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In this editorial, we focused on the article, “MicroRNA-132 in the Adult Dentate
Gyrus is Involved in Opioid Addiction Via Modifying the Differentiation of Neural Stem
Cells” by Jia and colleagues. This article was intriguing as it investigated the connec-
tion between opioid addiction and neuronal differentiation through microRNA (miRNA),
i.e., miRNA-132 [1].

Drug addiction can be categorized as a brain disorder in which the expression patterns
of genes involved in neural plasticity (the process of stimuli-based changes in neuronal
circuits) are altered. Drug addiction has been associated with serious social and public
health impacts. In the United States, opioid addiction leads to an enormous health burden
(costing billions of dollars) and causes thousands of deaths every year. The most commonly
abused opiates include morphine, heroin, and oxycodone [2].

Animal models have shown that adolescent rodents were more likely to develop
opioid addiction due to an enhanced feedback mechanism from the µ opioid receptor
(MOR) and fewer opioid withdrawal symptoms [3,4]. Some molecular genetic studies
suggested that opioid addiction is not only initiated by environmental elements but may
also have heritable factors [5]. Hence, it may be postulated that genetic profiles may affect
the likelihood of opioid addiction in certain populations. Moreover, drug abuse has been
indicated to alter the gene expression processes involved in neural plasticity, memory,
learning, and motivational behaviors [6]. In addition, the role of miRNAs to regulate
gene expression in neurogenesis has already been thoroughly described in the published
literature [7,8].

Neurogenesis is a complicated process involving neural stem cell (NSC) prolifera-
tion (self-renewal), differentiation (fate specification), migration, neuronal maturation,
and functional neuronal integration. NSCs are progenitor cells that can proliferate and
give rise to both neuronal and glial lineages. The whole process of neurogenesis is reg-
ulated by the dynamic interplay between transcription factors, miRNAs, and cell-niche
signaling [9]. A major portion of NSCs in the adult mammalian brain is located in the
ventricular-subventricular zone (V-SVZ) of the lateral ventricles (LVs). Young neurons
produced by these basic progenitors grow as far as the olfactory bulb (OB) [10]. Addi-
tionally, NSCs are also found in the hippocampus’s subgranular zone (SGZ), where they
produce new excitatory neurons for the dentate gyrus (DG) that are critical to learning,
memory, and pattern recognition [11]. In the mammalian brain, the hippocampus is crucial
for learning and memory development [12]. A visual representation of the processes and
site of neurogenesis can be found in Figure 1.

Neuronal plasticity in the hippocampus has been investigated to comprehend the
molecular underpinnings of learning and memory. The alterations in neuronal circuits
can be functional or structural and manifest through changes in morphology, synaptic
connectivity, or genetic expression [13]. Moreover, repeated drug exposure can induce
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neuronal plasticity, ultimately leading to behavioral changes, including drug sensitization
and drug-seeking behavior [14]. According to several studies, the hippocampus is thought
to have a role in the emergence and maintenance of addiction [15,16]. Preclinical research,
for instance, indicated that early exposure to drugs and alcohol may alter hippocampus
function, resulting in increased drug–context connections, aiding in the development of
addiction. One particular mechanism studied to understand learning and memory is long-
term potentiation (LTP). The retrograde messenger nitric oxide (NO) is thought to induce
LTP in the CA1 region of the hippocampus via the activation of soluble guanylyl cyclase
(sGC) and, ultimately, cGMP-dependent protein kinase (cGK). Thus, increasing doses of
cocaine and nicotine increase LTP in the CA1 area of the hippocampus, whereas neurotoxic
amounts of methamphetamine decrease it [17–19]. Various studies have underscored the
role of the synaptic alterations in the hippocampus by stimulants in the association of
pleasure with drug-associated memories and eventual addiction to the drug [20,21]. While
stimulants have been shown to enhance LTP in the CA1 region, alcohol and drugs (opiates,
cannabinoids) that are central nervous system depressants indicate decreased CA1 LTP. For
instance, chronic ethanol exposure impairs hippocampus CA1 LTP, according to research
utilizing animal models exposed to moderate to severe alcohol use [22].
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Previously, a significant number of studies presented investigations pertaining to
the role of miRNAs in many processes of the central nervous system, including neuronal
development and differentiation [23], synaptic formation, neuronal plasticity, and the
regulation of memory, cognition, and emotion [24–26]. MicroRNAs are small (usually
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19–22 nucleotide long) non-coding RNA transcripts that regulate gene expression. They
were first discovered in Caenorhabditis elegans in 1993 [27]. They affect the translation
and stability of their mRNA targets by guiding RNA-induced silencing complex (RISC)
predominantly to 3′UTR of mRNAs [28]. MiRNAs are particularly abundant in the nervous
system. Interestingly, Gu et al. explored the expression pattern of circulating miRNAs
in subjects with drug addiction and tested the potential of altered serum miRNAs as
noninvasive diagnostic tools for drug abuse. Through microarray analysis, they identified
altered levels of miRNA in heroin abusers [29]. Furthermore, Silveira et al. reviewed the
existing literature and reported that there are at least 55 miRNAs upregulated and involved
in neuronal differentiation, suggesting the involvement in multiple genetic elements during
this complex process [30]. A non-comprehensive list can be found in Figure 2.
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Subsequently, there is growing interest in the significance of the research to determine
the effect of miRNA-132 on the differentiation of neural stem cells (NSCs). miRNA-132 is
an important regulator of neural activity, and it has been shown to regulate neurogenesis
in adult mouse brains, as well as in human NSCs. For instance, Walgrave et al. using a
mouse model, determined that restoring the in vivo expression of miRNA-132 in adult
NSCs rescued neurogenic deficits in Alzheimer’s disease [31]. In this study, the researchers
investigated whether miRNA-132 can regulate adult hippocampal neurogenesis in healthy
and Alzheimer’s brains. Using a distinct Alzheimer’s amyloid mouse model, cultured
human neural stem cells, and post-mortem human brain tissue, it was discovered that this
RNA molecule is required for the neurogenic process in the adult hippocampus. These
findings highlighted the therapeutic potential of miRNA-132 to restore neurogenesis and
inhibit the progression of neurodegenerative diseases such as Alzheimer’s disease [31].

