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Abstract: Background: Mental and physical health are both important for overall health. Mental
health includes emotional, psychological, and social well-being; however, it is often difficult to
monitor remotely. The objective of this scoping review is to investigate studies that focus on mental
health and stress detection and monitoring using PPG-based wearable sensors. Methods: A literature
review for this scoping review was conducted using the PRISMA (Preferred Reporting Items for the
Systematic Reviews and Meta-analyses) framework. A total of 290 studies were found in five medical
databases (PubMed, Medline, Embase, CINAHL, and Web of Science). Studies were deemed eligible
if non-invasive PPG-based wearables were worn on the wrist or ear to measure vital signs of the heart
(heart rate, pulse transit time, pulse waves, blood pressure, and blood volume pressure) and analyzed
the data qualitatively. Results: Twenty-three studies met the inclusion criteria, with four real-life
studies, eighteen clinical studies, and one joint clinical and real-life study. Out of the twenty-three
studies, seventeen were published as journal-based articles, and six were conference papers with full
texts. Because most of the articles were concerned with physiological and psychological stress, we
decided to only include those that focused on stress. In twelve of the twenty articles, a PPG-based
sensor alone was used to monitor stress, while in the remaining eight papers, a PPG sensor was
used in combination with other sensors. Conclusion: The growing demand for wearable devices
for mental health monitoring is evident. However, there is still a significant amount of research
required before wearable devices can be used easily and effectively for such monitoring. Although
the results of this review indicate that mental health monitoring and stress detection using PPG is
possible, there are still many limitations within the current literature, such as a lack of large and
diverse studies and ground-truth methods, that need to be addressed before wearable devices can be
globally useful to patients.

Keywords: PPG; stress monitoring; wearable devices

1. Introduction

Mental illness is a common disorder among individuals in most industrialized coun-
tries and many emerging economies [1]. The pressure of study, life, and employment can
produce a variety of negative emotions that, over the long term, can lead to mental health
issues such as chronic stress, anxiety, and depression. Unfortunately, many people do
not take the initiative to seek help and consult professionals. Stress is a nearly universal
human experience; however, individuals have different ways of defining it. Most people
tend to consider stress as a negative emotion, yet this is not always the case. Eustress is
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described as stress in daily life that has positive connotations such as marriage, promotion,
or having a newborn. On the other hand, there is distress, which has negative significance,
such as divorce, financial problems, or injury [2]. According to the American Psychological
Association [3], there are three types of stress: (1) acute stress, which is short term and not
necessarily harmful during which a mild increase in heart rate (HR) and blood pressure (BP)
is observed; (2) episodic acute stress, which is when an individual feels stressed frequently,
for instance, by over-working regularly (the symptoms are similar yet accumulative and, if
poorly managed, can result in heart disease or depression), and (3) chronic stress, which
is a result of being in a situation, such as an abusive relationship, war, or natural disaster,
that continues for months or years and is the major cause of cardiovascular diseases, severe
sleep issues, weight changes, depression, and even suicide.

The mainstream methods of assessing mental health are questionnaires and profes-
sional consultation, which are considered expensive, time-consuming, and more impor-
tantly, subjective [4]. In addition, the patient may hesitate too long to seek help, and many
may never do it. Thus, detection tools to monitor physiological and psychological signals
passively, objectively, and continuously are of great importance and interest.

