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Abstract: The rapid increase in the number of genetic variants identified to be associated with
Amyotrophic Lateral Sclerosis (ALS) through genome-wide association studies (GWAS) has created
an emerging need to understand the functional pathways that are implicated in the pathology of
ALS. Gene-set analysis (GSA) is a powerful method that can provide insight into the associated
biological pathways, determining the joint effect of multiple genetic markers. The main contribution
of this review is the collection of ALS GSA studies that employ GWAS or individual-based genotype
data, investigating their methodology and results related to ALS-associated molecular pathways.
Furthermore, the limitations in standard single-gene analyses are summarized, highlighting the
power of gene-set analysis, and a brief overview of the statistical properties of gene-set analysis and
related concepts is provided. The main aims of this review are to investigate the reproducibility of the
collected studies and identify their strengths and limitations, in order to enhance the experimental
design and therefore the quality of the results of future studies, deepening our understanding of this
devastating disease.

Keywords: amyotrophic lateral sclerosis; genome-wide association studies; ALS pathology; gene-set
analysis; functional genomics

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a rare, motor neuron disease that is primarily
characterised by the loss of upper and lower motor neurons. The peak age of onset of
the disease is at 54–67 years old, although onset may occur at any age [1–4]. ALS is
progressively fatal, with typical survival of 2–5 years after the onset of the first symptoms;
however, 5–10% of the affected individuals survive more than 10 years [1,5,6]. Not only
do we lack a mechanistic understanding of ALS, but its prevalence is increasing with the
ageing of the world population [2,7], thus there is an increasing need to understand ALS
pathology and the underlying molecular pathways.

In recent years, discoveries of multiple Genome-Wide Association Studies (GWAS) to
ALS have provided new insights into the disease susceptibility and pathology [8–10]. As of
September 2022, the GWAS Catalog has published 345 variants and risk allele associations
with ALS [11]. Variants located in more than 30 genes have been discovered to be associated
with a high risk of ALS [12–16]. The first ALS-associated mutations were discovered in
the Cu/Zn superoxide dismutase 1 gene, SOD1, explaining 20% and 2% of familial and
sporadic ALS, respectively [17]. More recently, the hexanucleotide GGGGCC (G4C2) repeat
expansion (HRE) located within the first intron of the C9orf72 gene was characterised as
the most frequent cause of both familial and sporadic ALS [18]. Other genes linked to ALS
include fused in sarcoma FUS, and transactive response DNA-binding protein of 43 kD
TARDBP/TDP-43 [12]. Thus far, evidence supports a model implicating rare variants along
with non-genetic causes, such as environmental factors [4,19–21]. However, large GWAS
studies have suggested an intermediate genetic architecture for ALS that falls somewhere
in the middle of the spectrum of genetic pathology in terms of effect size and prevalence of
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risk variants lying between conditions such as schizophrenia (many common variants each
small effect sizes), and Huntington’s disease (rare large-effect variants located in a single
gene) [4,22–25].

Despite the fact that GWAS has identified multiple risk variants and ALS-associated
genes, our knowledge is very limited in terms of the affected functional ALS pathways and
the underlying pathology. Recent systematic reviews have aimed to explain ALS pathology,
through the investigation of the molecular pathways that are implicated in ALS based on
the collective knowledge and functional interpretation of multiple known ALS-associated
genes [12,25–27]. However, the discovery and analysis of the functional processes that are
implicated in ALS, through the review of the known ALS-associated genes is a complex
task, burdened by the heterogeneity of the disease [12,26].

Genome-wide gene-set analysis (GSA), also known as enrichment and pathway anal-
ysis, is an emerging powerful strategy to understand the genetic contribution to the phe-
notype in terms of the impact of genetic variants on biological pathways, using GWAS
summary statistics or individual-based genotype data [28,29]. In GSA, individual Single
Nucleotide Polymorphisms (SNPs) are summarized to whole genes, taking into account
the associations of multiple genetic markers, and genes are then summarized into gene
sets [29]. A gene set is any group of genes that share a common attribute. This attribute
can be, among others, a biological pathway, a network module, or a group of interacting
components, depending on the biological hypothesis. The aim of gene-set analysis is to test
the association between a gene set and a particular phenotype.

The scope of this review covers genome-wide association studies that employ gene-
set analysis in order to uncover biological mechanisms that are statistically associated
with ALS. The databases of PubMed and Google Scholar were used to identify relevant
peer-reviewed papers using the terms “amyotrophic lateral sclerosis”, “GWAS” and “gene-
set analysis”. The review is structured as follows: first, a summary of the limitations in
single-gene analysis is presented; then, a brief overview of the main statistical properties
and characteristics of GSA is provided, leading into a description and comparison of the
published gene-set analysis studies using ALS GWAS datasets to-date.

2. Limitations on Single-Gene Analysis

GWAS is a single marker analysis, testing independently the association of each single
variant to a phenotype. The first step towards the functional interpretation of a GWAS
study is to map genomic variants to genes, usually adding a window of 10–25 kb upstream
and downstream of each gene to also include associated regulatory regions of the gene.
After the gene mapping, tens of thousands of single-gene tests are performed to define their
contribution to the phenotype. Then, a portion of “significant” genes is chosen for further
interpretation and analysis. Single-gene analysis studies present a number of limitations.
Such limitations have been outlined in several review papers aiming to outline challenges,
approaches and future advances in gene expression gene-set analysis [28,30]. Genome-wide
GSA has derived from gene expression gene-set analysis, and it has been shown that the
two types of analysis have the same statistical properties [29]. We interpret some of these
limitations below under the prism of GWAS and incorporate key arguments collected from
related papers.

One common limitation present in both GWAS and single-gene/gene-level analyses is
the need for multiple testing correction strategies. GWAS and gene-level analyses are both
univariate analyses, testing millions or tens of thousands of associations of single variants
or genes, respectively, one at a time, under the assumption that each association test is
an independent event. In GWAS studies, it is standard practice to correct for family-wise
type I errors, using the Bonferroni correction. In gene-level studies, both conservative and
lenient methods, like Bonferroni and False Discovery Rate (FDR), are followed to correct
for multiple testing errors. However, being too conservative or too lenient can lead to the
exclusion of false negatives and the inclusion of false positives in the final table of results,
respectively. The choice of which threshold to apply can differ among authors, and this
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can contribute to low reproducibility results among studies, as different thresholds are
expected to lead to a different final results table of significant genes, and thus to different
interpretations [28].

Another challenge in single-gene analysis relies on the interpretation as well as a
potential bias on the final limited table of potentially hundreds of “risk”/“significantly-
associated” genes, depending on the threshold or the selection process. An obvious problem
in this case is the curse of dimensionality where the researcher needs to interpret and analyse
hundreds to thousands of “interesting” features (i.e., genes). Another challenge arises from
the fact that it is common for a certain amount of genes to be involved in multiple and
different biological pathways. These genes are called multi-functional and are estimated to
make up for the 26% of the overall annotated genes in Homo sapiens [28,31]. Thus, the gene
interpretation increases in complexity, and it is vulnerable to introducing a hypothesis-
driven bias which can lead to false conclusions [28].

Single-gene analysis cannot reveal functional groupings of multiple disease-associated
genes [28]. Various types and sources of functional groupings of genes exist, including
among others, biological pathways, cellular components, and disease phenotypes, de-
rived from biological annotation databases such as the Molecular Signatures Database
(MSigDB) [32,33], functional gene sets from the Gene Ontology (GO) [34], Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [35] and known disease-gene lists from Dis-
GeNET [36,37].

3. A Brief Overview of Gene-Set Analysis

Genome-wide GSA can overcome the previous limitations. Firstly, in a genome-wide
GSA, significance thresholds or hypothesis-derived exclusion criteria are not necessary in
the SNP-level or the gene-level analysis, in order to reduce the feature space. However,
in the following sub-Chapters and in the Discussion section, we mention ALS GSA studies
and GSA software that follow this approach at the gene level in order to narrow the number
of GSA results. In addition, the interpretation of the results becomes more straightforward
when the analysis is focused on several functional pathways. Lastly, we know that real-life
biological systems are multi-layered complex networks. Multiple genes are involved in
biological processes. GSA allows multiple subtle gene associations to emerge in a synergistic
way through a grouping of genes that share common attributes. Such subtle/nominal
gene associations would probably be discarded or overlooked as false negatives in a
single-gene analysis.

Previous review papers have been published with the aim to classify and evaluate
gene-set analysis methods as well as to categorise and elaborate on the different null
hypotheses and properties of each model. An excellent review that focuses on the statistical
properties and structure of genome-wide GSA is by De Leeuw et al. [29]. In this sub-chapter,
the main structure of GSA is summarized, and the main properties that categorise GSA
methods are mentioned; in addition, confounding factors that can affect the results of
GSA are discussed. The elements above are used to group and compare the GSA methods
employed by the collected ALS genome-wide GSA studies.

3.1. The Structure of Gene-Set Analysis

The aim of GSA is to calculate the association between a gene set and the phenotype
of interest. Here, we define a gene set as any group of genes that share a common attribute;
some examples include groups of genes that participate in the same biological pathway,
cellular component, or are linked to a specific disease or phenotype. This a priori knowledge
can be mined through biological databases such as MSigDB [32,33] or even can be predicted
using computational approaches like Machine Learning [25].

