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Abstract: Preeclampsia and gestational hypertensive disorders (GHD) are common complications of
pregnancy that adversely affect maternal and offspring health, often with long-term consequences.
High BMI, advanced age, and pre-existing conditions are known risk factors for GHD. Yet, assessing
a woman’s risk of GHD based on only these characteristics needs to be reevaluated in order to
identify at-risk women, facilitate early diagnosis, and implement lifestyle recommendations. This
study demonstrates that a risk score developed with machine learning from the case-control genetics
dataset can be used as an early screening test for GHD. We further confirm BMI as a risk factor
for GHD and investigate a relationship between GHD and genetically constructed anthropometric
measures and biomarkers. Our results show that polygenic risk score can be used as an early screening
tool that, together with other known risk factors and medical history, would assist in identifying
women at higher risk of GHD before its onset to enable stratification of patients into low-risk and
high-risk groups for monitoring and preventative programs to mitigate the risks.

Keywords: preeclampsia; gestational hypertension; eclampsia; pregnancy; polygenic risk score; gwas;
machine learning

1. Introduction

Hypertensive disorders of pregnancy or gestational hypertensive disorders (GHD) are
the most common pregnancy complications. In fact, GHD constitute the leading causes
of maternal and perinatal morbidity and even mortality. About one-quarter of all global
maternal deaths are due to GHD [1]. The lack of precision in diagnosing GHD makes it
difficult to estimate global prevalence accurately, but recent reports have pointed to an
increase in the prevalence of GHD, specifically preeclampsia. In the United States alone,
there has been a 25% increase in the rate of preeclampsia from the years 1987–2004 [2]. It
is estimated to complicate 2–8% of pregnancies worldwide, making it one of the leading
causes of maternal morbidity alongside other GHD [3].

Preeclampsia is categorized by sustained high maternal blood pressure (hypertension)
that must be identified after 20 weeks of gestation [3], and often requires early delivery
of the infant. If the condition worsens, maternal hypertension may cause seizures, brain
bleeding (hemorrhagic stroke), coma, or hypertensive encephalopathy. Severe preeclampsia
can also cause fetal impairment of blood and oxygen flow, which often results in growth
complications or even stillbirth.

The standard screening test for GHD has always been measuring one’s blood pressure,
which is usually only useful when the disease has already started to progress. In this case,
risk factors become imperative in assessing one’s chances of developing GHD. Women
with health conditions such as high BMI, adiposity, hypertension, heart disease, diabetes,
or kidney disease before they become pregnant have an increased risk of developing
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preeclampsia [4,5]. Additional moderate risk factors for developing GHD include advanced
maternal age and family history of preeclampsia.

Although these criteria are easy to apply, they perform with poor sensitivity [6].
Prediction performance for late gestation preeclampsia is even less accurate, further demon-
strating the inefficient nature of these diagnostic criteria. More accurate clinical tests exist
to predict preterm GHD or preeclampsia, but due to the high costs of implementation,
universal access is hard to implement [1,7]. A significant unmet need remains for predictive
screening tests to reduce the disease burden associated with late-onset, severe GHD.

Large-scale genetic studies estimated heritability for GHD, or more specifically pre-
eclampsia, to be around 55% [8]. An analysis of over 70,100 pregnancies from Swedish
families, that included data from 244,564 siblings, reported that 35% of the variance in
occurrences of preeclampsia was attributable to maternal genetics, 20% to fetal genetics
(with a similar contribution of maternal and paternal genetics), 13% to the couple effect,
less than 1% to shared sibling environment, and 32% to other unmeasured factors [8].

Furthermore, a number of gene candidate-based studies of preeclampsia were con-
ducted, resulting in a list of genes associated with the risk [9]. Among the genes reported
to be associated with preeclampsia are MTHFR (rs1801133), F5 (rs6025) [10], NOS3 [11],
PPARγ [12], ERAP2 [13], STOX1, CORIN, EPHX1, INO80B [14], GSTP1 [15], FGF5 [16],
a role for the X chromosome [17] and several other chromosomal regions. According to this
set of studies, some genes were found to affect susceptibility to preeclampsia in specific
populations [18,19].