Wearable technology enables a healthcare provider to remotely monitor health param-
eters and provide more effective care. We recently surveyed the literature on the accuracy
of existing PPG-based wearables on health parameters such as heart rate (HR), heart rate
variability (HRV) atrial fibrillation (AF), blood pressure (BP), obstructive sleep apnea (OSA),
blood glucose (BG), and respiratory rate (RR) [5]. In addition to physiological health, moni-
toring mental health has gained tremendous attention, specifically over the past decade.
The COVID-19 pandemic has further underscored the need for wearable technology in
healthcare due to lockdowns, patient unwillingness to leave their homes, and restricted
clinical visits. Several reports have documented that the number of people diagnosed with
mental illness has risen considerably during the COVID-19 pandemic. However, stress,
anxiety, and depression are latent constructs and often difficult to monitor objectively;
therefore, there has been a recent focus on the feasibility of creating technology capable
of detection of mental states. The autonomic nervous system (ANS) is composed of two
branches. The first branch is the sympathetic nervous system (SNS) that drives the “fight or
flight” response in stressful situations. The second branch is the parasympathetic nervous
system (PNS), which has almost exactly the opposite role of the SNS; it oversees “rest and
digestion” [6]. When an individual is exposed to a stressor, changes in HR, BP, RR, heart
rate variability (HRV), sweat gland activity, and skin temperature (ST) are observed, all of
which are regulated by the ANS [7]. Therefore, continuous monitoring of ANS activity with
mobile or wearable devices enables us to capture real-time behavioral and psychosocial
data in a precise and confidential manner via monitoring HR, HRV, RR, skin conductance
(SC) using photoplethysmography (PPG), electrocardiography (ECG), and galvanic skin
response (GSR) sensors. Photoplethysmography, as a potential surrogate to ECG, is an
inexpensive, user-friendly, and non-invasive technology that measures the alterations in
blood volume via infrared light, thus allowing practical and continuous HR and HRV
measurements [8]. Heart rate variability is a promising candidate as a marker of mental
health [9–11]. Therefore, wearable PPG sensors are great candidates to enable individuals
to stay aware of their stress level in real time and manage it. The data collected by various
sensors can be analyzed with different techniques. Most of the studies included in this
review use machine learning algorithms in the detection of stress using PPG-based wear-
able devices. Machine Learning (ML) algorithms are promising methods to classify mental
health status. This classification is performed considering different features retrieved from
data collected by sensors. A list of nomenclature used in this review paper is given in
Table 1 as follows.

The objectives of this review are to:

1. Report on recent achievements and advancements in mental health monitoring and
stress detection using non-invasive wearable devices equipped with PPG sensors.
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2. Identify the existing limitations and gaps in detection of stress using PPG-based
wearable devices.

3. Provide direction for future research in this area.

Table 1. List of nomenclature used in this paper.

Nomenclature Referred To Nomenclature Referred To

ACC Accelerometer PASAT Paced Auditory Serial Addition Test

ANN Artificial Neural Network PAT Pulse Arrival Time

ANS Autonomic Nervous System PCA Principal Component Analysis

AUC Area Under the Curve PEP Pre-ejection Period

BVP Blood Volume Pulse PFC Prefrontal Cortex

CNN Convolutional Neural Network PNS Parasympathetic nervous system

CSSRS Columbia Suicide Severity Scale PP Perinasal Perspiration

DBP Diastolic Blood Pressure PPG Photoplethysmography

DT Decision Tree PRV Positive Predictive Value

DWT Discrete Wavelet Transform PSS Perceived Stress Scale

ECG Electrocardiography PTSD Post-Traumatic Stress Disorder

EDA Electrodermal Activity PTT Pulse Transit Time

EEG Electroencephalogram RF Random Forest

GSR Galvanic Skin Response RR Respiratory Rate

HF High Frequency SBP Systolic Blood Pressure

HR Heart Rate SC Skin Conductance

HRV Heart rate Variability SCG Seismocardiogram

IAPS International Affective Picture System SCWT Stroop Color-Word Test

IBI Interbeat Interval SFFS Sequential Forward F Selection

kNN k-Nearest Neighbors SI Stress Index

LDA Linear Discriminant Analysis SNS Sympathetic Nervous System

LR Logistic Regression ST Skin Temperature

MDD Major Depressive Disorder SVM Support Vector Machine

ML Machine Learning TNR True Negative Rate

The review is organized as follows. The methods section outlines the process used
to select papers for the review, including eligibility criteria and the PRISMA (Preferred
Reporting Items for Systematic Reviews and Meta-analyses) diagram. The results section
presents data from the included papers; however, because the majority of the papers were
based on PPG and stress, they form the focus of this review. The discussion section analyzes
the results of the review, identifies limitations in the literature, and makes recommendations
for future research.