There is an extensive catalogue of published GSA/enrichment analysis software;
however, the core structure behind these tools is the same. GSA is divided into two
main stages:
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• Each SNP is assigned to a gene—using specific annotation files in order to map each
SNP into a gene region based on a kilobase window around the gene so that the
researcher can additionally include regulatory elements—and each gene is then tested
for its association with the phenotype.

• Genes are mapped to gene sets, and an association measure is computed for each
gene set.

After the first step, a gene-level matrix is constructed where the unit of analysis is the
genes. Each row in this matrix is a gene association measure and a label feature representing
whether gene X is part of gene set A (1: Gene X belongs in gene set A, 0: Gene X does not
belong in gene set A) [29]. When this matrix is complete, GSA conducts a bivariate test
between the label feature and the gene-level association measures [29].

3.2. Main Categories of Gene-Set Analysis Methods

The core GSA structure, different null hypotheses, gene/gene-set statistical measures,
and confounding factor correction strategies, among others, can all vary between GSA
approaches. This leads to differences in accuracy and power, and also in the biological
interpretation of results.

There are two main null hypotheses that differentiate GSA methods, which both
determine the statistical test on the gene-level matrix and affect the interpretation of the
results [38]. The first is called competitive. The competitive hypothesis considers all the
genes and tests whether the joint association of genes within a gene set A is greater than
the association of genes that do not belong in this gene set. The second null hypothesis
is called self-contained—it considers only the genes within a gene set A and tests if the
joint gene association has any effect on the phenotype at all [29,38]. The choice of the
null hypothesis affects the interpretation of the results fundamentally. Self-contained GSA
provides information only about the genes within the gene set, whereas competitive GSA
acknowledges the association signal of all genes and tests a hypothesis that can result
in biological meaningful conclusions [29]. However, competitive GSA is vulnerable to a
number of confounding factors like linkage disequilibrium (LD) [29]. De Leeuw et al. [29]
compared and evaluated a number of GSA methods and showed that competitive models
implemented in MAGMA (Multi-marker Analysis of GenoMic Annotation) and INRICH
(INterval enRICHment analysis) show good statistical performance, accounting for a
number of confounding factors.

A second attribute relates to the gene test statistic representation/computation among
GSA software. The selection of gene association measure relates to assumptions of the
underlying genetic architecture of the phenotype of interest [29]. The gene association is
represented by p-values or transformed p-values, usually computed through functions
using the mapped SNP p-values. A common approach has been to assign the highest asso-
ciated SNP p-value to represent the mapped gene association [29]. Some other approaches
include computing the mean association of all the mapped SNPs, or the mean association
of only the “top” SNPs that are mapped within a gene. MAGMA, a widely used gene-set
analysis command-line tool [39], integrates alternative gene association measures including
the SNP-wise multi-model where each gene is represented by the weighted mean/sum
of multiple models (e.g., mean SNP association, top SNP association) as well as Principal
Components Regression (PCR) where the disease phenotype is regressed on the principal
components of all mapped SNPs in a gene [39]. However, the only accepted input of PCR
is individual-level genotype data in a binary format used by PLINK software, so imputed
dosages/probabilities can not be used in this model yet. The SNP-wise multi-model can be
an ideal choice when the underlying genetic architecture of the phenotype is not known,
since it combines multiple models with different strengths and sensitivities.

A third important GSA characteristic that differentiates GSA methods, in terms of
statistical power, is the gene-set test statistic. The gene-set test statistics are categorised in
the following classes:
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• Mean-based, where the gene-set association measures are summarized using the mean
or sum of the gene associations.

• Count-based, where the genes are labelled as “significant” or “not significant”, and only
“significant” genes determined by a specific cut-off are considered in the gene-set
test statistic.

• Rank-based, where the genes in the gene-level matrix are ranked by their association
with the phenotype and then an overrepresentation of the genes that belong in the
gene set and also are at the top of that ranking is computed.

De Leeuw et al. [29] compared these methods through various simulations and showed
that mean-based methods demonstrate more powerful results than the rank- and count-
based methods. A reason for this loss of power in rank- and count-based methods is due
to a loss of information after the ranking and the categorisation of “significant” and “not
significant” gene sets based on a chosen cut-off [29].

3.3. Gene-Set Analysis Confounding

A number of confounding factors can affect the statistical performance of GSA methods
and lead to biased and false-positive results. Linkage disequilibrium (LD) is one factor that
has an effect on the SNP and gene-level association. SNPs, and therefore genes that are
inherited together because they are localised in the same genomic region, are in LD and are
therefore correlated. These gene–gene correlations need to be accounted for, so as to discern
a true gene association to the phenotype from association signals that stem from genes
that are in high LD with this true-causal gene [28,29]. The amount of LD among mapped
SNPs within a gene is called gene density. Another common confounding factor is gene
size, representing the number of SNPs that are mapped within a gene. The latter becomes
evident when a gene is chosen to be represented by the highest associated mapped SNP;
larger genes that contain more SNPs have a higher probability to contain a more highly
associated SNP by chance, in comparison with smaller genes [29].

GSA methods are also prone to population stratification [29], as each population with a
different ancestry is expected to have different allele frequencies, so using a heterogeneous
input GWAS cohort can affect the detection of true gene-set associations to the phenotype.
In this context, it is also important that accurate and comprehensive quality control strate-
gies are followed in the input genomic dataset, prior to the GSA, so that only high-quality
samples and variants are used for subsequent analysis [40].

4. Recent Approaches in ALS Genome-Wide Gene-Set Analysis Studies

This section aims to summarize, analyse and compare the experimental design and the
results of ALS GWAS studies that employ gene-set analysis as a method for the discovery
of functional biological pathways that have a statistically significant association with ALS.
Although some of the collected studies aim to understand the pathology of ALS using a
variety of genomic approaches and address multiple research questions, the main focus
of this section is on gene-set analysis results and methodologies. The main inclusion
criteria for the collection of the studies were to use ALS genomic data (either GWAS
summary statistics or individual-level genotype data) and to employ gene-set analysis for
the discovery of statistically associated groups of genes to ALS. For the latter reason, ALS
studies that used gene-set analysis tools only for gene-level results were not considered.
The structure of this section is the following: first, the collected studies are categorised
based on common features of their experimental design, and then the results of each study
are summarised. The ALS gene-set analysis results are compared while investigating their
reproducibility in the Discussion section.

In total, nine studies were considered relevant, shown in Table 1. The studies were
categorised based on their input data, meaning GWAS summary statistics or individual-
level genomic datasets and/or other types of data like expression Quantitative Trait Loci
(eQTLs) that were used as input for the gene-set analysis software. Specific features like
the number of ALS cases and controls, adding the citation of each specific study that
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published the input data for further information, as well as the ancestry of the input data,
are mentioned. Furthermore, the studies were compared in terms of the employed gene-set
analysis software and their different algorithms (described in more detail in Table 2). Lastly,
the source/database of the collected gene sets is included in the last column of Table 1.

Table 1. Current ALS GWAS studies that employ gene-set analysis (GSA) approaches. The ALS
GWAS-GSA studies are described by the cohort size of input data, the ancestry of the genomic
cohorts, the GSA software that is used, and, lastly, the source of the collected gene set annotations.
The studies are sorted by chronological order of publication. ALS: Amyotrophic Lateral Sclerosis, BP:
Biological Processes, eQTL: expression Quantitative Trait Loci, GO: Gene Ontology, GS: Gene Set,
GSA: Gene-Set Analysis, GWAS: Genome-Wide Association Study, KEGG: Kyoto Encyclopedia of
Genes and Genomes, MF: Molecular Function, MSigDB: Molecular Signatures Database, NA: Not
Available, PRS: Polygenic Risk Score.

Studies Input Data Ancestry GSA Software GS Annotation

[41] 27,205 cases and 110,881 controls [41–43]
eQTL data

European,
Japanese,
Chinese

FUMA,
MAGMA,

Downstreamer

G0, HPO,
REACTOME

[44] 20,806 cases and 59,804 controls [14]
eQTL data

dbGaP Ac. phs000424.v8.p2

European g:Profiler,
Enrichr,
GSEA

G0, KEGG

[45] 12,577 cases and 23,475 controls [20]
5605 cases and 24,110 controls [14]
2411 cases and 10,322 controls [14]

European PRS approach MSigDB

[46] 12,577 cases and 23,475 controls [20],
eQTL data [47]

European GSEA KEGG

[42] 12,577 cases and 23,475 controls [20],
1234 cases and 2850 controls,

431 cases and 567 controls, [42]

European,
Chinese,

Australian

MAGMA NA

[48] 276 ALS cases and 271 controls [49],
221 cases and 216 controls [50]

American,
Irish

WebGestalt GO

[51] 276 cases and 271 controls [49] American ICSNPathway KEGG, BioCarta,
GO BP, GO MF

[52] 276 cases and 271 controls [49],
221 cases and 211 controls [50]

American,
Irish

WebGestalt KEGG

[53] 250 cases and 250 controls Chinese Han WebGestalt KEGG

Table 2. Current gene-set analysis (GSA) software employed by the collected ALS GWAS-GSA
studies. Each GSA software is characterised by the type of input data, the null hypothesis (self-
contained/competitive), and the gene-set method, employed by each study. eQTL: expression
Quantitative Trait Loci, GS: gene set, GSA: Gene-Set Analysis, GWAS: Genome-Wide Association
Studies, KS: Kolmogorov–Smirnov.

