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Abstract: We aimed to investigate the impact of aging on the relationship among the composition
of gut microbiota, gastrointestinal (GI) symptoms, and the course of treatment for major depressive
disorder (MDD) by analyzing the datasets from our previous study. Patients with MDD were
recruited, and their stools were collected at three time points (baseline, midterm, and endpoint)
following the usual antidepressant treatment. Gut microbiota were analyzed using 16S rRNA gene
sequencing. Patients were categorized into two groups based on their age: the late-life group over
60 years and the middle-aged group under 60 years. GI symptoms were assessed with scores of
item 11 of the Hamilton Anxiety Rating Scale. One hundred and ninety samples were collected from
32 patients with MDD. Several gut microbes had higher relative abundances in the late-life group
than in the middle-aged group. In addition, the late-life group showed significantly higher diversity
in the Chao1 index at baseline compared with the middle-aged group. We further found possible
microbial taxa related to GI symptoms in patients with late-life depression. The abundance of several
bacterial taxa may contribute to GI symptoms in the late-life depression, and our findings suggest
that the therapeutic targets for the application of gut microbiota may differ depending on the age
group of patients with depression.

Keywords: gut microbiota; major depressive disorder; aging; gastrointestinal symptoms; prospective
study

1. Introduction

About 38 trillion gut microbial cells exist in the human intestinal tract [1] and compose
an extremely complicated bacterial system, which not only plays an important role in
the immune system but also in the functioning of the brain–gut axis [2]. In addition, gut
microbiota are influenced by physiological factors, such as diet and lifestyle, that can
rapidly alter their composition [3]. Consequently, the features of human gut microbiota
change during the aging process. Previous studies [4–6] report compositional changes
in gut microbiota with age in healthy subjects within the three-year period after birth,
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while interpersonal compositional variations were smaller among adults in comparison
with children.

Major depressive disorder (MDD) is a common mental disorder and the third leading
cause of years lived with disability (YLD) rates [7]. Many preclinical studies have revealed
a so-called “brain–gut interaction” in which changes in the gut microbiota affect the central
nervous system, suggesting that this may contribute to the pathophysiology of MDD [2,8].
Patients with MDD have various symptoms including depressive mood and loss of interest.
In general, it is clinically well known that patients with MDD, specifically older adults,
often experience gastrointestinal (GI) symptoms with prevalence rates of up to 64.7% in
the primary care setting [9]. Similarly, a meta-analysis noted that older patients with
depression experienced more GI symptoms compared with younger adult patients with
depression [10].

However, to the best of our knowledge, no studies investigated the impact of aging on
the association between the composition of gut microbiota and GI symptoms in patients
with MDD. Thus, we reanalyzed the data from our original study [11] for a different
objective to conduct a preliminary study to examine the influence of age on the brain–gut
interactions in patients with MDD. This study aimed to investigate the composition of gut
microbiota in patients with MDD stratified based on age in a naturalistic treatment course;
specifically, we divided the patients with MDD into the middle-aged and the late-life
groups (<60 years and ≥60 years, respectively). We also examined the relationship between
GI symptoms and related bacterial taxa in both groups. Our hypotheses were that there
would be differences in bacterial features between the two groups and that several bacterial
taxa would be related to GI symptoms in the late-life group.

2. Materials and Methods
2.1. Study Design

The present investigation was a secondary analysis of our multicenter prospective
observational study that had examined whether various classes of psychotropics affect
gut microbiota in patients with MDD and anxiety disorders [11]. The present analysis
aimed at investigating the association between compositions of gut microbiota and age in
inpatients and outpatients with MDD during antidepressant treatment as usual in clinical
settings. This trial was registered with the UMIN Clinical Trials Registry (UMIN000021833)
and was approved by the Ethical Committee of Showa University Karasuyama Hospital
and Keio University School of Medicine. All patients were informed about the purposes
and procedures of the study thorough careful explanation and provided written consent.
Detailed information was reported elsewhere [11].

2.2. Participants

The study participants were recruited between June 2017 and January 2018 at Showa
University Karasuyama Hospital, Keio University Hospital, and Komagino Hospital in
Tokyo. The inclusion criteria were adult patients aged 20 years or older meeting the criteria
for MDD in the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5),
who were treated with psychotropics including antidepressants and/or antipsychotics. The
exclusion criteria were: (1) those with any organic GI disorders; (2) those taking antibiotic
medication at any time during the study; or (3) those whose psychiatric symptoms might
worsen by participating in the study.