Each study started with a hypothesis on the molecular mechanisms underlying
preeclampsia and analyzed a few genes. Since preeclampsia, and other GHD, are complex
diseases, it is imperative to use large-scale genomics data to identify genetic variations
and genes associated with the risk of GHD. Hence, the current study aims to develop a
predictive polygenic risk score (PGS) for GHD that can be integrated into clinical practice.
We, therefore, utilize genetics data from the UK Biobank (UKBB) for the development and
validation of a PGS.

2. Materials and Methods
2.1. Participants

This study utilizes the data of UKBB (www.ukbiobank.ac.uk) (accessed on 5 March
2022), which is a prospective cohort of 502,637 people aged between 37 and 73 and recruited
from 2006 to 2010 from across the UK. The participants’ medical, socio-demographic,
lifestyle, environmental, and genetic information was collected via detailed questionnaires
and clinical assessment and linked with hospital admission and mortality data. The analysis
reported in this paper included 273,309 UKBB participants self-identifying as females,
for which no mismatch between self-reported and genetic gender was detected.

All procedures and data collection in UKBB were approved by the UKBB Research
Ethics Committee (reference number 11/NW/0274), with participants providing full writ-
ten informed consent for participation in UKBB and subsequent use of their data for
approved applications.

2.2. Gestational Hypertension/Preeclampsia Cases

Data on gestational hypertension was retrieved from self-reported data on gestational
hypertension/preeclampsia Data-Field 20002, data field 1073 (2008 cases). We further
added hospital in-patient episode data with diagnosis codes O13 “Gestational [pregnancy-
induced] hypertension without significant proteinuria” (581 cases) and O14 Gestational
[pregnancy-induced] hypertension with significant proteinuria (318 cases) (“Diagnoses—
ICD10”). Case definitions for preeclampsia included eclampsia cases to capture cases
in which the former may have developed into the latter. For more focused study on
preeclampsia/gestational hypertension patients with diagnosis code O13 were not included
in the cases group.

www.ukbiobank.ac.uk
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The control group contains women who were pregnant and gave live births but did
not report gestational diabetes, or gestational hypertension/preeclampsia, and recurrent
pregnancy losses. Furthermore, women with preexisting conditions were excluded from
the control group. Specifically, for the control pool we used data for women who had at
least one live birth without complications for gestational diabetes or gestational hyperten-
sion/preeclampsia, or eclampsia, or preexisting diabetes. Specifically, we included women
with the codes related to live birth and pregnancy O2–O9 or Z34.8, Z37.0, Z37.2, Z37.3,
Z37.5, Z37.6, Z38.1, Z38.3, Z38.6, Z39; but excluding those related to codes relevant for
gestational diabetes, gestational hypertension, eclampsia (codes O10–O16), and pre-existing
diabetes (O24.0, O24.1, O24.2, O24.3, O24.9). For a more general control population group,
these cases were not exluded.

2.3. Genotype and Phenotype Data

To identify variants for building the PGS we utilized the results from Neale lab
GWAS of UKBB phenotypes www.nealelab.is/uk-biobank/ (accessed on 9 June 2022). We
combined the results from traits related to gestational hypertension/preeclampsia self-
report diagnoses (field 20002, code 1073) and doctor-diagnosed gestational hypertension
(field 41270, codes O13 and O14). We selected SNPs below the significance cutoff 1 × 10−5.
Overall, this analysis yielded 329 distinct SNPs. The list of relevant SNPs was further
extended based on studies [20,21] and the GeneAtlas (http://geneatlas.roslin.ed.ac.uk
accessed on 20 June 2022) below the significant cutoff 1 × 10−5. Two SNPs rs113935429
and rs201454025 (identified as relevant in [20]) and rs146665468 (from the GeneAtlas) were
not found in the UKBB dataset and hence were excluded from further analysis. Overall,
the procedure resulted in a final set of 375 SNPs that were further considered in the analysis.

To consider the relationship between the genetic risk of GHD and BMI, we analyzed
data on the participants’ body mass index (BMI). In instances where the participants’ BMI
(data-field 21001) was recorded repeatedly, the latest BMI reported was taken as a BMI
estimate. If an individuals’ BMI was not reported or below 18.5 they were omitted from
this analysis.