Software Input Data Null Hypothesis GS Method Studies

Downstreamer p-values, eQTL Competitive Generalized least-squares regression [41]
Enrichr Gene list Competitive Overrepresentation/hypergeometric test [44]
FUMA eQTL & GWAS Competitive Overrepresentation [41]
g:Profiler Gene list Competitive Overrepresentation/hypergeometric test [44]
GSEA/i-GSEA p-values Competitive rank-based, (KS test) [44,46,51]
MAGMA Genotypes, p-values Competitive Linear regression [42]
WebGestalt Gene list Competitive Overrepresentation/hypergeometric test [48,52,53]
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Van Rheenen et al. [41] conducted the largest ALS cross-ethnic GWAS combining
European, Japanese and Chinese ancestry genomic data. The study conducts disease-
relevant cell and tissue-specific enrichment analysis tests on European ancestry summary
statistics, using FUMA [54]. FUMA incorporates MAGMA for the gene-level p-value
calculation and then tests if the expression of these genes is particularly enriched for tis-
sues and cell types using gene expression patterns from the Genotype–Tissue Expression
(GTEx) [41,54]. The cell type-specific enrichment analyses included single-cell RNA-seq
datasets of human-derived brain samples using FUMA and showed statistically signif-
icant enrichment for neurons [41]. False Discovery Rate (FDR) was used as a multiple
testing correction strategy in the tissue and cell type enrichment gene-set analyses with a
threshold of FDR < 0.05 [41]. In addition, the authors followed an extra gene-set analysis
approach using Downstreamer incorporating gene-level associations with multi-tissue
and brain-specific gene co-expression matrices [41,55]. The authors report ALS-related
statistically significant gene sets from the Human Phenotype Ontology (HPO) using the
brain-specific gene co-expression matrix, passing the Bonferroni multiple testing correction,
including cerebral cortical atrophy, abnormal nervous system electrophysiology and distal
amyotrophy [41]. Lastly, the authors tested for statistically significant biological processes
using Reactome and Gene Ontology gene sets. After Bonferroni multiple testing correction,
the brain-specific coexpression enrichment analysis identified membrane trafficking, intra-
Golgi and retrograde Golgi-to-endoplasmic reticulum (ER) trafficking and macroautophagy
as statistically significant gene sets that are associated with ALS [41].

Benyamin et al. [42] conducted a cross-ancestry meta-analysis to a large European an-
cestry summary statistics dataset [20], and to in-house generated Chinese ancestry genomic
data. They also used two Australian descent replication cohorts to validate their results.
The combined cohort revealed a novel ALS-associated locus, spanning the genes glutathione
peroxidase 3 (GPX3) and tumor necrosis factor alpha-induced protein 3-interacting protein
1 (TNIP1), a finding that was also replicated in the two Australian cohorts [42]. GPX3 is an
antioxidant molecule and shares a functional link with the superoxide dismutase 1 (SOD1),
a gene whose various mutations have been previously associated with ALS [56,57]. TNIP1
is also known to interact with the known ALS-associated gene optineurin (OPTN) [56],
and has also been associated with inflammation [42]. However, the study did not identify
any statistically significant biological pathway that was associated with ALS.

Saez-Atienzar et al. [45] followed a polygenic risk score (PRS) approach to gene-set
analysis using PRSice-2 [58]. Polygenic risk scores combine multiple variants to calculate a
part of an individual’s susceptibility to a particular phenotype, interpreted as the weighted
sum of the number of risk alleles for each individual [59]. Briefly, the authors used a
reference summary statistics dataset [20] to define the weights of risk alleles; then, these
risk allele weights were used on a second training individual-based genomic dataset [14],
in order to calculate PRS estimates on biological gene sets [45]. Lastly, they used a third
testing set of individual-based genotype data to validate their results [45]. The authors
used three gene-set categories from MSigDB, including the hallmark, curated and Gene
Ontology gene sets [45]. Out of the 7296 MSigDB gene sets, the authors report 13 statistically
significant gene sets that were replicated across their training and testing genomic sets [45].
These 13 pathways after semantic similarity analysis are represented by the following
biological categories: neuron projection morphogenesis, membrane trafficking, and signal
transduction mediated by ribonucleotides [45].

Several of the other collected studies combined large ALS GWAS data with expression
Quantitative Trait Loci (eQTL) data, using Summary data-based Mendelian Randomization
(SMR). SMR integrates GWAS and molecular traits data like gene expression, to test
the chance that SNPs that increase the risk of a disease do so through modifying gene
expression [44,60]. Iacoangeli et al. [44] employ a large GWAS meta-analysis dataset as
well as publicly available eQTLs for the frontal cortex, cortex, cerebellum and cerebellar
hemisphere. The study identifies SCFD1 as the only statistically significant gene that
seems to increase ALS risk though eQTLs (SMR p-value = 4.29 × 10−6) [44]. SCFD1 is a



J. Pers. Med. 2022, 12, 1932 8 of 17

Section 1/Munc18 (SM)-like protein localized in the autolysosome that plays a key role
in SNARE complex formation and autophagosome-lysosome fusion [61], as well as in
retrograde Golgi-to-endoplasmic reticulum (ER) transport [62]—processes that have been
previously linked to ALS pathology. The functional enrichment analyses were conducted
on a subset of 382 genes, which were deemed to show levels of association with the
SCFD1 trans-eQTL hotspot [44]. For their gene functional enrichment analyses, they used
methods like the Enrichr, gProfiler, and GSEA [63–65]. The authors identified various
processes such as the retrograde vesicle-mediated protein transport from the ER-to-Golgi,
glutamatergic synapse and the regulation of synaptic vesicle docking and exocytosis, to be
statistically relevant to SCFD1 eQTL expression [44]. Du et al. [46] also use SMR to combine
ALS GWAS meta-analysis data [20] with eQTLs [47]. The authors subjected the SMR
results to pathway analysis using the proposed GSEA method of Wang et al. [65] and 162
biological pathways from the KEGG database [46]. They report seven ALS-associated KEGG
pathways, including peroxisome, citrate cycle (TCA cycle, Krebs cycle), tight junction, PPAR
signaling pathway, SNARE interactions in vesicular transport, arachidonic acid metabolism,
and glycolysis-gluconeogenesis [46]. The study conducted 5000 permutations to calculate
empirical p-values, although details are not provided concerning any multiple testing
correction of the gene-set analysis results.

In Table 1, two early GSA studies are listed that employ the same input GWAS datasets,
having a small cohort size of American and Irish descent. The most recent study is by Deng
et al. [48], who conducted an ALS multi-ancestry functional enrichment study to identify
reproducible ALS-related genetic factors. The authors use the American and Irish GWAS
summary statistics datasets to map SNPs to genes using a 20 kb window upstream and
downstream of each gene [48]. Each gene was represented by the minimum mapped SNP
p-value. Then, they filtered the mapped genes in each dataset using a p-value < 0.01 thresh-
old and subjected those genes to gene-set analysis using WebGestalt (WEB-based GEne
SeT AnaLysis Toolkit) [66], an overrepresentation software performing hypergeometric
tests [48]. They report 34 Gene Ontology biological processes shared from the Irish and
the American studies [48]. Lastly, the authors report the nervous system developmental
pathway as the most associated with ALS pathology, as it was related to the majority of the
identified ALS-associated pathways [48]. Furthermore, Shang et al. [52] employed the same
American and Irish descent datasets to conduct enrichment analysis using also WebGestalt
for overrepresentation testing. That study used the ProxyGeneLD to calculate gene-level
associations, taking into account linkage disequilibrium (LD) patterns as well as correcting
for other confounding factors such as gene length [67]. The authors further filtered their
gene pool by applying a p-value < 0.05, leaving 1124 and 897 genes in the American and
the Irish datasets, respectively [52]. These genes were used as input for the WebGestalt
software as well as KEGG pathways for gene set annotation. The authors used FDR for
a multiple testing correction (FDR < 0.05), and they removed pathways that contained
less than 20 genes and more than 300 genes in order to avoid testing overly narrow or
broad gene sets [52]. The authors report 50 and 45 statistically significant pathways in the
American and Irish cohorts, accordingly [52]. The 12 shared significant pathways were re-
lated to metabolism, immune system and diseases, environmental information processing,
genetic information processing, cellular processes, nervous system and neurodegenerative
diseases [52].

In addition, Lee et al. [51] employ the same American dataset [49] as Deng et al. [48]
and Shang et al. [52], to identify SNPs, genes and pathways that have a statistically
significant association with ALS through the ICSNPathway web server [51,68]. First,
the ICSNPathway uses iGSEA (improved Gene-Set Enrichment Analysis), a rank-based
GSA algorithm which is conducted on the overall GWAS p-values where SNPs are mapped
to genes, and each gene is represented by the lowest SNP p-value. Then, the genes are
ranked by their p-value and the algorithm measures the tendency of the genes of a pathway
to be located at the top of the ranked gene list [68]. The study uses KEGG, BioCarta and
GO molecular function and biological processes for functional annotation of the gene



J. Pers. Med. 2022, 12, 1932 9 of 17

sets, and applied a minimum of 5 and a maximum of 100 genes threshold for each gene
set [51]. They conducted a limited QC analysis on the individual-level genomic dataset
applying thresholds of Hardy–Weinberg equilibrium and variant call rate [51]. The highest
significantly associated gene sets were chromatin and nucleosome assembly [51].