2.3. Study Procedure

For inpatients, fresh stool samples were collected, and psychiatric assessments were
performed at three time points during the hospitalization. Baseline assessments (BL) were
conducted within 10 days of admission; midterm assessments (T1) were completed between
14 and 20 days after admission, and endpoint assessments (T2) were carried out 21 days
after admission and before discharge. A period of at least one week marked an evaluation
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interval. For outpatients, fresh stool samples and psychiatric assessments were performed
at three consecutive outpatient visits corresponding to BL, T1, and T2.

2.4. Fecal Collection and Psychiatric Assessments

Fecal samples were collected per each time point and stored at −80 ◦C until the
analysis. The mean value of data was used when two or three fecal samples were collected
at each time point. Comprehensive psychiatric assessments comprised the Hamilton
Depression Scale (17 items) (HAM-D) [12] and Hamilton Anxiety Scale (HAM-A) [13],
which were administered by trained psychiatrists and psychologists.

2.5. Gastrointestinal (GI) Assessments

We used scores of item 11 of the HAM-A for GI symptoms. The HAM-A is a scale
for measuring the severity of anxiety, consisting of 14 items, each rated on a scale of 0 (not
present) to 4 (severe), with a total score ranging from 0 to 56 [14].

2.6. Classification of Patients

We divided patients into the two groups based on their age: ≥60 years (late-life group)
or <60 years (middle-aged group). As mentioned above, since geriatric patients with MDD
often present GI symptoms, we first divided patients into the two groups based on their
scores of the HAM-A for GI symptoms: GI-present group or GI-absent group. Likewise,
we further classified the late-life group (n = 14) into the two subgroups: GI-present group
(n = 8) and GI-absent group (n = 6).

2.7. Sample Analysis

Fecal samples were immediately frozen after collection and transported to our depart-
ments (Showa University Karasuyama Hospital or Keio University Hospital) within 48 h.
They were kept in a freezer at−80 ◦C for further analyses. The 16S rRNA gene was analyzed
by the following method (for details, see [15]). Firstly, fecal samples were lyophilized for
approximately 12–18 h using a VD-800R lyophilizer (TAITEC, Nagoya, Aichi, Japan). Each
freeze-dried fecal sample was combined with four 3.0 mm zirconia beads and subjected to
vigorous shaking (1500 rpm for 10 min) using a Shake Master (Biomedical Science, Shinjuku,
Tokyo, Japan). Secondly, approximately 10 mg of each fecal sample was combined with
approximately 100 mg of 0.1 mm zirconia/silica beads, 300 µL DNA extraction buffer (TE
containing 1% (w/v) sodium dodecyl sulfate), and 300 µL of phenol/chloroform/isoamyl
alcohol (25:24:1) and subjected to vigorous shaking (1500 rpm for 5 min) using a Shake
Master. The resulting emulsion was subjected to centrifugation at 17,800× g for 10 min
at room temperature. RNA was removed from the sample by RNase A treatment from
bacterial genomic DNA purified from the aqueous phase. The resulting DNA sample was
then purified again by another round of phenol/chloroform/isoamyl alcohol treatment
and ethanol precipitation by GENE PREP STAR PI-480 (Kurabo Industries Ltd., Osaka,
Japan). The V1-V2 hypervariable region of 16S rRNA-encoding genes were amplified by
PCR using a bacterial universal primer set [16,17]. The amplicons were analyzed using
a Miseq sequencer (Illumina, San Diego, CA, USA) with some modifications previously
indicated [15]. Filter-passed reads were processed using the Quantitative Insights into
Microbial Ecology (QIIME) 2 (2019.10) [18]. Denoising and trimming of sequences were
processed using DADA2.20 bp, and 19 bp reads were trimmed from 5′ ends of forward and
reverse reads, respectively, to remove primer sequence. Some 280 bp and 210 bp length
reads from 5′ ends were used for further steps. Sequences were clustered into operational
taxonomic units (OTUs) that reached 97% nucleotide similarity, and OTUs were assigned
to the SILVA132 database [19,20] using the Naive Bayesian Classifier algorithm. Alpha
diversity of gut microbiota was analyzed using Chao1 and Shannon indices. Principal
coordinate analysis (PCoA) based on UniFrac distance and analysis of similarity (ANOSIM)
tests was conducted using the QIIME 2. Differences in OTU abundance at the family and
genus levels between groups were identified using Linear Discriminant Analysis (LDA)
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Effect Size (LEfSe) [21]. The longitudinal changes for each taxon were examined using the
absolute value of the difference at two points: baseline (BL) and midterm (T1) and baseline
(BL) and endpoint (T2). LEfSe combines the tests for statistical significance (Kruskal–Wallis
test and pairwise Wilcoxon test) with LDA.