2.4. Procedure for Learning the Polygenic Risk Scores

The full procedure for learning the Polygenic Risk Score was described in detail
in [22]. Briefly, we use a machine learning procedure to build a PGS as a risk-weighted
sum of the genetic variants, where the number of effect alleles is represented by either 0,
1, or 2. The starting set of SNPs (features) were first clumped using PLINK’s LD-based
clumping procedure resulting in 115 unique SNPs used in further modeling. The number
of cases and controls was balanced by randomly sampling the full set of controls (10 times)
so that the number of controls is 4-times bigger than the number of cases. Each set of
cases and controls was then used in a logistics regression model by repeating the 10-fold
cross-validation process ten times. Once the ten models were trained, the best model was
selected based on the area under the receiver operating characteristic curve (AUC). 95%
confidence intervals (CI)s for odds ratios (OR) were calculated as Wald intervals (or Normal
approximation intervals) using the oddsratio function from the epitools package in R.
Furthermore, a step-wise learning procedure based on a forward-selection method and the
Akaike Information Criterion was also performed using the stepAIC function in MASS and
car R packages.

2.5. Mendelian Randomization

TwoSampleMR in R package was utilized for performing Mendelian Randomization anal-
yses. The significance threshold for genetic instruments is 5 × 10−8. Pleiotropy was evalu-
ated based on the intercept calculated by MR-Egger regression using mr_pleiotropy_test
with p-value threshold p = 0.05. Exposure-outcome relationships that change by at least
10% in the odds ratio (OR ≥ 1.1 or OR ≤ 0.9) are reported.

www.nealelab.is/uk-biobank/
http://geneatlas.roslin.ed.ac.uk
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2.6. SNP Annotation

SNPs are annotated with genes and genome-wide association studies (GWAS) using
SNPnexus, a web-based variant annotation tool [23,24]. Functional analysis on gene level
is performed using Functional Mapping and Annotation of Genome-Wide Association
Studies, FUMA [25].

3. Results
3.1. Polygenic Risk Score

A dataset of 2787 cases and 13,400 controls for GHD from the UKBB is utilized
for a case-control retrospective study. To develop a polygenic risk score for gestational
hypertensive disorders, we consider those women who either self-reported gestational
hypertension/preeclampsia or were diagnosed with gestational hypertension with or
without proteinuria (see Methods for a detailed explanation of the selection of cases and
control groups).

PGS was calculated as a weighted sum of the 115 genetic variants, which were derived
by pruning from the initial set of 375 genetic variants based on Neale Lab GWAS of UKBB
phenotypes (http://www.nealelab.is/uk-biobank/ and the GeneAtlas (http://geneatlas.
roslin.ed.ac.uk/ (accessed on 12 October 2022) below the significance cutoff p < 10−5,
and several earlier studies [20,21]. Weights for each variant were learned by utilizing a
generalized linear model and logistic regression with added collinearity analysis for the
predictor variables, where the best-performing model was selected based on the estimated
AUC (for details, see [22]). The resulting PGS has 115 SNPs and AUC = 0.64 (Table 1 and
Supplementary Table S1). We also used the stepwise procedure that resulted in 84 SNPs
(Supplementary Table S1) and a slightly lower AUC = 0.62.

To identify at-risk group of GHD, we computed odds ratios (ORs) for GHD by com-
paring the women ranked in the top 1%, 2%, 5%, 10%, and 25% PGS values to the women
whose PGS values are in the lower 50%. Compared to women in the lowest half of the PGS,
the odds ratios (ORs) for GHD are OR = 3.18 (95% CI = [2.89–3.51]) for the top quantile,
OR = 4.84 (95% CI = [4.28–5.46]) for the top 10%, OR=6.19 (95% CI = [5.30–7.24] top 5%,
OR = 9.25 (95% CI = [7.35–11.64] top 2%, and OR = 11.18 (5% CI = [8.11–15.41]) for the top
1% (Figure 1 and Supplementary Table S2).

To make sure our model is encompassing to the choice of controls and cases, we ran
additional analyses. First, we modified the control group to be more representative of the
general population. The modified controls group contains women who gave live births,
including women with pre-existing conditions. This results in a slightly larger size of
the control group (14,419 genotypes).The updated PGS is based on the same set of SNPs,
and the changes in ORs for the top risk percentiles are minor (Supplementary Tables S1
and S2).