Lastly, Xie et al. [53] conducted a pathway analysis to a Chinese Han descent genomic
dataset. The authors mapped 859,311 SNPs to genes and applied a cut-off of p-value < 10−4,
leading to 495 candidate genes [53]. These genes were used as input into the WebGestalt
software [66], and the KEGG database was used for gene-set annotation [53]. The authors
report 10 significantly associated pathways to ALS (FDR < 0.05), including phosphatidyli-
nositol signaling system, pathways in cancer, Wnt signaling pathway, axon guidance,
MAPK signaling pathway, neurotrophin signaling pathway, arrhythmogenic right ventric-
ular cardiomyopathy, colorectal cancer, arachidonic acid metabolism, and T-cell receptor
signaling pathway [53]. Details were not provided on the quality control of the in-house
generated genomic data.

5. Discussion

In the present study, we collected nine ALS gene-set analysis studies, in order to
compare their methodology and biological results. In this section, we identify the main
limitations of the collected studies, compare their experimental design with an emphasis
on their gene-set analysis methods and summarise their significant findings, while testing
for any potential reproducibility. A brief summary of the collected strategies and gene-set
analysis methods is shown in Figure 1.

Figure 1. Main strategies and features of the collected ALS gene-set analysis studies. The main
GSA design characteristics of the collected studies include (A) Collection of the input data that may
include individual-based genomic data, summary statistics and any other type of biological data,
e.g., expression Quantitative Trait Loci (eQTLs) as well as the collection of gene sets from a variety
of annotation databases such as the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Molecular Signatures Database (MSigDB); (B) decision-making for a variety of steps of
the main experimental design, including among others, defining the main research question of the
study, following a genomic quality control analysis if individual-based genomic data are analysed,
and which gene-set analysis method/algorithm/software and multiple testing correction strategies
are more appropriate for the study and (C) gene-set analysis main methods and software of the
collected studies.
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5.1. Cohort Size Affects the Power of Genome-Wide GSA

We note several limitations of the earliest studies published from 2014 to 2017 (listed at
the end of Table 1). One limitation derives from the very limited cohort size of the genomic
datasets, which inevitably leads to a loss of power in the GWAS results. The most commonly
used datasets were of American and Irish descent and consisted of 276 cases/271 controls,
and 221 cases/216 controls [49,50], respectively. This is an expected limitation considering
that it is only with recent advances in genomic technologies that the costs of sequencing
have decreased sufficiently to enable the availability of larger ALS-control genomic cohorts.
More recent studies have focused on the two larger GWAS datasets, including the sum-
mary statistics of 12,577 ALS cases and 23,475 controls released in 2016 [20], and, in 2018,
the public release of the GWAS meta-analysis summary statistics of 10,031,630 imputed
SNPs of 20,806 cases and 59,804 controls [14]. In 2021, van Rheenen et al. published the
largest cross-ancestry GWAS dataset to date, including 27,205 cases and 110,881 controls
of European and Asian descent [41]. We note that, in the context of tissue and cell type
enrichment analyses, as well as in biological pathway analyses, van Rheenen et al. used
only a European descent GWAS meta-analysis cohort [41].

5.2. Limitations on Dimensionality Reduction Approaches

Another limitation, mostly in the earliest studies, concerns dimensionality reduction
approaches, prior to the gene-set analysis stage, which aim to reduce the initial number
of SNPs/genes to a subset of potential ALS “risk” SNPs/genes, in order to limit the
number of gene-set analyses and ease interpretation. The curse of dimensionality is a
common challenge in GWAS studies, as modern analytical platforms and imputation
strategies lead to datasets containing millions of genetic markers. This challenge not only
poses computational problems but also makes it difficult and time-consuming to discern
the few variants/genes that are likely to be associated with the phenotype from other
putative false-positive results and to further investigate their involvement in downstream
events. Furthermore, many genes play multiple roles, participating in several biological
pathways [28,31]. Among the previous studies, Deng et al. [48], Shang et al. [52] and Xie
et al. [69] apply gene p-value cut-offs of 0.01, 0.05 and 0.0001, respectively, to reduce the
number of subsequently analysed genes that enter the gene-set analysis stage. Another
example of a dimensionality reduction approach from a recent study was followed by
Iacongeli et al. [44]. Specifically, the enrichment analyses were limited to a subset of
382 genes which showed a significant level of co-expression with the SCFD1 gene, the only
gene in their analysis that reached statistical significance in increasing the ALS risk through
eQTLs [44].

The choice of different thresholds by different authors makes overall conclusions
difficult, as this affects the comparability and reproducibility of findings, as different
thresholds may lead to different biological results and interpretations [28]. In addition,
the filtering of genes prior to gene set analysis risks the exclusion of false-negative genes
and gene sets, as well as narrowing the possible scope of conclusions. Lastly, single-gene
analysis is not as capable of detecting subtle multi-gene associations in comparison with
genome-wide gene-set analysis [28].

5.3. Comparing the Collected Gene-Set Analysis Methods

In Table 2, the GSA software tools are summarised based on their type of input data,
their null hypothesis, their default gene-set method and the ALS GWAS-GSA studies that
used these particular tools. The information about the GSA software tools was retrieved
from relevant review papers that categorised several GSA methods [29,30,40], as well as
obtained from the original software published papers or tutorial guides (when papers
were not available). Table 2 was an effort to summarise the GSA approach of each study,
presenting the main features that were employed, rather than exhaustively listing all
possible settings that are implemented in each tool. A challenge in this effort was that
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several studies did not provide details of their GSA approach. In this case, it was assumed
that the authors used the default settings of each tool.

We observe that the vast majority of the studies used the competitive null hypothesis
and overrepresentation GSA methods. Overrepresentation competitive methods involve
the labelling of each gene as “significant” or ”non-significant” based on a specific threshold,
and then on the gene-set level, the proportion of “significant” genes within a gene set is
compared to the proportion of “significant” genes across the rest of the genes that do not
belong in this gene set [40]. The hypergeometric test is a common choice as an association
test in the overrepresentation GSA methods. A limitation of overrepresentation methods,
which is also common in single-gene analyses as discussed in Section 2, is that there are
no gold standard thresholds to determine which genes are significant or not, and these
thresholds can influence the GSA results. Another limitation stems from the use of only
“significant” genes, as this may lead to a loss of information, and, for this reason, it has been
proposed to use GSA methods that employ the whole pool of gene p-values for the gene-set
analysis [40]. Such examples include MAGMA and GSEA.

A number of studies used the minimum SNP p-value of the overall SNPs mapped to
a gene to represent a gene, including [44,46,48,51–53]. The latter study does not include
this information in the paper, but we assume that this is the practice that they followed
as this is the default approach in the GSEA algorithm [29,68]. However, recent studies
show that employing joint effects of multiple SNPs to model gene effects is more powerful
than simply selecting the minimum SNP p-value to represent a gene-level statistic [40,70].
Especially when we know very little about the underlying genetic architecture of the
disease, a good practice could be to combine multiple gene-level statistic representations.
Such an approach is implemented in tools like MAGMA which use a multiple regression
model at the gene level and provide the SNP-wise multi-model, which creates an aggregate
gene statistic, combining different gene models [39]. It has been previously shown that
MAGMA and INRICH provide consistently good performance while accounting for a
number of confounding factors, including, among others, gene–gene correlations, as well
as gene size and density [29,39]. Two studies used MAGMA, the first of which was
Benyamin et al. [42], who unfortunately did not provide detailed information on their GSA
experiments, and their approach did not yield any significant results. The second study
was by van Rheenen et al. [41] who employed FUMA software that incorporates MAGMA
to calculate the gene-level statistics.

It is important to mention that FUMA and Downstreamer tools employ different
approaches from standard GSA software and were used to test specific hypotheses by
van Rheenen et al. [41]. For instance, FUMA [54] was employed to test for tissue and
cell type enrichment using gene expression patterns from the Genotype-Tissue Expression
(GTEx) and single-cell RNA-seq datasets [41]. Downstreamer (presently available only in a
pre-print format) aggregates SNP association statistics while accounting for LD, and uses
multi-tissue or brain-specific coexpression networks to identify disease-associated gene sets
that show significantly enriched co-regulation patterns with genes inside the associated
GWAS loci [41,55]. Lastly, Saez-Atienzar et al. [45] followed a PRS approach to identify
disease-related pathways based on pathway-based polygenic risk score estimates, mapping
SNPs directly to gene sets.