2.8. Statistical Assessments

We conducted data analyses using IBM SPSS Statistics version 25.0 (SPSS Inc. Chicago,
IL, USA). Continuous and categorical variables were described as the mean ± standard
deviation (SD) and number (%), respectively. All variables were inspected to test the data
distribution using histograms, q-q plots, and Kolmogorov–Smirnov tests before conducting
statistical analyses. Independent t-tests were used to compare differences in demographics
and clinical characteristics at baseline and alpha diversity (Chao1 and Shannon indices)
at baseline and endpoint between the late-life group and middle-aged group, as well as
GI symptoms of the HAM-A between the late-life and middle-aged groups (Table 1). A
categorical variable (i.e., sex) was compared between the groups using Pearson’s Chi-
squared test. Based on our hypotheses, a significance level was set to 0.05 for all statistical
tests. LEfSe analysis was performed under the following conditions: the alpha value
for the factorial Kruskal–Wallis test among classes was 0.05, while the threshold on the
logarithmic LDA score for discriminative features was 3.0. LEfSe analysis was used to
identify microbial taxa, which were differentially abundant between the late-life and
middle-aged groups and to analyze the changes in each microbial taxon (BL and T1 and
BL and T2). A one-way ANCOVA was conducted to determine a statistically significant
difference between the late-life and middle-aged groups on each bacterial taxon with
significant differences in LEfSe controlling for GI symptom scores. In cases where there
was a significant difference in each taxon in either the late-life group or the middle-aged
group, Mann–Whitney U-test was performed to evaluate the difference in each taxon, and
statistical corrections were conducted by controlling the false discovery rate (FDR) through
the Benjamini–Hochberg procedure [22] with alpha set at 0.05. As exploratory analyses,
Spearman’s correlation coefficients were calculated between microbial taxa with significant
differences and clinical symptoms. The relationship between HAM-D scores and microbial
taxa was also determined by calculating Spearman’s correlation coefficients. In cases where
there was a significant correlation in each taxon, independent t-tests were performed to
compare differences between the late-life and middle-aged groups.

Table 1. Clinical characteristics of the included patients.

Characteristics Middle-Aged Group
(n = 18)

Late-Life Group
(n = 14)

n n χ2 p

Gender (Female/Male) 7/11 10/4 0.67 0.087
Mean (SD) Mean (SD) t p

Age (Years) 41.1 (10.1) 73.5 (8.7) 9.242 <0.001
BMI (Kg/m2) 23.1 (5.0) 21.2 (3.1) 1.256 0.219

HAM-D 17.8 (7.0) 12.2 (8.9) 1.916 0.064
HAM-A 17.2 (7.9) 11.7 (8.0) 1.860 0.072

HAM-A GI symptoms 1.3 (1.0) 1.2 (0.9) 0.132 0.896
Chao 1 Index 186.7 (70.7) 246.4 (76.6) 2.416 0.022

Shannon Index 6.0 (0.6) 6.4 (0.8) 1.441 0.160
SD, standard deviation; BMI, Body Mass Index; HAM-D, Hamilton Rating Scale for Depression; HAM-A, Hamilton
Rating. Scale for Anxiety; GI, gastrointestinal.

3. Results

The study flow chart is shown in Figure 1. Of the 40 patients who were initially
recruited as inpatients and outpatients, we included 32 patients (17 females (53.1%) and
12 inpatients (37.5%)) in this study who had completed at least one clinical assessment,
resulting in 188 fecal samples analyzed (BL, 64 samples; T1, 64 samples; and T2, 60 samples).
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Of the included 32 patients, five patients did not provide any stool and/or did not provide
sufficient data. Finally, another 27 patients (84.4%) were included for further analyses that
observed alpha diversity, beta diversity, and composition of gut microbiota during the
study period.
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Figure 1. Flow chart of participants through the trial. BL, baseline assessments; T1, midterm
assessments; T2, endpoint assessments; HAM-D, Hamilton Depression Scale; HAM-A, Hamilton
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3.1. Demographic and Clinical Characteristics

The clinical characteristics of the included patients are shown in Table 1. The middle-
aged group included 18 patients (7 females) and the late-life group 14 patients (10 females).
There were no significant differences between the two groups in sex, Body Mass Index (BMI),
HAM-D, HAM-A, GI symptoms of HAM-A, Chao1 index, or Shannon index at baseline.