We further performed a more focused analysis on the preeclampsia trait defined as
“new-onset hypertension and proteinuria” by removing 581 cases with diagnosis code O13
“Gestational [pregnancy-induced] hypertension without significant proteinuria”. The re-
sulting PGS contains 101 SNPs out of 115 SNPs from the original machine learning pro-
cedure (Supplementary Table S4). Compared to women in the lowest half of the PGS,
the ORs for preeclampsia are even higher: OR = 5.67 (95% CI = [4.98–6.45]) for the top
10%, OR = 7.84 (95% CI = [6.66–9.23] top 5%, and OR = 12.76 (5% CI = [9.19–17.71]) for the
top 1% (Supplementary Table S4).

Therefore, the developed PGS can be utilized as an early screening tool to identify
women at high risk of GHD and stratification of population into risk groups. The tool
can be used pre-conception allowing for early lifestyle modifications and close monitoring
during early stages of pregnancy.

http://www.nealelab.is/uk-biobank/
http://geneatlas.roslin.ed.ac.uk/
http://geneatlas.roslin.ed.ac.uk/
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Figure 1. Odds Ratios for the GHD. The odds of being diagnosed with GHD for women ranked in
the top 1%, 2%, 5%, 10%, and 25% of the PGS compared to the odds of developing GHD in the lower
50% of the PGS (Supplementary Table S2).

Table 1. SNPs and Weights in the Polygenic Risk Score Model 1.

Term Estimate std.error Statistic p-Value Overlapped Gene Nearest Upstream Gene Nearest Downstream Gene

rs1173743 0.1453 0.031 4.712 2.45 × 10−6 NPR3
rs4660586 −0.1570 0.034 −4.603 4.17 × 10−6 HIVEP3
rs77979097 0.3020 0.071 4.266 1.99 × 10−5 CSMD1

rs29282 0.2175 0.053 4.128 3.66 × 10−5 FMR1
rs144401118 0.5282 0.130 4.068 4.75 × 10−5 RP11-102N11.1 SMLR1

rs167479 −0.1247 0.031 −4.000 0.0001 RGL3
rs193168008 1.1161 0.282 3.965 0.0001 LINC01019 IRX1
rs534036441 0.9111 0.234 3.901 0.0001 RNU6-163P LINC00704
rs537363408 1.0705 0.275 3.893 0.0001 RAD51B
rs190092234 1.1370 0.294 3.865 0.0001 OSBPL6
rs141667164 1.2467 0.326 3.830 0.0001 DEF6 PPARD
rs115654387 0.4269 0.112 3.811 0.0001 RP11-329N22.1 RP11-334L9.1
rs544149038 1.3523 0.360 3.753 0.0002 C14orf177 AL132796.1
rs113046103 0.2230 0.060 3.703 0.0002 SHANK2
rs561028558 1.1228 0.303 3.700 0.0002 TOP2A
rs191614564 0.4953 0.137 3.607 0.0003 SCRT2 SLC52A3
rs72674615 0.6124 0.170 3.604 0.0003 LINC00609; PTCSC3

rs113882455 0.4979 0.143 3.474 0.0005 U40455.1 RPL7L1P11
rs28558138 0.1080 0.031 3.452 0.0006 TBC1D19 STIM2
rs71519836 0.2241 0.065 3.447 0.0006 MYOM2 AC133633.2
rs80043362 0.1698 0.050 3.413 0.0006 JPH2

rs183374245 0.4377 0.129 3.400 0.0007 CACNA2D1
rs2409532 −0.0991 0.030 −3.342 0.0008 AP000330.8

rs145385264 0.2780 0.083 3.333 0.0009 RP11-344P13.4
rs558954655 0.7364 0.222 3.311 0.0009 SPON2

1 Table with top most significant SNPs from the polygenic risk score as the result of the machine-learning
procedure. SNPs are annotated using SNPnexus. Full Table with all 115 SNPs and their weights is available in the
Supplementary Table S1.
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3.2. GHD Risk and BMI

We further investigate the effect of BMI on the risk of GHD. An earlier meta-analysis of
16 studies that included a total number of 5946 samples revealed a significant relationship
between BMI and the risk of preeclampsia [26]. Another case-control study [27] found that
patients with a pre-pregnancy BMI of more than 30 kg/m2 had a nearly 4.5-fold risk of
developing gestational hypertension compared to pregnant women whose pre-pregnancy
BMIs were in the normal range.