2. Methods

This scoping review was conducted in accordance with PRISMA. Studies were identi-
fied by querying the PubMed, Medline, Embase, CINAHL, and Web of Science databases
for papers published in the period 2017 to 2022. The goal was to capture eligible studies
that used wearable PPG sensors or PPG sensors in combination with other wearables to
assess or study mental health.

The following search terms were used in combination in all the databases: (wearables
OR smart phone OR smartwatch OR smart device OR monitoring) AND (mental health
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OR mental disorder OR psychological distress OR mental distress OR stress OR anxiety
OR generalized anxiety disorder OR depression OR major depressive disorder) AND (PPG
or photoplethysmography). Searches were limited to title, abstract, and keywords. The
eligibility criteria were:

• The trials could be in clinical or real-life environments.
• Any wearable device type was included.
• The wearable device used PPG-based technologies to assess mental health, although

additional peripheral sensors were permitted.
• The area of mental health included mental health, mental disorders, psycholog-

ical distress, stress, anxiety, generalized anxiety disorders, depression, or major
depressive disorders.

• The study was published between January 2017 and April 2021.
• The study evaluated mental health in humans.
• The study was published in English.
• The study was not a review paper.
• The study was not an abstract paper or conference paper with no full text available.
• The study did not collect data by placing a finger on a camera.

Five reviewers (M.N., J.L., S.K., A.A.J., M.H.) independently screened the selected
articles by their titles and abstracts and evaluated whether a given study met the inclusion
criteria. If the information from an abstract was unclear, the full text was retrieved. At all
steps of the screening process, the decision to include or exclude an article was made by
five reviewers, with M.N. and S.K. serving as the final arbiters.

The extracted data from all the studies were tabulated and reviewed multiple times
for their consistency and accuracy. The extracted data included demographic information
such as the study type (clinical vs. real-life settings), total number of participants, average
age of the population, medical condition of the participants, the stress signal, the stress test,
and the methodology used in each article.

3. Results

Out of 290 articles screened, 23 papers are included in this review, with 4 real-life
studies, 18 clinical studies, and 1 joint real-life and clinical study (Figure 1). Among
the 23 articles that fulfill the eligibility criteria, 17 articles are journal papers, and 6 are
conference papers with full-text availability. The mental health areas appearing in the
included papers are stress (n = 20), depression leading to suicidality (n = 1), PTSD (n = 1),
and mental workload (n = 1). Due to the majority of the papers focusing on PPG and stress,
we have chosen only to tabulate extracted data from the 20 stress-related studies.

In general, the stress studies included in this review had the same general format. To
begin, data were collected from participants using a form of wearable device. To ensure
differing levels of stress during the data collection, participants were asked to perform
various stress tests. Although many different formal stress tests were used, most tests had
the following format: a controlled period of rest followed by an intense activity to induce
stress, followed by a controlled rest and recovery period (exceptions to this case are the
studies performed in real-life, where the study relied on everyday stressors and periods
of rest). Once data were collected, they were processed and classified into categories
based on the level of participant stress. Accuracy was then checked against a form of
ground-truth method.

Details for all included stress studies can be found in Tables 2 and 3. Table 2 contains
sample size and demographic information for all the included stress studies. Table 3
contains data about the stress detection studies. Additional information is reported in the
sub-sections below.
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Figure 1. PRISMA flowchart of the identification and selection of studies.

Table 2. Basic characteristics of the studies analyzed. The table summarizes the study type, sample
size, and average age and the medical condition of the participants.