5.4. Gene-Set Analysis Deepens Our Understanding of the Implicated ALS Functional Pathways

A summary of the main biological pathways discovered by each study is provided in
Table 3. We note that the vast majority of the studies used a false discovery rate as a multiple
testing correction method to account for family-wise type I errors. However, in some cases,
only empirical p-values were used for subsequent interpretation and analysis [46]. In this
sub-chapter, the significant GSA results of each study are compared and grouped by the
main characteristics of each study design.
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Table 3. Main biological pathways that were discovered by current ALS GWAS-GSA studies. Here,
we present the main significant findings of each study, in terms of ALS-associated gene sets with
their accompanied p-values (where possible). We also include the chosen multiple testing correction
methods and threshold for each study (where available), applied to the final list of significant findings.
We note that, for practical purposes, this table does not include the full list of significant results for
every study. The studies are sorted by chronological order of publication. ALS: Amyotrophic Lateral
Sclerosis, ER: Endoplasmic Reticulum, GSA: Gene-Set Analysis, GWAS: Genome-Wide Association
Study, NA: Not Available.

Studies Multiple Testing
Correction Method Main Findings

[41] Bonferroni Cerebral cortical atrophy (p-value = 1.8 × 10−8),
Abnormal nervous system electrophysiology (p-value = 4.1 × 10−7)
Distal amyotrophy (p-value = 8.6 × 10−7),
Membrane trafficking (p-value = 4.2 × 10−6),
Intra-Golgi and retrograde Golgi-to-ER trafficking (p-value =1.4 × 10−5)
Macroautophagy (p-value = 3.2 × 10−5)

[44] FDR < 0.05 Vesicle-mediated transport in synapse (adjusted p-value = 7.58 × 10−7),
Glutamatergic synapse (adjusted p-value = 4.20 × 10−6)
Vesicle docking involved in exocytosis (adjusted p-value = 3.30 × 10−5)

[45] FDR < 0.05 Neuron projection morphogenesis,
Membrane trafficking,
Signal transduction mediated by ribonucleotides

[46] Empirical
p-values

Peroxisome (empirical p-value = 0.006),
Citrate cycle TCA cycle (empirical p-value = 0.025),
Tight Junction (p-value NA)
PPAR signaling pathway (empirical p-value = 0.025),
SNARE interactions in vesicular transport (empirical p-value = 0.027),
Arachidonic acid metabolism (empirical p-value = 0.040),
Glycolysis-gluconeogenesis (empirical p-value = 0.043)

[42] NA No significant pathways were detected
after multiple testing correction

[48] NA Nervous system development (adjusted p-value = 1.13 × 10−9)
[51] FDR < 0.05 Chromatin assembly (FDR = 0.001),

Nucleosome assembly (FDR = 0.018)
[52] FDR < 0.05 RNA transport (adjusted p-value = 1.00 × 10−3),

Vascular smooth muscle contraction (adjusted p-value = 1.80 × 10−3),
Neuroactive ligand-receptor interaction (adjusted p-value = 6.30 × 10−3),
Systemic lupus erythematosus (adjusted p-value = 6.30 × 10−3),
Chemokine signaling pathway (adjusted p-value = 6.30 × 10−3),
Hematopoietic cell lineage (adjusted p-value = 6.30 × 10−3),
Cytosolic DNA-sensing pathway (adjusted p-value = 1.30 × 10−2),
Protein processing in ER (adjusted p-value = 1.62 × 10−2),
Alzheimer’s disease (adjusted p-value = 1.69 × 10−2),
Parkinson’s disease (adjusted p-value = 3.12 × 10−2),
Oxidative phosphorylation (adjusted p-value = 3.26 × 10−2),
Cytokine–cytokine receptor interaction (adjusted p-value = 3.37 × 10−2)

[53] FDR < 0.05 Phosphatidylinositol signaling system (adjusted p-value = 0.0011),
Pathways in cancer (adjusted p-value = 0.0011),
Wnt signaling pathway (adjusted p-value = 0.0020),
Axon guidance (adjusted p-value = 0.0021),
MAPK signaling pathway (adjusted p-value = 0.0021),
Neurotrophin signaling pathway (adjusted p-value = 0.0021),
Arrhythmogenic right ventricular cardiomyopathy (adjusted p-value = 0.0044),
Colorectal cancer (adjusted p-value = 0.0099),
Arachidonic acid metabolism (adjusted p-value = 0.0454),
T-cell receptor signaling pathway (adjusted p-value = 0.0488)
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Several of the collected studies combined European ancestry ALS GWAS summary
statistics with expression Quantitative Trait Loci (eQTLs) data. The most recent collected
study that falls into this category is by van Rheenen et al. [41], where the authors conducted
an enrichment analysis using a large European ancestry summary statistics dataset and
disease-relevant cell types and tissue gene expression patterns from the Genotype–Tissue
Expression (GTEx), as well as a co-expression based pathway analysis using Reactome,
Gene Ontology and HPO terms. The authors reported, among others, membrane traf-
ficking, intra-Golgi and retrograde Golgi-to-endoplasmic reticulum (ER) trafficking and
macroautophagy as ALS-associated processes [41]. Iacoangeli et al. [44] conducted a
SCFD1-centric gene functional enrichment approach, restricting their input set of genes
only to those that were deemed to show significant levels of co-expression with SCFD1. We
can observe a high level of reproducibility between the results of van Rheenen et al. [41]
and Iacoangeli et al. [44], including the retrograde vesicle-mediated protein transport from
the ER-to-Golgi, glutamatergic synapse and the regulation of synaptic vesicle docking
and exocytosis. Another study that employed large meta-analysis summary statistics of
European descent [20] and eQTLs was by Du et al. [46]. The authors report seven statisti-
cally significant KEGG gene sets related to peroxisome, TCA cycle, tight junction, PPAR
signaling pathways, vesicular transport, arachidonic acid, glycolysis and gluconeogenesis
metabolism [46]. In this case, we note a partial overlap with the results of van Rheenen
et al. [41] and Iacoangeli et al. [44], mostly focused on vesicle-mediated transport. Du et al.
study results are predominantly focused on central metabolism [46].

We further note several similarities between the GSA results of the previously men-
tioned studies and Saez-Atienzar et al. [45] who followed a Polygenic Risk Score gene-set
analysis approach on European ancestry ALS cohorts as the previous studies. The authors
report several developmental pathways, membrane trafficking, and signal transduction me-
diated by ribonucleotides as statistically significant gene sets [45]. Saez-Atienzar et al. [45]
report a membrane trafficking process, which was also found as a statistically significant
gene set term in the van Rheenen et al. study [41], and it is linked with intra-Golgi and
retrograde Golgi-to-endoplasmic reticulum (ER) trafficking, as well as vesicular transport,
terms also found as statistically significant by Du et al. [46]. The reported developmental
pathways include among others, cell development, neuron projection morphogenesis,
and neuron development [45], which we observe in the GSA results of mostly earlier
studies, like the study by Deng et al. [48] who report several ALS-associated pathways,
the majority of which relate to the nervous system development category. In addition,
within the neuron development and membrane trafficking categories, we observe statisti-
cally significant terms (FDR < 0.05) in the Shang et al. study [52] including axon guidance,
hedgehog signaling pathway and Wnt signaling pathway. The authors also report the
autophagosome cellular component as statistically significant, a finding that aligns with
the van Rheenen et al. statistically significant macroautophagy term [41].

Another interesting observation derives from the overlap between the highly statis-
tically significant results of the previous (mostly of European descent) ALS GSA studies
and the Chinese Han GS-GSA study by Xie et al. [53]. Specifically, among the 10 reported
significantly ALS-associated pathways (FDR < 0.05) [53], we observe similar trends with
the previous ALS studies including: neurodevelopmental pathways such as axon guidance,
Wnt signaling pathway and neurotrophin signaling pathway, which controls synaptic
function and plasticity, and is also associated with neuronal survival, morphology and
differentiation [71]; lipid metabolism and membrane trafficking pathways such as the
phosphatidylinositol signaling system, and the arachidonic acid metabolism [72]; immune
system-related signaling pathways like the T-cell receptor signaling pathway; as well as key
signaling pathways like the MAPK signaling pathway which is implicated in numerous
cellular processes such as proliferation, differentiation and apoptosis.

Lastly, Benyamin et al. [42] assembled a cross-ancestry meta-analysis dataset which
was then subjected to gene-level and gene-set level analysis. However, the study did
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not identify any statistically significant biological gene set associated with ALS, and only
minimal information is provided regarding the GSA approach [42].

In summary, several biological pathways were reproduced among the collected ALS
gene-set analyses, exhibiting particular interest in ALS pathology. Biological pathways
related to “membrane trafficking”, “intra-Golgi and retrograde Golgi-to-endoplasmic reticu-
lum (ER) trafficking”, “phosphatidylinositol signaling system”, “regulation of synaptic vesi-
cle docking”, “exocytosis”, “autophagosome cellular component” and “macroautophagy”
showed a higher reproducibility among the collected studies and play a key role in the
pathology of ALS. We also note the presence of ALS-associated gene sets that concern ner-
vous system development pathways as well as terms that were related to neuronal survival,
morphology and differentiation, like cell development, neuron projection morphogenesis,
neuron development and Hedgehog and Wnt signaling pathways.

6. Conclusions

In this review, we collected nine ALS gene-set analysis studies that employ GWAS
datasets in order to understand the pathology of ALS in terms of functional pathways.
We compared these studies in terms of their input datasets (type of data and cohort size),
gene-set analysis approaches that they employed, possible multiple testing corrections
and the main reported biological results.

We note that several studies provided only minimal information on their GSA ap-
proach, and others provided only the name of the software that was used. This lack of
reported methodology contributes to low reproducibility, consistency and transparency
across the ALS GS-GWAS studies.