To further elucidate the relationship between BMI and PGS for GHD, we divided
all samples into three groups according to BMI: low (18.5–25), medium (25–30), and high
≥ 30 [28]. Additionally, the samples were divided into seven levels (i.e., septiles) according
to the values of PGS This way, all samples were grouped into 21 categories based on their
PGS and BMI. The odds ratios (ORs) of GHD in each group were computed relative to the
group with the medium BMI and median PGS (Figure 2 and Supplementary Table S2).

Figure 2. The odds ratios for GHD based on PGS for three BMI groups. The group of participants
with medium-level PGS (43–57%) and medium-level BMI (25–30) is taken as a reference group.

In line with earlier findings, higher PGS increased the odds of GHD across all three
BMI groups. While the effect of PGS in the low BMI group was rather modest, in medium
and high BMI groups the risk of GHD were monotonically increasing with the percentile of
PGS. High BMI was associated with much higher risks even compared to high PGS with
medium and low BMI. Thus, this analysis confirms that the contribution of BMI outweighs
the contribution of genetics for low and even medium BMIs.

Given the age of UKBB participants to be 37–73 with a mean age 56.53, for majority of
cases and controls in our dataset BMI is recorded years after pregnancy with or without
the occurrence of GHD. It is therefore not possible to untangle whether pre-pregnancy
high BMI is a risk factor for GHD, or GHD may have triggered health conditions that
resulted in higher BMI later in life. To address this question, we turn to the method of
Mendelian Randomization (MR) that is widely used to infer causal relationships between
two complex traits. The underlying hypothesis of the MR method is that genetic variations
(SNPs) can be used as instruments to test for a causal relationship between two exposures
and outcomes [29].

3.3. GHD Risk and Female-Specific Anthropometric Measures

To identify risk factors for GHD, we ran two-sample MR analysis using the TwoSampleMR
package in R. For exposure, genetic instruments for BMI, waist circumference, hip circum-
ference, and glycaemic traits (glucose, glycated hemoglobin) from the MR-Base GWAS
catalog [30] were used. For the outcome, we used the ‘non-cancer illness code, self-reported:
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gestational hypertension/preeclampsia’ (ukb-b-13535) from the UKBB and four gestational
hypertensive disorders from the FinnGen project as presented in the MR-Base GWAS cata-
log [30]. These are gestational [pregnancy-induced] hypertension, preeclampsia, preeclamp-
sia or eclampsia, and preeclampsia superimposed on chronic hypertension.

An earlier MR study provided evidence for causal effects of maternal systolic blood
pressure and BMI on preeclampsia, eclampsia as well as low fetal birth weight [31]. Our
MR analyses confirm that genetically proxied anthropometric measures such as BMI, waist
circumference, and body fat percentages significantly and causatively increase the risk of
GHD (Figure 3 and Supplementary Table S5). For example, the risk of preeclampsia (finn-b-
O15) was greater in women with higher genetically proxied waist circumference (ieu-a-63;
OR = 1.87), followed by body fat percentage (ukb-b-8909; OR = 1.72), BMI (ukb-a-248;
OR = 1.69), and hip circumference (ukb-b-15590; OR = 1.44).

Figure 3. Effect of genetically proxied anthropometric measures and biomarkers on the odds of GHD.
For details see Supplementary Table S5.

In the further analysis we used female-specific waist-to-hip ratio (WHR) and four an-
thropometric measures, specifically body size, adiposity, abdominal fat deposition, and lean
mass, computed from fourteen anthropometric traits from the UKBB data through prin-
cipal component analysis [32]. MR analysis identifies some anthropometric measures as
causal risk factors for GHD. Specifically, female-specific adiposity that reflects an increase
in fat mass at the expense of lean mass is the contributing risk factor to preeclampsia or
eclampsia (OR = 1.46), Additionally, higher body size that describes a slightly dispropor-
tionate increase in body mass compared to height, resulting in higher BMI, increases the
odds of preeclampsia by over 30 (OR = 1.35), followed by WHR (OR = 1.28), Interestingly,
weight-neutral abdominal fat deposition is also identified as a significant risk factor for
gestational hypertension (OR = 1.26), and preeclampsia (OR = 1.2).