Study Study Type Sample Size Average Age of
Participants (Years) Medical Condition

[12] Clinical 12 NR Healthy

[13] Real Life 8 21–25 Individuals with
no history of cardiac diseases

[14] Clinical 45 20 to 28 Healthy

[15] Clinical 18 31.1 Healthy

[16] Clinical 21 26.3 NR

[17] Clinical and
Real Life

Stress study: 15
Real Life study: 5 NR NR

[18] Real Life 14 NR NR

[19] Clinical 10 30–58 NR

[20] Clinical 15 NR (WESAD database) NR

[21] Clinical 6 NR (college students) Healthy

[22] Clinical 1 A male in his 20′s NR

[7] Clinical 10 23–31 Healthy

[23] Clinical 37–RCDAT dataset 24–27 Healthy
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Table 2. Cont.

Study Study Type Sample Size Average Age of
Participants (Years) Medical Condition

[24] Clinical 40 73.63 Healthy

[25] Clinical control group:17
real-life setting: 1 20–27 NR

[26] Real Life 40 24.85 Healthy

[27] Clinical 61 18 to 54 (23.75) NR

[28] Real Life 21 NR NR

[29] Clinical 26 Males: 20–32
Females: 28–31 Healthy

[30] Clinical 16 26.7 Healthy

[31] Clinical 51 13–19 Suicidal adolescent patients

[32] Clinical 31–CLAS dataset
19–MAUS dataset NR NR

[33] Real Life 1618–AURORA dataset 18–75 Individuals experienced
traumatic events

Table 3. Stress detection studies in clinical and real-life environments.

Study Sensor
(Location) Stress Signal Stress Test # of Classes Ground-Truth

Method

[12] PPG
(wristband) HRV Non-trivial arithmetic task 3 (Baseline, Stress,

Recovery)
Perceived stress level

(PSL) 0–10

[13] PPG
(wristband) HRV Real Life NR (Stress level) PSS

[14] PPG
(wristband) HRV International Affective

Picture System (IAPS) 2 (Distress, Calmness) NR

[15] PPG
(earlobe) HRV Computerized SCWT 2 (Stress, Not-stress) ECG

[16] PPG
(finger clip) HRV Game (python-based

program LARA) 2 (Stress, Not-stress) ECG

[17] PPG
(wristband) HRV Modified TSST and Real

Life
NA (baseline, Speech,

Recovery)

Stress study: ECG
Real-life: Polar H7

(ECG)

[18] PPG (wristwatch) HRV, HR Real Life 2 (Stress, Non-stress) Self-reported
questionnaire

[19] PPG
(earlobe) HRV Paced Auditory Serial

Addition Test (PASAT) 3 (Rest, PASAT, Rest) NR

[20] PPG (wristwatch) BVP NR
3 (Baseline, Stress,

Amusement)
2 (Stress, Non-stress)

WESAD dataset

[21] PPG
(finger clip) PTT Modified TSST NA (Baseline, Speech,

Math, Recovery) ECG

[22] PPG
(earbud) Pulse Wave Two-digit addition

problems NA (Stress level) NR

[7] PPG (wristband, upper
arm, temporal region) Pulse Wave Stroop tests

5 (Baseline, Stroop1,
Relaxation, Stroop 2,

Recovery)

BP and Visual
Analogue

Scale (VAS)
questionnaire
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Table 3. Cont.

Study Sensor
(Location) Stress Signal Stress Test # of Classes Ground-Truth

Method

[23]
PPG, GSR

(all wristband and
finger clip)

HRV, Cardiotach Audible and visual clips 3 (Relaxing, Normal,
Stressful)

Stress state
questionnaire on a

0–4 scale

[24] PPG, EDA, ST (all
wristband) BVP, IBI, EDA, ST TSST 2 (Stress, Not-stress) Salivary cortisol

measurement

[25]
PPG (wristband), ECG

(chest strap),
GSR (wristband)