3.2. Microbial Features and Their Changes during Treatment

At the family level, five types of microbiota showed a significantly higher prevalence
at baseline in the late-life group in comparison with the middle-aged group; the increase in
two bacterial taxa was found to be representative at the endpoint in this group (Figure 2).
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In the middle-aged group, Lachnospiraceae showed a higher relative abundance at both
baseline and endpoint compared with the late-life group (Figure 2). These differences did
not survive after the FDR correction (p > 0.1).
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Figure 2. Specific bacterial contributor to the late-life (red) and middle-aged (green) groups by the
LEfSe (Linear discriminant analysis (LDA) effect size) analysis at family level. Only LDA thresh-
olds of >3.0 as determined by LEfSe are shown. Notes: “f” = family level, “c” = class level, and
“o” = order level.

At the genus level, nine types of microbiota showed a significantly higher prevalence
at baseline in the late-life group than in the middle-aged group. Among the increased
levels of these bacterial taxa, Megamonas, Prevotellaceae NK3B31 group were found to be
representative at the endpoint in the same group (Figure 3). None of the microbes showed
significantly higher relative prevalence at baseline in the middle-aged group than in the
late-life group, although Faecalitalea displayed a higher relative prevalence at the endpoint
in this group (Figure 3). However, all the significances at the genus level did not survive
after the FDR correction (p > 0.1).
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LEfSe analysis (LDA >3.0) at genus level. Notes: “f” = family level, “g” = genus level, “c” = class
level, and “o” = order level.

We found no significant changes in the microbiota relative abundance after usual
treatment (BL and T1 and BL and T2) at the family and genus levels within both the late-life
and the middle-aged groups.

3.3. Baseline and Changes of Alpha Diversity

At baseline, the late-life group showed a higher diversity in the Chao1 index compared
with the middle-aged group (Figure 4), while there were no significant differences in
the Shannon index (Figure 4). This result remained significant after the FDR correction
(p = 0.044). After the usual treatment, these indices did not statistically differ from baseline
to endpoint within each group (Figure 4).
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Figure 4. Microbiota alpha diversity between baseline (blue) and endpoint (orange) after the usual
treatment in the late-life (n = 11) and middle-aged (n = 16) groups; * p < 0.05. Notes: The box signifies
the upper (Q3) and lower (Q1) quartiles. The median is represented by a line and the mean by an
X within each box. The whiskers extend up from the Q3 quartiles to the maximum data that are
less than or equal to 1.5 times the interquartile range (IQR) and down from the Q1 quartile to the
minimum data that are larger than 1.5 times the IQR. Values outside this range are considered to be
outliers and are represented by dots.
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Between the GI-present and GI-absent groups, the Chao1 and Shannon indices showed
no significant differences at baseline (Supplementary Figure S1). Following the usual
treatment, these indices did not statistically differ from baseline to endpoint within each
group (Supplementary Figure S1).

3.4. Microbial Features and GI Symptoms in the Late-Life Group

In the late-life group, we divided it into the two subgroups using the GI symptoms
of the HAM-A. At the genus level, Family XIII UCG-001 showed a significantly higher
prevalence at baseline in the GI-present group in comparison with the GI-absent group; the
increase of five bacterial taxa was found to be representative at endpoint in the former group
(Figure 5). Among the increased levels of these bacterial taxa, none of the microbes were
observed to be representative both at baseline and endpoint in this group (Figure 5). These
differences of the Family XIII UCG-001, Ruminococcus 1, Coprococcus 1, and Lachnospiraceae
NK4A136 group remained significant after the FDR correction. However, they did not
correlate with GI symptoms.
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3.5. Baseline Beta Diversity

As shown in Supplementary Figure S2, ANOSIM with permutations confirmed no
significant separation of groups in the weighted and unweighted UniFrac distances, in-
dicating that there were no clear differences in the structure of the bacterial community
between the late-life group and the middle-aged group.

3.6. Relationship between the Severity of Depression and Microbial Features

In the late-life-group, family Eubacteriaceae and genus Eubacterium showed negative
correlations with the scores of HAM-D (r = −0.371, p = 0.004; r = −0.265, p = 0.045,
respectively), while they did not survive after the FDR correction. In the middle-aged-
group, genus Faecalitalea showed a positive correlation with the scores of HAM-D (r = 0.265,
p = 0.045). However, the significance was lost after the FDR correction.