Adiposity was reported earlier to have much stronger effects on many obesity-related
diseases, including diabetes, hypertension, hypercholesterolemia, and ischemic heart dis-
ease [32]. Similarly, predisposition to abdominal fat deposition, despite being weight-
and BMI-neutral, was found to be a risk factor for GHD (Figure 3 and Supplementary
Table S5). Our earlier study found that female-specific WHR, adiposity, and weight-neutral
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abdominal fat deposition are risk factors for gestational diabetes mellitus [22] with WHR
being the top risk anthropometric risk factor.

3.4. GHD Risk and Other Biomarkers

We further interrogated the effect of genetically proxied biomarkers on the odds of
GHD. Our MR analyses confirm that genetically proxied elevated blood glucose level is
significantly associated with higher odds of preeclampsia (OR = 1.24), as well as gestational
hypertension, and eclampsia (Figure 3 and Supplementary Table S5). These findings are in
line with a recent MR study that found the causal effect of genetically predicted diabetes
with a higher risk of preeclampsia [31].

Observational studies have further suggested that preeclampsia is associated with
a low intake of omega-3 long-chain polyunsaturated fatty acids (LCPUFA). Specifically,
women with the lowest levels of omega-3 fatty acids were 7.6 times more likely to have
had their pregnancies complicated by preeclampsia as compared with those women with
the highest levels of omega-3 fatty acids [33]. Furthermore, these authors report that 15%
increase in the ratio of omega-3 to omega-6 fatty acids was associated with a 46% reduction
in risk of preeclampsia.

In line with these reports, our MR analyses identified that elevated levels of omega-3
fatty acids (met-c-855), and docosahexaenoic acid (met-c-852) significantly lower the odds
of gestational hypertension (OR = 0.75). Adequate levels of other fatty acid metabolites,
including a long chain fatty acid 10-nonadecenoate, monounsaturated omega-9 fatty acid
oleic acid, and adrenate, a very long-chain fatty acid, also lower the risk of GHD. Fur-
thermore, “other polyunsaturated fatty acids than 18:2” (met-c-917) have a similar albeit
slightly weaker effect on the risk of GHD (OR = 0.88). Interestingly, the ratio of omega-6
fatty acids to omega-3 fatty acids slightly increases the odds of GHD (OR = 1.16), while
the ratio of omega-3 fatty acids to total fatty acids lowers the odds of GHD (OR = 0.85),
This is again consistent with the reported observation that a 15% increase in the ratio of
omega-3 to omega-6 is associated with a reduction in risk of preeclampsia [33]. Consistent
with these are the findings that the average number of double bonds in a fatty acid chain
(met-c-851) and the ratio of bisallylic groups to total fatty acids (met-c-845) also causatively
lower the odds of GHD. Fatty acid chains with double bonds are unsaturated, while those
with more than one double bond are called polyunsaturated. In other words, higher levels
of polyunsaturated fatty acids may play protective roles in GHD.

Another finding worth mentioning is that “good” cholesterol is negatively associated
with the incidences of GHD, while “bad” cholesterol (low-density lipoprotein cholesterol
levels) shows the tendency to increase the risks. For example, HDL cholesterol (ukb-d-
30760) lowers the risk of preeclampsia (OR = 0.83).

It is well known that both iron deficiency, as well as iron excess, lead to adverse preg-
nancy outcomes resulting in a U-shaped curve. Both low and high maternal hemoglobin
was found to be associated with adverse maternal outcomes, including preeclampsia [34].
Our MR analysis provides evidence that genetically proxied iron anemia increases the
risk of gestational hypertension (OR = 1.58), and preeclampsia (OR = 1.36). Furthermore,
genetically proxied total iron-binding capacity (TIBC) that rises when iron levels are low,
has an increasing effect on the odds of preeclampsia or eclampsia. Transferrin saturation
which is the ratio of serum iron and TIBC, and therefore becomes very low at iron anemia,
shows anti-correlation with the incidences of GHD with marginal statistical significance
(OR = 0.85). These results align with the findings on the effect of iron deficiency anemia on
the risk of GHD.

Also, marginally significant associations are found between genetically proxied al-
bumin and the risk of GHD (OR = 1.25). While high albumin to globulin ratio can occur
during pregnancy, high albumin may also indicate kidney disease as reviewed in [35].
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4. Discussion

Gestational hypertensive disorders (GHD) are the leading cause of maternal and fetal
morbidity globally. They adversely affect maternal health causing long-term organ damage.
Furthermore, they often lead to preterm birth and hence low birthweight that have long-
term consequences for the child’s future health. Evidence suggests that the administration
of low-dose aspirin initiated before 16 weeks’ gestation significantly reduces the rate of
preterm preeclampsia [36]. Therefore, it is important to identify women at high risk of
preeclampsia and other GHD during the first trimester of pregnancy, or before they become
pregnant, thus allowing timely therapeutic interventions [1].