HR, HRV, SC

1- Memory Game,
Mosquito Sound, IAPS,

Plank, Ice Test, TSST, SCWT
2- Real Life

2 (Stress, Not-stress)
Everyday

self-reported stress
label

[26]
PPG (earlobe), EEG

(headband), GSR
(finger clip)

HR, SC, Brain
Activity Real-Life Public Speaking 2 (Stress, Not-stress) NR

[27]
PPG (wristband), ECG

(chest strap),
EDA (wristband)

HR, EDA, RR,
PP (thermal camera)

Computer task:
Essay Writing,

Calming Video/Stroop Test,
Dual task, Online

Presentation

NR NR

[28] PPG, EDA, ACC (all
wristwatch) HR, SC, ST, ACC Real Life

3 (Low stress, Medium
stress,

High stress)

NASA-TLX and
self-reported

questionnaires

[29]
PPG, GSR, ST,
ACC, GYRO

(all wristband)
HRV, ST, ACC

Simulated
Indoor Driving
Environment

4 (Normal, Stress,
Fatigue, Drowsiness)

Self-reported Stress
feedback on a

1–5 scale

[30]
PPG (headband), ECG

(chest and hips),
SCG (chest)

HR, PEP, PTT, PAT
PPG amplitude

PFC Oxygenation
Markers

Mental arithmetic tasks,
N-back memory tasks 3 (Easy, Medium, Hard) NASA-TLX

questionnaire

3.1. Brief Summary of Anxiety and Depression-Related Papers

There was only one paper was related to detection of suicidal behavior using PPG
wearables [31]. In this study, 51 patients presented to the emergency department or
admitted to the psychiatric unit for acute suicidality were asked to wear a PPG wrist-
worn device for 7 days. The patients were required to complete the Columbia Suicide
Severity Scale (CSSRS). An increase in the high-frequency (HF) component of HRV was
observed in patients with 25% or more decrease in CSSRS. A study by Cakmak et al. [33]
investigated whether a PPG-based research watch could predict PTSD outcomes (e.g., pain,
sleep anxiety). Three methods of data collection were applied: patients who wore the
watch to collect HRV and actigraphy data, patients who answered a survey, and patients
who contributed both to the watch and survey data. The accuracy from the watch was
comparable to the survey indicating that PPG-based wearables have potential for PTSD
monitoring in long period studies. A study assessed mental workload through HRV data
acquired from 19 subjects wearing a Pix Art PPG watch and doing an N-back test [32]. The
proposed PPG-based mental workload system performed comparably to the synchronized
ECG device measurements.

3.2. Stress Detection and PPG

Twelve out of the 20 stress-related studies used only a PPG sensor to monitor
stress [7,12–22]. Of these 12 studies, HRV was the most common health parameter. Three
separate studies [12,13,15] reported observing the same behavior for HRV from different
PPG sensors on different locations: during times of increased stress, HRV decreased. The
remaining HRV papers did not specify the behavior of HRV during moments of stress vs.
no stress (e.g., if the HRV decreased during moments of stress) but simply reported that
they were successfully able to use the parameter to classify moments of stress vs. non stress.
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Other health parameters for detecting stress using only PPG included pulse transit
time (PTT), pulse waves, and blood volume pressure (BVP). All three parameters were
shown to successfully detect stress. However, Celka et al. [7] reported that although
changes in pulse waves can be detected during times of stress, those changes are not as
obvious as those detected in heart rate (HR), blood pressure (BP), or the ANS. Furthermore,
Celka et al. [7] observed that within BP, DBP varied more significantly than SBP; therefore,
they suggested the use of DBP to monitor stress. It is also of interest to note that the study
using BVP to detect stress [20] was the only study to utilize a database of PPG signals,
WESAD [34], instead of collecting their own data.

Studies that utilized solely PPG used two primary locations of sensors: ear [15,19,22,26]
and wrist [7,12–14,18,23–25,27,29]. Sensors located at the ear were less prone to motion
artifacts [22]. However, studies using wrist-worn sensors—including a long-term everyday
study conducted by [13]—still successfully detected stress, although one of these stud-
ies [13] did observe that the wrist-worn PPG signals were more accurate before bed than
during the day (i.e., they were more accurate when participants were moving less).