The article, entitled “MicroRNA-132 in the Adult Dentate Gyrus is Involved in Opioid
Addiction Via Modifying the Differentiation of Neural Stem Cells”, further explored the role
of miR-132 in the process of NSCs differentiation. Jia and colleagues designed this study to
investigate if miR-132 influences the differentiation of NSC-like cells (Neuro 2A cells) from
adults and NSCs from embryonic tissue. The effect of miR-132 in the NSCs of the adult
DG on morphine addiction was also assessed in this study using the Sprague Dawley rat
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morphine self-administration paradigm. In these experiments, overexpression of miRNA-
132 was accomplished by transfection using the vectors pCMV-MIR and lentivirus pLenti-
CMV-mir-132. Overexpression of miR-132 resulted in enhanced differentiation of N2a
cells and NSCs. This enhancement of differentiation was observed both in the in vitro
cultured NSCs, as well as in vivo NSCs, in the adult DG. The findings of this study strongly
suggested that the miRNA-132 overexpression in the NSCs of adult DG leads to enhanced
consolidation and impaired elimination of addiction memory [1].

The primary focus of this article was the role of miRNAs on neurogenesis and the
formation of opioid addiction. The initial motivation for the current research might have
been previously observed upregulated expression of miRNA-132 with morphine expo-
sure [32]. The issue under study was well described with the assistance of a comprehensive
literature review. The problem statement was efficiently constructed to specifically state
the hypothesis to be tested. The study design was planned according to the proposed
hypothesis, and the results were explained well, with sufficient figures and data charts.
However, the study’s scope was limited to testing the effect of miR-132 expression only.
In our opinion, it may be worthwhile to include other miRNAs along with miR-132 in
this study design to determine the most critical pathway(s) in the complex process of
neural stem cell differentiation. Further research in this area may also find significance in
the clinical research for the identification of novel molecular therapeutic targets to treat
neurodegenerative disorders.

Interestingly, Jia and colleagues recently carried out another study, in which it was
noted that in vitro morphine exposure (for 24 h) promotes the differentiation of N2a cells
that express the µ-opioid receptor via the upregulation of miR-132 expression. They also
observed that in vivo morphine dependence was clearly associated with increased miR-132
expression and neuronal structural plasticity in the DG neurons of rats [33]. These findings
again demonstrated a specific link between miR-132 expression and changes in neuronal
structure and function upon opioid exposure.

In conclusion, neuronal differentiation and drug-seeking behaviors were increased
in miR-132-overexpressed mice when exposed to opioids. This overexpression increased
the differentiation of NSCs both in vitro and in vivo. Therefore, it can be concluded that
miR-132 is involved in opioid addiction, probably by promoting the differentiation of
NSCs in the adult DG. Moreover, recent groundbreaking advances in the treatment of
neurodegenerative disorders using small RNA-based therapeutics may pave the way for
more direct miR-132-based therapeutic or diagnostic approaches. Future research in the
field of addiction biology should continue to investigate miRNAs with a greater focus on
the mechanism(s) of how miRNA expression changes over time in response to stimulants.
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