
results was comparable regardless of the number of minimum genes tested. Taken together,
these data demonstrate that the use of a CDST, with an embedded PIP score calculator,
to identify patients who would benefit most from PGx testing is a practicable alternative
to universal preemptive testing. PGx-guided medication management has the potential
to improve the safety and efficacy of drugs and reduce inappropriate use of multiple
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medications for all patients [20]. In fact, the prevalence of variants in our cohort ranged
from 97% to 100%, similar to larger studies indicating that >99% of the population carries at
least one genetic variant that results in an atypical response to at least one medication [8,21].
As health care institutions and payers consider the benefits of PGx-guided prescribing,
streamlining costs and resources remains a priority. In a prior study, comparing patient
identification via manual review versus utilization of the PIP algorithm, the number of
patients identified as being likely to test positive for a clinically significant PGx interaction
was increased by over two-fold [15].

The findings from this study also demonstrate the importance of implementing PGx-
guided medication management with a more global approach. Traditionally, reporting has
been limited to a single or a few genes, based on a test order (given that reimbursement
for PGx testing has historically been for single drug–gene pairs), to a panel targeted to
a specific clinical area, such as behavioral health, or to limited conditions, such as major
depressive disorders. This trend is consistent in this cohort, with only 8.7% and 5.7% of
patients having the 14- or 25-gene panel ordered, respectively. However, many PGx testing
laboratories typically run multigene panels, as high-throughput assays can reduce the
overall cost and turnaround times without compromising sensitivity and specificity [22].
Unfortunately, most commercial payers have not followed suit even though PGx panels
provide more actionable information that can lead to an improved medication management
and to reduced adverse outcomes. Another limitation of the current ordering and reporting
practices is that only EADGIs, for a single clinical area, are reported despite the potential
impact in other clinical areas. In this study, the most common clinical area crossover, for
drugs with EADGIs, was observed for behavioral health, pain management, and cardiology,
and 7.4% of the patients tested were taking at least one medication with a known EADGIs
in each of these clinical areas. By reporting on only one indication or clinical area, the
potential PGx impact of medications, prescribed either contemporaneously or in the future,
may be missed. Policies that influence laboratories to report only partial results create
potentially avoidable morbidity and mortality risks, raising serious ethical concerns [23].
Furthermore, because some payers will only reimburse one panel test for the lifetime of a
patient, the broadest possible testing should be considered to optimize lifelong benefit.

For the 25% of EADGIs detected in our study that were major or contraindicated, a
different medication would have been recommended because the potential risk outweighed
the benefit. The the top five medications, with major or contraindicated EADGIs, were es
(citalopram), clopidogrel, tramadol, and codeine. The PIP score for a patient simultaneously
taking es (citalopram), clopidogrel, and codeine/tramadol was 62%, meaning an EADGI
would be identified more often than not at the time of testing.

Importantly, many of these medications have interactions with the same gene but are
used to treat across different clinical areas. For example, CYP2C19 has established EADGIs
with 21 medications used in behavioral health, cardiology, gastroenterology, infectious
disease, neurology, pain management, and reproductive and sexual health. This includes
es (citalopram) (PIP score, 32%; NNT, 3.1) and clopidogrel (PIP score, 29%; NNT, 3.4). It
was reported that patients with the most extreme CYP2C19 metabolizer phenotypes were
increased by approximately 9% in suicide victims taking es (citalopram) when compared
with a control population [24]. Another study in children using es (citalopram) showed
that testing 463 patients would prevent one suicide or an attempt [25]. Both illustrate the
potential serious clinical repercussions of using disease-specific PGx medication guidance
instead of a comprehensive PGx-guided medication management. Similarly, it was es-
timated in a 1000-patient cohort that if all patients had CYP2C19 genotyping, to guide
clopidogrel prescribing over a one-year period, 20 deaths due to cardiovascular disease
would be averted—a 27% decrease, or one life saved for every 50 patients tested [26].
Despite this, PGx testing for patients on clopidogrel is not yet routine, even though in
2010 the FDA issued a boxed warning for clopidogrel regarding the dangers for patients
with CYP2C19 variants [27]. This highlights safety concerns with clinicians ordering PGx
testing for CYP2C19 to inform the prescribing of behavioral health medications, without
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considering other interactions, which could have an impact on medications prescribed (by
other providers) for other indications (e.g., clopidogrel). A recent study of the impact of a
behavioral health-focused PGx panel test in veterans showed a faster time to remission of
major depressive disorders and a reduction in the medications that would cause a known
EADGI in behavioral health treatments; however, no mention was made of applying the
information for EADGIs outside of that clinical area of behavioral health [7]. Similarly,
codeine and tramadol (for each medication: PIP score, 9%; NNT, 11) for pain management
both have known interactions with CYP2D6. However, CYP2D6 currently has 51 EADGIs
for medications used in behavioral health, cardiology, gastroenterology, oncology and
hematology, infectious disease, neurology, reproductive and sexual health, and urology. In
2017, the U.S. President officially declared the opioid crisis a public health emergency [28],
and in 2021, CPIC published guidelines for personalizing many opioids, primarily based
on CYP2D6 [29]. When patients in opioid dependency treatment had PGx testing, more
than 20% were found to be CYP2D6 poor or ultrarapid metabolizers, an approximately
three-fold higher frequency than in a typical U.S. population [30,31]. A unmanaged phar-
macogenomic risk is likely impacting 8–12% of people using opioids for chronic pain who
then develop an opioid use disorder [32].