The remaining nine papers used PPG in combination with other sensors [23–30].
Additional sensors included electrodermal activity (EDA)/Galvanic Skin Response (GSR),
which detects sweat and skin temperature changes; accelerometers (ACC)/gyroscopes
(GYRO), which provide motion information to detect drowsiness and clean artifacts from
EDA and PPG signals [28,29]; seismocardiography (SCG), which records cardiac mechanical
vibration using an accelerometer-based sensor [35]; and ECG, which measures electrical
activity of the heart. In general, studies reported a higher accuracy using sensors in
combination with PPG than using PPG alone [24,26,27,30]. One study [25] went as far to
determine that stress was detected with higher accuracy when PPG was excluded from
the multi-sensor data, although they were quick to conclude that this was likely due to
motion artifacts.

Most included studies made use of various commercial products for data acquisition.
Devices included the Empatica E4 wristband, Samsung gear wristwatch, James one, and
Shimmer 3. All devices successfully detected stress in at least one study; however, there
were mixed results. For example, in Can et al. [28], the Empatica E4 sensor detected stress
with a higher accuracy than the Samsung gear watch, but in the study by Arsalan et al. [26],
the Empatica E4 failed to detect stress entirely.

Any sensor or device that can be connected to WiFi can in principle be part of the
Internet of Things (IoT). In the context of this review, sensors such as GSR, ECG, and
GYRO can be considered as IoT devices and form part of PPG-based smart systems for
stress detection.

3.3. Ground-Truth Methods

There are two main categories of ground-truth methods that are used to directly assess
a participant’s level of stress: self-report questionnaires and physical-response sampling.
Examples of self-report questionnaires include the Perceived Stress Scale (PSS), Stress
Self-Rating Scale, NASA-TLX, State-Trait Anxiety Inventory, Visual Analogue Scale (VAS),
relative stress scale, Self-Assessment Manikin, and Positive and Negative Affect Schedule
test [28]. Such tests involve having a participant answer a series of questions that rate their
current perceived experiences and emotions. For physical-response sampling, there are
two main methods: testing salivary cortisol [24] and leukocyte measurement [35]; none of
the studies in this review used the latter method.

Instead of directly assessing a participant’s stress levels as the ground truth (cortisol
test), other studies used additional sensors to either verify the behavior of a certain signal
(e.g., HRV) during periods of stress or used a signal that had a known behavior during
stress and therefore could reliably indicate periods of stress. An example of the first type
of study is [17], in which ECG was used to verify PPG signals. An example of the second
type of study is [7], in which BP, a well-known health parameter that increases during
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periods of stress, was used to determine periods of stress. Five studies did not report any
ground-truth methods [14,19,22,26,27].

3.4. Common Methodologies for Detecting Stress from PPG
3.4.1. Hardware-Based Methodologies

Photoplethysmography signals can be processed and analyzed by using hardware-
based methodologies with wearable devices. Of the twenty papers included in Table 4,
twelve papers used some form of hardware-based filter to preprocess or extract the PPG
signal [7,12,13,15–18,21,22,26,27,30]. Three of the papers [18,26,30] used band-pass-type
and signal averaging filters to preprocess signals before performing stress classification
using ML algorithms. One paper [27] used signal preprocessing before applying a statistical
test to the PPG signal.

Table 4. Hardware-based methodologies for detecting stress from PPG signals.