There is strong evidence that preeclampsia is a complex disease that involves pro-
gramming changes at DNA, epigenetic, transcriptomic, protein, and metabolite levels.
Clinically, the application of understanding how each of these elements affects the process
of the disease state may be able to provide insights into treatment and prevention [37].
In this study, we develop and validate a polygenic risk score (PGS) for GHD, including
preeclampsia, and demonstrate its high predictive performance.

While the translation of PGS for GHD into clinical practice has a number of steps [38],
the development of an accurate PGS is definitely the first one. Our cross-validated model,
predicts odds ratio in the high-risk group (top 1–2%) of 11.2 which implies that the odds
of developing GHD in this group is more than 1100% higher than the odds of developing
the condition in the low-risk group. These results did not change much if we extended the
control groups to all women who gave live births, or if we narrowed the cases by removing
samples with the diagnosis of gestational hypertension without proteinuria.

4.1. Functional Analysis

The PGS is computed based on 115 SNPs, over half of them are annotated with coding
genes (Supplementary Table S3). These genes play roles in DNA repair functions (FTO,
INO80, RAD51B); mitotic spindle assembly (FGD4, ABR, TOP2A, ACTN4, PREX1); trans-
port of small molecules (FURIN, SLC39A1, FGD4, ABR, TOP2A, ACTN4, PREX1); immune
system (ERBB4, FBXL18), or hemostasis (ACTN4, RAD51B) (Supplementary Table S3).
Other genes participate in various metabolic processes (CDS2, GLTP, MTHFR, NDUFA10,
OSBPL6, PLCE1), including glycerophospholipid biosynthesis (CDS2) and glycosphin-
golipid metabolism (GLTP); inositol phosphate metabolism (PLCE1); metabolism of lipids
(CDS2, GLTP, OSBPL6).

In particular, it is worth mentioning the MTHFR gene that encodes the vitamin B9
(folate) dependent enzyme, methylenetetrahydrofolate reductase, which is the rate-limiting
enzyme in the methyl cycle. Pregnant, and trying to conceive women, are generally
recommended folic acid supplementation to ensure the proper functioning of the methyla-
tion cycle.

SNPs in the PGS score are significantly enriched in several blood pressure-related traits,
including systolic blood pressure, diastolic blood pressure, pulse pressure, mean arterial
pressure, interactions of blood pressure with alcohol, and smoking habits and weight-
related GWAS traits (Supplementary Table S3). Specifically, the most pleiotropic SNP in the
PGS, rs1421085, is mapped to the FTO gene, which is well known for its effect on obesity
and anthropometric traits, type 2 diabetes, alcohol consumption, among others. The second
most pleiotropic SNP (rs1458038) is mapped to the PRDM8 gene that is implicated in
affecting blood pressure, atrial fibrillation, apolipoprotein B levels, LDL cholesterol levels.
Another pleiotropic SNP rs167479 is mapped to the RGL3 gene that also affects several
blood pressure-related traits.

Among SNPs that are not-annotated with known GWAS, the top SNP (rs1173743)
significantly associated with GHD has been implicated in elevated blood pressure. It was
found to be associated with lower endogenous NPR3 mRNA and protein levels in vascular
smooth muscle cells, together with reduced levels in open chromatin and nuclear protein
binding. The blood pressure elevating allele also increased vascular smooth muscle cell
proliferation, angiotensin II-induced calcium flux, and cell contraction [39]. The second
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most significantly associated SNP (rs4660586) that negatively affects the risk of GHD, is
mapped to the HIVEP3 gene, which regulates RUNX2 expression and its activity. According
to the Neale lab GWAS, this SNP negatively contributes to basal metabolic rate, self-reported
hypertension, and several anthropometric traits, including trunk fat mass, hip circumference,
weight, waist circumference, and body fat percentage.