Our current knowledge of ALS aetiology remains elusive. Genome-wide gene-set
analysis has the potential to help us understand the complexity of this devastating disease,
and how ALS pathology is interpreted in terms of molecular pathways. Several ALS studies
approached these research questions through gene-set analysis. However, further advances
are needed in order to fully uncover the underlying mechanisms of ALS for successful
personalized disease and drug-targeting prediction approaches. From this survey, we
identified several aspects that may be beneficial to bring together in subsequent work:

• The use of large cohort sizes can increase the power of genome-wide gene-set analyses;
• Comprehensive, transparent and reproducible genomic quality control strategies are

likely to support more consistent biological findings;
• Data-driven and holistic approaches in the selection of genes and gene-set annotation

databases are preferable;
• Selection of competitive GSA methods and mean-based statistics provide a better

performance, and the biological assumptions are more consistent with a real-life
complex functional network;

• Detailed and transparent GSA methodology can contribute to reproducible research
results and informed decision-making;

• Enhanced visualisation approaches may aid interpretation, e.g., Enrichment Networks.

Author Contributions: Conceptualization, C.V. and W.D.; data curation and processing, C.V.; inter-
pretation, C.V.; writing—original draft preparation, C.V.; writing—review and editing, C.V., S.D. and
W.D.; supervision, W.D.; project administration, S.D.; funding acquisition, W.D. and S.D. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was financed by the European Union Regional Development Fund (ERDF) EU
Sustainable Competitiveness Programme for N. Ireland, Northern Ireland Public Health Agency
(HSC R&D) & Ulster University. C.V. was the recipient of a DfE international scholarship from
Ulster University.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



J. Pers. Med. 2022, 12, 1932 15 of 17

Acknowledgments: We would like to thank Andrew P. Morris for helpful discussion and guidance.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Chiò, A.; Logroscino, G.; Traynor, B.; Collins, J.; Simeone, J.; Goldstein, L.; White, L. Global Epidemiology of Amyotrophic Lateral

Sclerosis: A Systematic Review of the Published Literature. Neuroepidemiology 2013, 41, 118–130. [CrossRef]
2. Arthur, K.C.; Calvo, A.; Price, T.R.; Geiger, J.T.; Chiò, A.; Traynor, B.J. Projected increase in amyotrophic lateral sclerosis from 2015

to 2040. Nat. Commun. 2016, 7, 12408. [CrossRef] [PubMed]
3. Rowland, L.P.; Shneider, N.A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med. 2001, 344, 1688–1700. [CrossRef] [PubMed]
4. Al-Chalabi, A.; Van Den Berg, L.H.; Veldink, J. Gene discovery in amyotrophic lateral sclerosis: Implications for clinical

management. Nat. Rev. Neurol. 2017, 13, 96–104. [CrossRef]
5. Niedermeyer, S.; Murn, M.; Choi, P.J. Respiratory Failure in Amyotrophic Lateral Sclerosis. Chest 2019, 155, 401–408. [CrossRef]
6. Chiò, A.; Logroscino, G.; Hardiman, O.; Swingler, R.; Mitchell, D.; Beghi, E.; Traynor, B.G. Prognostic factors in ALS: A critical

review. Amyotroph. Lateral Scler. 2009, 10, 310–323. [CrossRef] [PubMed]
7. Mathis, S.; Goizet, C.; Soulages, A.; Vallat, J.M.; Masson, G.L. Genetics of amyotrophic lateral sclerosis: A review. J. Neurol. Sci.

2019, 399, 217–226. [CrossRef] [PubMed]
8. Klein, R.J.; Xu, X.; Mukherjee, S.; Willis, J.; Hayes, J. Successes of Genome-wide association studies. Cell 2010, 142, 350–351.

[CrossRef] [PubMed]
9. Duncan, L.; Yilmaz, Z.; Gaspar, H.; Walters, R.; Goldstein, J.; Anttila, V.; Bulik-Sullivan, B.; Ripke, S.; Thornton, L.; Hinney,

A.; et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am.
J. Psychiatry 2017, 174, 850–858. [CrossRef]

10. Tam, V.; Patel, N.; Turcotte, M.; Bossé, Y.; Paré, G.; Meyre, D. Benefits and limitations of genome-wide association studies. Nat.
Rev. Genet. 2019, 20, 467–484. [CrossRef]

11. MacArthur, J.; Bowler, E.; Cerezo, M.; Gil, L.; Hall, P.; Hastings, E.; Junkins, H.; McMahon, A.; Milano, A.; Morales, J.; et al. The
new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic Acids Res. 2017, 45, D896–D901.
[CrossRef] [PubMed]

12. Vijayakumar, U.G.; Milla, V.; Stafford, M.Y.C.; Bjourson, A.J.; Duddy, W.; Duguez, S.M.R. A systematic review of suggested
molecular strata, biomarkers and their tissue sources in ALS. Front. Neurol. 2019, 10, 400. [CrossRef] [PubMed]

13. Turner, M.R.; Al-Chalabi, A.; Chio, A.; Hardiman, O.; Kiernan, M.C.; Rohrer, J.D.; Rowe, J.; Seeley, W.; Talbot, K. Genetic screening
in sporadic ALS and FTD. J. Neurol. Neurosurg. Psychiatry 2017, 88, 1042–1044. [CrossRef]

14. Nicolas, A.; Kenna, K.; Renton, A.E.; Ticozzi, N.; Faghri, F.; Chia, R.; Dominov, J.A.; Kenna, B.J.; Nalls, M.A.; Keagle, P.; et al.
Genome-wide Analyses Identify KIF5A as a Novel ALS Gene. Neuron 2018, 97, 1268–1283. [CrossRef] [PubMed]

15. Chia, R.; Chiò, A.; Traynor, B.J. Novel genes associated with amyotrophic lateral sclerosis: Diagnostic and clinical implications.
Lancet Neurol. 2018, 17, 94–102. [CrossRef]

16. Volk, A.E.; Weishaupt, J.H.; Andersen, P.M.; Ludolph, A.C.; Kubisch, C. Current knowledge and recent insights into the genetic
basis of amyotrophic lateral sclerosis. Med. Genet. 2018, 30, 252–258. [CrossRef]

17. Rosen, D.R.; Siddique, T.; Patterson, D.; Figlewicz, D.A.; Sapp, P.; Hentati, A.; Donaldson, D.; Goto, J.; O’Regan, J.P.; Deng,
H.X.; et al. Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature
1993, 362, 59–62. [CrossRef]

18. Renton, A.E.; Majounie, E.; Waite, A.; Simón-Sánchez, J.; Rollinson, S.; Gibbs, J.R.; Schymick, J.C.; Laaksovirta, H.; van Swieten,
J.C.; Myllykangas, L.; et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD.
Neuron 2011, 72, 257. [CrossRef]

19. Dion, P.A.; Daoud, H.; Rouleau, G.A. Genetics of motor neuron disorders: New insights into pathogenic mechanisms. Nat. Rev.
Genet. 2009, 10, 769–782. [CrossRef]

20. Van Rheenen, W.; Shatunov, A.; Dekker, A.M.; McLaughlin, R.L.; Diekstra, F.P.; Pulit, S.L.; Van Der Spek, R.A.; Võsa, U.; De Jong,
S.; Robinson, M.R.; et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic
lateral sclerosis. Nat. Genet. 2016, 48, 1043–1048. [CrossRef]

21. Andersen, P.M.; Al-Chalabi, A. Clinical genetics of amyotrophic lateral sclerosis: What do we really know? Nat. Rev. Neurol. 2011,
7, 603–615. [CrossRef] [PubMed]

22. Myers, R.H. Huntington’s Disease Genetics. NeuroRx 2004, 1, 255–262. [CrossRef] [PubMed]
23. Loh, P.R.; Bhatia, G.; Gusev, A.; Finucane, H.K.; Bulik-Sullivan, B.K.; Pollack, S.J.; Lee, H.; Wray, N.R.; Kendler, K.S.; O’donovan,

M.C.; et al. Contrasting genetic architectures of schizophrenia and other complex diseases using fast variance-components
analysis. Nat. Genet. 2015, 47, 1385–1392. [CrossRef] [PubMed]