With a mean medication count of 9.4 in the cohort, co-medication is also of concern.
Importantly, PIP scores account for phenoconversions, specifically those caused when
pharmacokinetic drug interactions amplify or attenuate an individual’s inherent genetic
ability to metabolize medications [33,34]. Drug-mediated phenoconversion was shown
to impact one in four patients treated with PGx medications while taking an inhibitor
or inducer of the same enzyme [35]. Similarly, the impact of phenoconversion on PGx
cytochrome P450 (CYP) metabolism was shown to change the phenotype and consequently
the clinical management of approximately 15% of acute care psychiatric inpatients [36]. Of
the EADGIs that were the 10 most common phenoconversions detected, with a cumulative
impact on the AUC, 60% involved medications in different clinical areas, likely prescribed
by different providers. Furthermore, the percentage of patients with EADGIs, in which
multiple drugs or genes resulted in more severe interactions than the binary interactions
typically flagged, ranged from 6% to 8.2%, depending on the minimum PIP score threshold.
This once again highlights the need for a more global approach to PGx testing, including a
comprehensive consideration of medications, not just those prescribed by one clinician in
one clinical area, or for a single disease.

The utilization of PGx testing has also been shown to reduce the costs associated
with medication management and any adverse reactions for the medications, which are
highlighted in this study with the most major or contraindicated EADGIs. For example,
implementation of PGx testing and management in opioid prescribing could save an
estimated USD 14,000 per patient annually [37]. Further, CYP2C19 genotype-guided
antiplatelet therapy was found to likely reduce healthcare spending by an estimated
USD 8525 in costs per patient [38]. Given the current Medicare reimbursement rate and
assuming the need to test 50 patients to save one life, this equates to an estimated cost of
USD 78,400 per life saved. Comparatively, assuming the lowest-cost statin was prescribed
for five years, the cost to save one life would be at least USD 133,000–54,600 more than the
cost to save one life with PGx-guided antiplatelet therapy [39]. Statin use is encouraged,
with quality measures tied to financial impact, but there is not a single quality measure for
genomics [40,41]. A recent model of quality-adjusted life year (QALY) analysis showed that
a PGx strategy might be considered cost-effective with an incremental cost-effectiveness
ratio (ICER) of EUR 60,000 per QALY when compared with no genetic testing for major
depressive disorders; CYP2D6 was cost-effective with an ICER of around EUR 47,000 per
QALY [7,42]. A recent study demonstrated that incremental costs were USD 1646 lower
with a gain of 0.04 QALYs when a multigene PGx panel was ordered instead of a single
gene test for CYP2C19 or CYP2D6 [43]. These studies often reported findings for no more
than a few genes and medications and did not account for the added lifetime value of the
panel for optimizing other medications. Future studies, exploring the cost-effectiveness
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across all clinical areas and across multigene panels may demonstrate even greater savings
and improved outcomes.

There is a financial and clinical case to be made for each of these examples, but when
the implications are considered more broadly, the case for PGx panels becomes increasingly
relevant. Since PGx test results are longitudinally constant, results can be preemptively
utilized with appropriate CDSTs at the point of care for the lifetime of the patient. This
will be further facilitated if Congressional efforts are successful in incentivizing updates
to electronic health record systems with the goal of ensuring that healthcare providers are
alerted to EADGIs when making prescribing decisions [1], similar to the existing drug and
allergy alerts. Currently, Medicare covers PGx panel testing for patients, if they are taking
medications or for a prescription that is under consideration that have a high-evidence
impact, while many commercial insurance plans do not. Although polypharmacy is more
common in older adults [44], the incorporation of CDSTs in PGx testing can provide early
identification of patients at a high risk of adverse health outcomes at any age, and it can
provide real-time evidence-based guidance on how to address EADGIs regardless of the
clinical area.

Limitations

Analysis was limited to data from the United States because the interpreted phenotype
distribution used relied on North American data [15] and the cohort sizes in North Amer-
ican countries, outside of the United States, were small. The data set used in this study
relied on test requisitions from physicians mainly in primary care, psychiatry, cardiology,
and pain management and thus may not have necessarily captured all of the most prevalent
interactions in the whole population. In addition, only reported data were analyzed, and
data regarding how often results were acted upon were not available. PGx data for the
minimum 3-gene panel are more established than those for genes in the larger panels; how-
ever, with expanded testing, more reliable data will be accumulated to advance evidence
for other genes. Although patient race and ethnicity are known to impact prevalence of
pharmacokinetic phenotypes, they are not currently accounted for in PIP scores. These
data are collected at testing; however, self-reported data cannot be verified at this time,
and phenotype prevalence data are not available for all tested genes. Efforts to incorporate
racial and ethnic variation in future studies will be implemented as reference data improves,
especially if use is expanded outside of North America.

5. Conclusions and Future Work

This is the largest study to date to demonstrate the validity of a probability-driven
algorithm that incorporates phenoconversion risk, specifically Invitae’s YouScript PIP score,
to identify patients who would most likely benefit from PGx testing. The advantages
of using this prescreening tool include automated incorporation of new and updated
guidelines and a more efficient use of health care resources in order to help optimize
medications across the entire patient care team. Prior studies have shown that the overall
impact of using PGx testing and YouScript includes reduced hospitalizations, emergency
department visits, and healthcare costs. Further validation of PIP scores must include the
clinical impact in addition to quantifying comparability with testing results. Future work
will also include additional validation in a broader population, randomized controlled
trials, and coverage of more clinical areas and crossovers.
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