4. Discussion

Age-dependent alterations in the composition of gut microbiota have previously been
reported both in preclinical studies [23,24] and clinical studies [4,6,25,26]. The present
study is the first to examine the relationships between age and compositional changes
of gut microbiota as well as their relationship and GI symptoms in patients with MDD.
Our main findings were as follows: (1) there were differences in the abundance of several
bacterial taxa at baseline and/or endpoint between the late-life and middle-aged groups;
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while these differences did not survive after the FDR correction, there were no significant
changes in gut microbiota composition over the course of treatment within the groups;
(2) the late-life group showed significantly higher diversity in the Chao1 index at baseline
compared with the middle-aged group after the FDR correction, and (3) there were sig-
nificant differences in the abundance of several bacterial taxa at baseline and endpoint in
the late-life group between the GI-present and GI-absent groups. However, there were no
significant correlations between these bacterial taxa and scores of GI symptoms.

Here, depending on the age of patients with MDD, the following taxa in the late-life
group were prominent compared to those in the middle-aged group; that is, 14 representa-
tive taxa (five families and nine genera) at baseline and 13 taxa (two families and 11 genera)
at endpoint were increased in the late-life group, while family Lachnospiraceae both at
baseline and endpoint and genus Faecalitalea at endpoint were increased in the middle-aged
group. Notably, the abundance of the genera Coprococcus, Prevotellaceae NK3B31 group,
Megamonas, and Eubacterium coprostanoligenes group was increased both at baseline and
endpoint in the late-life group. Coprococcus is a genus of bacteria and produces butyric
acid, which is one of the short-chain fatty acids (SCFAs) [27]. As stated previously, SCFAs
could play a protective role against depression [28,29]. However, some previous studies
demonstrated that the abundance of the genus Coprococcus was decreased in middle-aged
patients with MDD, not in the late-life patients, compared to healthy controls (HCs) [30–33].
In addition, regarding genus Prevotella, it mainly produces propionic acid, which is one
of the SCFAs [34] and it is known to be associated with glucose metabolism [35–38]. A
previous review [39] noted inconsistent findings on Prevotella in patients with MDD. In the
two previous studies by Lin et al. [40] and Liu et al. [31], a higher proportion of Prevotella
was found in middle-aged patients with MDD compared to HCs, which is consistent with
our finding. On the other hand, a lower abundance of Prevotella was reported in young
and middle-aged patients with MDD compared to HCs in the study by Jiang et al. [41] and
Kelly et al. [42], respectively. Similarly, regarding genus Megamonas, it produces propionic
acid, which is one of the SCFAs [43]. A previous review [39] also noted inconsistent findings
on Megamonas in patients with MDD. Consistent with our finding, Jiang et al. [41] reported
a higher relative abundance of Megamonas in young patients with MDD, not in the late-life
patients, compared to HCs; however, two studies showed lower relative abundances of
Megamonas in middle-aged patients with MDD, not in the late-life patients, compared
to HCs [31,33]. These discrepancies might be a result of differences in genetic analysis
methods (e.g., 16S rRNA sequencing, region, pipeline analysis, or database) and age of
target patients (i.e., young, middle-aged, and late-life patients). Taken together with the
previous studies and our results, it remains unclear whether several gut microbiota that
showed significant differences in the late-life group may be specific to late-life MDD or
aging. Further studies examining the impact of age on the composition of gut microbiota
will advance an understanding of the pathology of MDD.