Study Signal Pre-Processing Stress Detection Methodology

[12] Butterworth low pass filter (2 Hz).
Distribution filter, threshold detection

RR interval detection with time
domain analysis

[30] Finite Impulse Bandpass (0.8 Hz- 10 Hz) Machine Learning

[15] Low pass filter (5 Hz). Linear
extrapolation based on rolling average

RR interval detection with time
domain analysis

[18] Butterband band pass (0.7 Hz–3.5 Hz);
moving average filter Machine Learning

[16] Cubic spline interpolation on clipped
signals, Savitsky-Golay filter

RR interval detection with time
domain analysis

[26] Savitsky-Golay filter Support Vector Machine

[7] Moving average filter RR interval detection with time
domain analysis

[27] Normalization via subtracting
baseline signal T-test

[13] 3 stage band pass (0.5 Hz–11 Hz, 0.8
Hz–3 Hz, 0.9 Hz–1.6 Hz)

Sliding window RR detection with
time domain analysis

[22] Moving average filter Sliding window PPG and PPG
velocity signal analysis

[21] None RR interval detection

[17] Noise removal via least mean squares
HR frequency analysis using IIR
Bandpass filter and sinusoidal

modeling.

The remaining eight papers [7,12,13,15–17,21,22] used a combination of preprocessing
and time/frequency domain analysis to extract RR interval and HR features. For time
domain analysis, the most common technique was to determine the derivatives of the
PPG signal and use them to determine the peaks and valleys of the signal corresponding
to RR-intervals and heart beats [7,12,13,15,16,21,22]. Only one paper [17] used frequency
domain analysis in the form of an IIR (infinite impulse response) Bandpass filter combined
with sinusoidal modeling to determine the frequency of HR.

3.4.2. Machine Learning-Based Methods

Photoplethysmography signals can also be processed and analyzed using ML. Within
the studies included in this review, 13 papers analyzed the data with different ML classifi-
cation algorithms to classify stress. All papers included feature extraction to improve the
performance of the ML algorithms.
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In terms of classification algorithms, 9 papers [18–20,23,25,26,28,29,33] applied differ-
ent classifiers on the same datasets, while the remaining 4 papers applied single classifica-
tion algorithms [14,24,30,32]. The stress status of the participants was divided into varying
amounts of classifications across the studies: 8 papers divided them into 2 classes, 3 papers
into 3 classes, 1 paper into four classes, and 1 paper used a combination of 2 or 3 classes
(see Table 3).

The performance of classification methods was assessed using several evaluation
metrics including accuracy, precision, recall, F-measure, and area under the curve (AUC).
Because the included papers used different datasets, classifiers, and evaluation metrics,
it is not possible to directly compare the performance of the classification algorithms;
however, studies that used multiple classification algorithms on the same dataset are
amenable to comparing the performance of each algorithm within each study. For in-
stance, [26] performed analytical classification using different ML-based algorithms, in-
cluding (a) k-Nearest Neighbors (kNN), (b) Support Vector Machine (SVM), (c) Random
Forest (RF), (d) Multilayer Perceptron (MLP), and (e) Decision Tree (DT) to predict whether
a participant was stressed or not and determined that SVM with RBF kernel achieved the
highest precision and recall for all the cases. Moreover, [18] used kNN, SVM, RF, MLP, and
XGBoost for binary classification and the F-measure metric to compare different algorithms
and reported that RF achieved the best performance among compared methods.

Table 5 summarizes the studies that use ML algorithms to analyze data regarding stress,
including the classification algorithm(s) for each study. Moreover, the best performance
results for “PPG alone” and “fused PPG with another sensor(s)” are provided.

Table 5. Stress detection studies using ML-based approaches.

Study Methods Classification Classes Best Performance

[23]

1- Normalization
2- Feature extraction
3- Feature selection using:

(A) Alpha-investing
(B) OSFS
(C) MRMR
(D) Chi-square

4- Classification using:

(A) kNN
(B) MLP ANN
(C) Naïve Bayes
(D) SVM

1- Stressful
2- Relaxing
3- Normal

PPG ONLY:
(kNN = 5 with Chi-square, Accuracy = 80.74)

FUSED PPG:
PPG + GSR: (kNN = 3 with Chi-square,
Accuracy = 85.03)

[29]

1- Normalization using 5 methods
2- Feature construction
3- Feature extraction using:

(A) ANOVA
(B) SFFS

4- Classification using:

(A) MLP
(B) SVM + WTA
(C) SVM + MWV
(D) Naive Bayes

1- Normal
2- Stress
3- Fatigue
4- Drowsiness

PPG ONLY:
MLP (Accuracy = 98.43)
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Table 5. Cont.