24. Hardiman, O.; Al-Chalabi, A.; Chio, A.; Corr, E.M.; Logroscino, G.; Robberecht, W.; Shaw, P.J.; Simmons, Z.; Van Den Berg, L.H.
Amyotrophic lateral sclerosis. Nat. Rev. Dis. Prim. 2017, 3, 17071. [CrossRef] [PubMed]

http://doi.org/10.1159/000351153
http://dx.doi.org/10.1038/ncomms12408
http://www.ncbi.nlm.nih.gov/pubmed/27510634
http://dx.doi.org/10.1056/NEJM200105313442207
http://www.ncbi.nlm.nih.gov/pubmed/11386269
http://dx.doi.org/10.1038/nrneurol.2016.182
http://dx.doi.org/10.1016/j.chest.2018.06.035
http://dx.doi.org/10.3109/17482960802566824
http://www.ncbi.nlm.nih.gov/pubmed/19922118
http://dx.doi.org/10.1016/j.jns.2019.02.030
http://www.ncbi.nlm.nih.gov/pubmed/30870681
http://dx.doi.org/10.1016/j.cell.2010.07.026
http://www.ncbi.nlm.nih.gov/pubmed/20691890
http://dx.doi.org/10.1176/appi.ajp.2017.16121402
http://dx.doi.org/10.1038/s41576-019-0127-1
http://dx.doi.org/10.1093/nar/gkw1133
http://www.ncbi.nlm.nih.gov/pubmed/27899670
http://dx.doi.org/10.3389/fneur.2019.00400
http://www.ncbi.nlm.nih.gov/pubmed/31139131
http://dx.doi.org/10.1136/jnnp-2017-315995
http://dx.doi.org/10.1016/j.neuron.2018.02.027
http://www.ncbi.nlm.nih.gov/pubmed/29566793
http://dx.doi.org/10.1016/S1474-4422(17)30401-5
http://dx.doi.org/10.1007/s11825-018-0185-3
http://dx.doi.org/10.1038/362059a0
http://dx.doi.org/10.1016/j.neuron.2011.09.010
http://dx.doi.org/10.1038/nrg2680
http://dx.doi.org/10.1038/ng.3622
http://dx.doi.org/10.1038/nrneurol.2011.150
http://www.ncbi.nlm.nih.gov/pubmed/21989245
http://dx.doi.org/10.1602/neurorx.1.2.255
http://www.ncbi.nlm.nih.gov/pubmed/15717026
http://dx.doi.org/10.1038/ng.3431
http://www.ncbi.nlm.nih.gov/pubmed/26523775
http://dx.doi.org/10.1038/nrdp.2017.71
http://www.ncbi.nlm.nih.gov/pubmed/28980624


J. Pers. Med. 2022, 12, 1932 16 of 17

25. Vasilopoulou, C.; Morris, A.P.; Giannakopoulos, G.; Duguez, S.; Duddy, W. What Can Machine Learning Approaches in Genomics
Tell Us about the Molecular Basis of Amyotrophic Lateral Sclerosis? J. Pers. Med. 2020, 10, 247. [CrossRef]

26. Gall, L.L.; Anakor, E.; Connolly, O.; Vijayakumar, U.G.; Duguez, S. Molecular and cellular mechanisms affected in ALS. J. Pers.
Med. 2020, 10, 101. [CrossRef]

27. Morgan, S.; Duguez, S.; Duddy, W. Personalized Medicine and Molecular Interaction Networks in Amyotrophic Lateral Sclerosis
(ALS): Current Knowledge. J. Pers. Med. 2018, 8, 44. [CrossRef]

28. Maleki, F.; Ovens, K.; Hogan, D.J.; Kusalik, A.J. Gene Set Analysis: Challenges, Opportunities, and Future Research. Front. Genet.
2020, 11, 654. [CrossRef]

29. De Leeuw, C.A.; Neale, B.M.; Heskes, T.; Posthuma, D. The statistical properties of gene-set analysis. Nat. Rev. Genet. 2016,
17, 353–364. [CrossRef]

30. Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Bioinformatics enrichment tools: Paths toward the comprehensive functional
analysis of large gene lists. Nucleic Acids Res. 2009, 37, 1. [CrossRef]

31. Pritykin, Y.; Ghersi, D.; Singh, M. Genome-Wide Detection and Analysis of Multifunctional Genes. PLoS Comput. Biol. 2015, 11,
e1004467. [CrossRef] [PubMed]

32. Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB)
hallmark gene set collection. Cell Syst. 2015, 1, 417. [CrossRef]

33. Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.;
Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles.
Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [CrossRef] [PubMed]

34. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al.
Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [CrossRef] [PubMed]

35. Kanehisa, M.; Furumichi, M.; Tanabe, M.; Sato, Y.; Morishima, K. KEGG: New perspectives on genomes, pathways, diseases and
drugs. Nucleic Acids Res. 2017, 45, D353–D361. [CrossRef]

36. Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge
platform for disease genomics: 2019 update. Nucleic Acids Res. 2020, 48, D845–D855. [CrossRef]

37. Piñero, J.; Bravo, A.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong,
L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic
Acids Res. 2017, 45, D833–D839. [CrossRef]

38. Goeman, J.J.; Bühlmann, P. Analyzing gene expression data in terms of gene sets: Methodological issues. Bioinformatics 2007,
23, 980–987. [CrossRef]

39. de Leeuw, C.A.; Mooij, J.M.; Heskes, T.; Posthuma, D. MAGMA: Generalized Gene-Set Analysis of GWAS Data. PLoS Comput.
Biol. 2015, 11, 1–19. [CrossRef]

40. Mooney, M.A.; Wilmot, B. Gene Set Analysis: A Step-By-Step Guide. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2015, 168, 517–527.
[CrossRef]

41. Van Rheenen, W.; van der Spek, R.A.; Bakker, M.K.; van Vugt, J.J.; Hop, P.J.; Zwamborn, R.A.; de Klein, N.; Westra, H.J.; Bakker,
O.B.; Deelen, P.; et al. Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with
distinct genetic architectures and neuron-specific biology. Nat. Genet. 2021, 53, 1636–1648. [CrossRef]

42. Benyamin, B.; He, J.; Zhao, Q.; Gratten, J.; Garton, F.; Leo, P.J.; Liu, Z.; Mangelsdorf, M.; Al-Chalabi, A.; Anderson, L.; et al.
Cross-ethnic meta-analysis identifies association of the GPX3-TNIP1 locus with amyotrophic lateral sclerosis. Nat. Commun. 2017,
8, 611. [CrossRef]

43. Nakamura, R.; Misawa, K.; Tohnai, G.; Nakatochi, M.; Furuhashi, S.; Atsuta, N.; Hayashi, N.; Yokoi, D.; Watanabe, H.; Watanabe,
H.; et al. A multi-ethnic meta-analysis identifies novel genes, including ACSL5, associated with amyotrophic lateral sclerosis.
Commun. Biol. 2020, 3, 526. [CrossRef] [PubMed]

44. Iacoangeli, A.; Fogh, I.; Selvackadunco, S.; Topp, S.D.; Shatunov, A.; van Rheenen, W.; Al-Khleifat, A.; Opie-Martin, S.; Ratti,
A.; Calvo, A.; et al. SCFD1 expression quantitative trait loci in amyotrophic lateral sclerosis are differentially expressed. Brain
Commun. 2021, 3, fcab236. [CrossRef] [PubMed]

45. Saez-Atienzar, S.; Bandres-Ciga, S.; Langston, R.G.; Kim, J.J.; Choi, S.W.; Reynolds, R.H.; Abramzon, Y.; Dewan, R.; Ahmed, S.;
Landers, J.E.; et al. Genetic analysis of amyotrophic lateral sclerosis identifies contributing pathways and cell types. Sci. Adv.
2021, 7. [CrossRef] [PubMed]

46. Du, Y.; Wen, Y.; Guo, X.; Hao, J.; Wang, W.; He, A.; Fan, Q.; Li, P.; Liu, L.; Liang, X.; et al. A Genome-wide Expression Association
Analysis Identifies Genes and Pathways Associated with Amyotrophic Lateral Sclerosis. Cell. Mol. Neurobiol. 2018, 38, 635–639.
[CrossRef] [PubMed]

47. Westra, H.J.; Peters, M.J.; Esko, T.; Yaghootkar, H.; Schurmann, C.; Kettunen, J.; Christiansen, M.W.; Fairfax, B.P.; Schramm, K.;
Powell, J.E.; et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013,
45, 1238–1243. [CrossRef]

48. Deng, L.; Hou, L.; Zhang, J.; Tang, X.; Cheng, Z.; Li, G.; Fang, X.; Xu, J.; Zhang, X.; Xu, R. Polymorphism of rs3737597 in
DISC1 Gene on Chromosome 1q42.2 in sALS Patients: A Chinese Han Population Case-Control Study. Mol. Neurobiol. 2017,
54, 3162–3179. [CrossRef]

http://dx.doi.org/10.3390/jpm10040247
http://dx.doi.org/10.3390/jpm10030101
http://dx.doi.org/10.3390/jpm8040044
http://dx.doi.org/10.3389/fgene.2020.00654
http://dx.doi.org/10.1038/nrg.2016.29
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1371/journal.pcbi.1004467
http://www.ncbi.nlm.nih.gov/pubmed/26436655
http://dx.doi.org/10.1016/j.cels.2015.12.004
http://dx.doi.org/10.1073/pnas.0506580102
http://www.ncbi.nlm.nih.gov/pubmed/16199517
http://dx.doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1093/nar/gkw1092
http://dx.doi.org/10.1093/nar/gkz1021
http://dx.doi.org/10.1093/nar/gkw943
http://dx.doi.org/10.1093/bioinformatics/btm051
http://dx.doi.org/10.1371/journal.pcbi.1004219
http://dx.doi.org/10.1002/ajmg.b.32328
http://dx.doi.org/10.1038/s41588-021-00973-1
http://dx.doi.org/10.1038/s41467-017-00471-1
http://dx.doi.org/10.1038/s42003-020-01251-2
http://www.ncbi.nlm.nih.gov/pubmed/32968195
http://dx.doi.org/10.1093/braincomms/fcab236
http://www.ncbi.nlm.nih.gov/pubmed/34708205
http://dx.doi.org/10.1126/sciadv.abd9036
http://www.ncbi.nlm.nih.gov/pubmed/33523907
http://dx.doi.org/10.1007/s10571-017-0512-2
http://www.ncbi.nlm.nih.gov/pubmed/28639078
http://dx.doi.org/10.1038/ng.2756
http://dx.doi.org/10.1007/s12035-016-9869-3