Little information is available on 5 SNPs located on the X chromosome. Two of these
SNPs map onto coding genes: rs780943500 maps to the transcriptional activator ELF4 with
the role in innate immunity and natural killer cell function, and rs29282 maps to the FMR1
gene that may be involved in mRNA trafficking from the nucleus to the cytoplasm and
is implicated in Fragile X Syndrome and Premature Ovarian Failure. Another SNP on
chromosome X (rs7052106), located between genes IL2RG and MED12, is associated with
uterine fibroids and several other traits, including mean platelet volume, reticulocyte traits,
and platelet distribution width, as well as total testosterone levels.

4.2. Risk Factors for GHD

We further demonstrate the causal effect of several anthropometric measures on the
risk of GHD which is in line with earlier reports. Specifically, our analysis demonstrates a
significant contribution of BMI to the risk of GHD. Furthermore, we identify female-specific
adiposity and abdominal fat deposition, which despite being weight- and BMI-neutral,
as risk factors for GHD that are complimentary to the BMI.

Furthermore, our studies confirm that elevated glucose levels, iron anemia, cholesterol,
and albumin biomarker are risk factors for GHD. We provide evidence on the importance of
adequate intake of long-chain polyunsaturated fatty acids (LCPUFA) to reduce the odds of
GHD. Several trials were conducted to study this effect but they returned conflicting results.
A recent systematic review of the evidence identified limitations of these preeclampsia trials
associated with heterogeneity and other issues [40]. Specifically, some of these trials offered
high doses of LCPUFA mid-term or later. This may actually promote the disorder instead of
keeping it at bay. The usage of “nature-randomized” trials (aka Mendelian randomization)
enables the integration of genetics from multiple sources to identify the importance of fatty
acids for the prevention, or reducing the risk, of GHD.

4.3. Limitations

Our study has a number of limitations.
Firstly, the overall AUC of the PGS model has a moderate value of 0.64. Nevertheless,

women in the top 5% of PGS have more than the 6-fold increased risk of GHD compared
to lower 50% of the score, while women in the top 2% of PGS have a more than the 9-fold
increased risk of GHD. Therefore, the PGS can be used as a predictive biomarker [41] in
clinical practice as it identifies a high-risk subgroup of women.

The major limitation of the PGS model is the fact that it was developed based on DNA
data from the UKBB which largely includes individuals of European ancestry. Unfortu-
nately, the shortage of genomic research data from persons of non-European ancestry is a
huge problem that reduces the accuracy of PGS predictions in clinical care. Future studies
in non-European populations are needed to validate PGS across populations.

Another limitation is due to the linear character of the MR analysis. On one hand, MR
provides a road map for lifestyle recommendations for women to mitigate the risks of GHD
suggesting that plenty of omega-3 fatty acids (starting preconception), and healthy iron
levels are recommended. On the other hand, MR does not allow for the investigation of
non-linear relationships between risk factors (e.g., iron) and outcomes. Hence, the obtained
result that genetically proxied higher hemoglobin levels reduce the risk of GHD contradicts
findings that high maternal hemoglobin concentration in the first trimester is a risk factor
for pregnancy-induced hypertension [42].
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5. Conclusions

In this study, we develop a DNA-based polygenic risk score for GHD including
preeclampsia. According to a recent report, a single genetic test per individual with
automated processing and bioinformatics would cost around US$ 35 [38]. While the test
itself is relatively inexpensive, there are other costs associated with the deployment of PGS
at a scale that may require training and educational resources. Still, compared to other
available tools, the saliva-based genetic test is a low-cost early screening tool that can be
used in a clinical practice, or even at home, to identify women at high risk for GHD even
before they become pregnant. This would provide a window of opportunity to offer these
women preventative preconception lifestyle strategies that include intake of healthy omega-
3 fatty acids, maintaining healthy iron levels, and lowering risky anthropomentric measures
(BMI, adiposity, and abdominal fat deposition). Furthermore, the DNA-based test would
provide a stratification tool for better triage women into established screening programs,
and close monitoring by healthcare providers before or early in pregnancy. The full
risk model for GHD would incorporate other risk factors, such as age, anthropometric
measurements, biomarkers, medical history, and genetics.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/jpm12111826/s1, Table S1: Trained linear models for computing
PGS for GHD; Table S2: Odds ratios (ORs) for GHD; Table S3: Annotations of SNPs from PGS; Table S4:
Trained Linear Models for computing PGS for Preeclampsia; Table S5: Mendelian Randomisation
results for GHD.
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