Interestingly, we found a significant difference in the alpha diversity in the Chao1
index between the late-life and middle-aged groups at baseline; the late-life group showed
significantly higher diversity compared to the middle-aged group. In line with our finding,
previous studies reported that the alpha diversity of the gut microbiota in human adults
increases with age [4,44]. One review study by de la Cuesta-Zuluaga et al. [44] based on
four cohorts in healthy adults between 20 and 69 years of age reported a positive trend
between age and alpha diversity in the sequence variant (SV) richness and the Shannon
index. Further, a cross-sectional study by Odamaki et al. [4] reported that a positive
correlation was established between age and alpha diversity in the Chao1 index, number
of observed species, PD whole tree index, and the Shannon index in healthy Japanese
subjects from the elderly to the centenarian stage. On the other hand, we did not find
any significant differences in the alpha diversity in the Chao1 or Shannon indices between
the GI-present and GI-absent groups. One possible explanation for this finding could be
the differences in the type of alpha diversity (e.g., components of richness, evenness, or
phylogenetic diversity). Although very few studies investigated the association between
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alpha diversity and GI symptoms in patients with psychiatric diseases including MDD,
these relationships were investigated in patients with inflammatory bowel disease (IBD)
in previous studies [45,46]. However, findings of these studies in this population were
inconsistent. That is, Tong et al. [46] reported that phylogenetic diversity, not the Chao1 or
Shannon indices, was lower in patients with an active state of IBD as well as a quiescent
state of IBD; by contrast, Shutkever et al. [45] demonstrated that phylogenetic diversity was
higher in patients with a quiescent state of IBD compared to patients with an active state of
IBD. Thus, future studies are warranted focusing on the relationship between microbial
diversity and GI symptoms in patients with MDD.

We also determined that several bacterial taxa were associated with GI symptoms
at baseline and endpoint in the late-life group; a higher proportion of Family XIII UCG-
001 at baseline and higher abundances of Ruminococcus 1, Coprococcus 1, Lachnospiraceae
NK4A136 group at endpoint were observed in the GI-present group in comparison with
the GI-absent group. Although there is little information on Family XIII UCG-001 and
Lachnospiraceae NK4A136 group in previous studies, it is reported that they were associated
with depression-like behavior in mice [47]. Further, the proportion of Coprococcus was
decreased in middle-aged patients with MDD, not in the late-life patients, compared to
HCs as stated above [30–33]. Likewise, a previous review [39] noted that a decrease
in the prevalence of Ruminococcus was found in middle-aged and young patients with
MDD [31,41], not in the late-life patients, compared to HCs. On the other hand, these four
bacterial taxa related with GI symptoms are a member of phylum Firmicutes, and it is
considered to be one of the two major phyla present in healthy subjects [48]. In agreement
with our finding, an increase in the composition of Firmicutes was found in patients with
irritable bowel syndrome (IBS) [49] and inflammatory bowel disease (IBD) [50], while the
finding was inconsistent in patients with MDD in a previous review [39]. Given these
previous studies and our findings, including the fact that we did not find any bacterial
taxa associated with GI symptoms in the middle-aged group, future research examining
the impact of age on the composition of specific gut microbiota and their relationship
with GI symptoms will aid in understanding their effectiveness in different age groups of
MDD patients.

This study has several limitations. First, we did not consider the impact of daily diet
on the composition of gut microbiota in patients with MDD. It is generally recognized
that diet could affect the composition of gut microbiota and their function [51]. In the
current study, daily meals may have affected our findings, especially in the outpatients,
which should be addressed by future research. Second, we did not evaluate the effects of
prescription medications taken before participating in the present study, while we reported
the effects of psychotropics on the gut microbiota in patients with MDD elsewhere from
the original study [11]. In particular, antidepressants are known to exhibit antimicrobial
effects [52,53]. Third, our findings of this study may have problems with reproducibility
due to the small sample size. In this study, there were trend-toward differences in HAM-D
and HAM-A scores between the late-life and the middle-aged groups. Thus, large cohort
studies are needed in the future to avoid beta errors. Fourth, there is a lack of age-matched
healthy controls or age-matched controls with GI symptoms in this study. Fifth, we did not
take into account the time difference in the stool sample collection between inpatients and
outpatients, as we conducted this study in an ordinary clinical setting, which may have
affected the results. For inpatients, the timing of sample collection was clearly determined;
however, for outpatients, the timing of sample collection depended on the visit interval.
Finally, among patients with GI symptoms, selection bias may have occurred, considering
the possibility that patients of high interest in this study may have participated.

5. Conclusions

Despite the aforementioned limitations, the current study found that specific bacterial
taxa had higher relative abundances in the late-life group than in the middle-aged group,
while these differences did not survive after the FDR correction; moreover, a diversity
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in the Chao1 index at baseline was significantly higher in the late-life group than in the
middle-aged group after the FDR correction. We further found possible microbial taxa
related to GI symptoms in patients with late-life depression. Our study is a preliminary
study for future extensive studies to examine the relationship between brain–gut interaction
and age in MDD. Thus, the present study warrants further research to clarify potential
impacts of age and GI symptoms on specific bacterial taxa in patients with MDD to develop
an age-stratified treatment of MDD.
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