J. Pers. Med. 2022, 12, 1932 17 of 17

49. Schymick, J.C.; Scholz, S.W.; Fung, H.C.; Britton, A.; Arepalli, S.; Gibbs, J.R.; Lombardo, F.; Matarin, M.; Kasperaviciute, D.;
Hernandez, D.G.; et al. Genome-wide genotyping in amyotrophic lateral sclerosis and neurologically normal controls: First stage
analysis and public release of data. Lancet Neurol. 2007, 6, 322–328. [CrossRef]

50. Cronin, S.; Berger, S.; Ding, J.; Schymick, J.C.; Washecka, N.; Hernandez, D.G.; Greenway, M.J.; Bradley, D.G.; Traynor, B.J.;
Hardiman, O. A genome-wide association study of sporadic ALS in a homogenous Irish population. Hum. Mol. Genet. 2008,
17, 768–774. [CrossRef]

51. Lee, Y.; Song, G. Genome-wide pathway analysis in amyotrophic lateral sclerosis. Genet. Mol. Res. 2015, 14, 6429–6438. [CrossRef]
[PubMed]

52. Shang, H.; Liu, G.; Jiang, Y.; Fu, J.; Zhang, B.; Song, R.; Wang, W. Pathway Analysis of Two Amyotrophic Lateral Sclerosis
GWAS Highlights Shared Genetic Signals with Alzheimer’s Disease and Parkinson’s Disease. Mol. Neurobiol. 2014, 51, 361–369.
[CrossRef] [PubMed]

53. Xie, T.; Deng, L.; Mei, P.; Zhou, Y.; Wang, B.; Zhang, J.; Lin, J.; Wei, Y.; Zhang, X.; Xu, R. A genome-wide association study
combining pathway analysis for typical sporadic amyotrophic lateral sclerosis in Chinese Han populations. Neurobiol. Aging
2014, 35, 9–1778. [CrossRef]

54. Watanabe, K.; Taskesen, E.; Van Bochoven, A.; Posthuma, D. Functional mapping and annotation of genetic associations with
FUMA. Nat. Commun. 2017, 8, 1826. [CrossRef]

55. Klein, N.d.; Tsai, E.A.; Vochteloo, M.; Baird, D.; Huang, Y.; Chen, C.Y.; Dam, S.v.; Deelen, P.; Bakker, O.B.; Garwany, O.E.; et al.
Brain expression quantitative trait locus and network analysis reveals downstream effects and putative drivers for brain-related
diseases. bioRxiv 2021. [CrossRef]

56. Renton, A.E.; Chiò, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 2014, 17, 17–23.
[CrossRef] [PubMed]

57. Chi, L.; Ke, Y.; Luo, C.; Gozal, D.; Liu, R. Depletion of reduced glutathione enhances motor neuron degeneration in vitro and
in vivo. Neuroscience 2007, 144, 991–1003. [CrossRef] [PubMed]

58. Choi, S.W.; O’Reilly, P.F. PRSice-2: Polygenic Risk Score software for biobank-scale data. GigaScience 2019, 8, 1–6. [CrossRef]
59. Lewis, C.M.; Vassos, E. Polygenic risk scores: From research tools to clinical instruments. Genome Med. 2020, 12, 44. [CrossRef]
60. Jacobs, B.M.; Taylor, T.; Awad, A.; Baker, D.; Giovanonni, G.; Noyce, A.J.; Dobson, R. Summary-data-based Mendelian

randomization prioritizes potential druggable targets for multiple sclerosis. Brain Commun. 2020, 2, fcaa119. [CrossRef]
61. Huang, H.; Ouyang, Q.; Zhu, M.; Yu, H.; Mei, K.; Liu, R. mTOR-mediated phosphorylation of VAMP8 and SCFD1 regulates

autophagosome maturation. Nat. Commun. 2021, 12, 6622. [CrossRef] [PubMed]
62. Li, Y.; Gallwitz, D.; Peng, R. Structure-based Functional Analysis Reveals a Role for the SM Protein Sly1p in Retrograde Transport

to the Endoplasmic Reticulum. Mol. Biol. Cell 2005, 16, 3951. [CrossRef] [PubMed]
63. Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.V.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive and collaborative

HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [CrossRef] [PubMed]
64. Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: A web server for functional enrichment

analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, W191–W198. [CrossRef] [PubMed]
65. Wang, K.; Li, M.; Bucan, M. Pathway-Based Approaches for Analysis of Genomewide Association Studies. Am. J. Hum. Genet.

2007, 81, 1278–1283. [CrossRef]
66. Wang, J.; Duncan, D.; Shi, Z.; Zhang, B. WEB-based GEne SeT AnaLysis Toolkit (WebGestalt): Update 2013. Nucleic Acids Res.

2013, 41, W77–W83. [CrossRef] [PubMed]
67. Hong, M.G.; Pawitan, Y.; Magnusson, P.K.; Prince, J.A. Strategies and issues in the detection of pathway enrichment in

genome-wide association studies. Hum. Genet. 2009, 126, 289. [CrossRef]
68. Zhang, K.; Chang, S.; Cui, S.; Guo, L.; Zhang, L.; Wang, J. ICSNPathway: Identify candidate causal SNPs and pathways from

genome-wide association study by one analytical framework. Nucleic Acids Res. 2011, 39, 437–443. [CrossRef]
69. Xie, Y.; Luo, X.; He, H.; Tang, M. Novel Insight Into the Role of Immune Dysregulation in Amyotrophic Lateral Sclerosis Based on

Bioinformatic Analysis. Front. Neurosci. 2021, 15, 657465. [CrossRef]
70. Ballard, D.H.; Cho, J.; Zhao, H. Comparisons of multi-marker association methods to detect association between a candidate

region and disease. Genet. Epidemiol. 2010, 34, 201–212. [CrossRef]
71. Reichardt, L.F. Neurotrophin-regulated signalling pathways. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2006, 361, 1545–1564.

[CrossRef] [PubMed]
72. Hammond, G.R.; Burke, J.E. Novel roles of phosphoinositides in signaling, lipid transport, and disease. Curr. Opin. Cell Biol.

2020, 63, 57–67. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/S1474-4422(07)70037-6
http://dx.doi.org/10.1093/hmg/ddm361
http://dx.doi.org/10.4238/2015.June.11.19
http://www.ncbi.nlm.nih.gov/pubmed/26125848
http://dx.doi.org/10.1007/s12035-014-8673-1
http://www.ncbi.nlm.nih.gov/pubmed/24647822
http://dx.doi.org/10.1016/j.neurobiolaging.2014.01.014
http://dx.doi.org/10.1038/s41467-017-01261-5
http://dx.doi.org/10.1101/2021.03.01.433439
http://dx.doi.org/10.1038/nn.3584
http://www.ncbi.nlm.nih.gov/pubmed/24369373
http://dx.doi.org/10.1016/j.neuroscience.2006.09.064
http://www.ncbi.nlm.nih.gov/pubmed/17150307
http://dx.doi.org/10.1093/gigascience/giz082
http://dx.doi.org/10.1186/s13073-020-00742-5
http://dx.doi.org/10.1093/braincomms/fcaa119
http://dx.doi.org/10.1038/s41467-021-26824-5
http://www.ncbi.nlm.nih.gov/pubmed/34785650
http://dx.doi.org/10.1091/mbc.e05-02-0114
http://www.ncbi.nlm.nih.gov/pubmed/15958490
http://dx.doi.org/10.1186/1471-2105-14-128
http://www.ncbi.nlm.nih.gov/pubmed/23586463
http://dx.doi.org/10.1093/nar/gkz369
http://www.ncbi.nlm.nih.gov/pubmed/31066453
http://dx.doi.org/10.1086/522374
http://dx.doi.org/10.1093/nar/gkt439
http://www.ncbi.nlm.nih.gov/pubmed/23703215
http://dx.doi.org/10.1007/s00439-009-0676-z
http://dx.doi.org/10.1093/nar/gkr391
http://dx.doi.org/10.3389/fnins.2021.657465
http://dx.doi.org/10.1002/gepi.20448
http://dx.doi.org/10.1098/rstb.2006.1894
http://www.ncbi.nlm.nih.gov/pubmed/16939974
http://dx.doi.org/10.1016/j.ceb.2019.12.007
http://www.ncbi.nlm.nih.gov/pubmed/31972475

	Introduction
	Limitations on Single-Gene Analysis
	A Brief Overview of Gene-Set Analysis
	The Structure of Gene-Set Analysis
	Main Categories of Gene-Set Analysis Methods
	Gene-Set Analysis Confounding

	Recent Approaches in ALS Genome-Wide Gene-Set Analysis Studies
	Discussion
	Cohort Size Affects the Power of Genome-Wide GSA
	Limitations on Dimensionality Reduction Approaches
	Comparing the Collected Gene-Set Analysis Methods
	Gene-Set Analysis Deepens Our Understanding of the Implicated ALS Functional Pathways

	Conclusions
	References