Study Methods Classification Classes Best Performance

[33]

1- Feature extraction:
2- Classification using:

(A) SVM
(B) LR
(C) MLP

1- PROM-Pain4a ≥ 66.6
and PCL-5 ≥ 31
2- PROM-Pain4a < 55.6
and PCL-5 < 31

PPG ONLY
PTSD:
(A) Linear SVM (AUC = 0.73 ± 0.03)
(B) LR (AUC = 0.73 ± 0.03)
(C) MLP (AUC = 0.73 ± 0.03)
PTSD Sleep Anx./Panic:
MLP (AUC = 0.79 ± 0.05)
PTSD Pain Int.:
Linear SVM (AUC = 0.76 ± 0.04)

[26]

1- Feature construction
2- Feature extraction using:

(A) Wrapper method

3- Classification using:

(A) kNN
(B) SVM
(C) RF
(D) MLP
(E) DT

1- Not stressed
2- Stressed

PPG ONLY:
SVM (Accuracy = 80.00, f-measure = 0.79,
Kappa Values = 0.72)

FUSED PPG:
SVM (Accuracy = 96.25, f-measure = 0.96,
Kappa Values = 0.87)

[18]

1- Feature extraction
2- Feature selection
3- Classification using:

(A) kNN
(B) SVM
(C) RF
(D) MLP
(E) XGBoost

1- Not stressed
2- Stressed

PPG ONLY:
1- A little bit VS. baseline MLP
(F-measure = 0.73 ± 0.06)
2- Some VS. baseline
Random Forest (RF) (F-measure = 0.71 ± 0.05)
3- Extremely VS. baseline: RF
(F-measure = 0.76 ± 0.05)
4- Some, a lot or extremely VS. a little bit or not
at all XGBoost (F-measure = 0.63 ± 0.04)

[14]

1- Feature Extraction
2- Classification using:

(A) DT
1- Distress
2- Calmness

PPG ONLY
DT (AUC = 0.75)

[19]

1- Feature extraction
2- Feature selection
3- Classification using:

(A) AdaBoost + 11 other
classifiers

1- Not stressed
2- Stressed

PPG ONLY
AdaBoost (Accuracy = 0.93, Precision = 0.93)

[32]

1- Feature extraction
2- Feature selection
3- Relationship between stress or
drowsiness using:

(A) SVM

1- High MW state
2- Low MW state

PPG ONLY
SVM (Accuracy = 0.78)

[20]

1- Feature extraction
2- Feature selection:

(A) Z-score normalization

3- Classification using:

(A) CNN
(B) Hybrid CNN

1- class classification:
(A) Baseline
(B) Stress
(C) Amusement
2-class classification:
(A) Not stressed
(B) Stressed

PPG ONLY
Two-class
Hybrid CNN (Accuracy = 0.89, F-measure = 0.87)
Three-class
Hybrid CNN (Accuracy = 0.75, F-measure = 0.64)
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Table 5. Cont.

Study Methods Classification Classes Best Performance

[28]

1- Feature Extraction

(A) HRV
(B) ACC
(C) EDA

2- Classification using:

(A) PCA + LDA
(B) PCA + SVM (radial)
(C) kNN
(D) LR
(E) RF
(F) MLP

1- Stress Level 1 (index:
0–30)
2– Stress Level 2 (index:
35–75)
3– stress Level 3 (index:
80–100)

FUSED PPG:
HR + accelerometer for Empatica E4
MLP (Accuracy = 92.19, f-Measure = 90.3,
Precision = 91.4, Recall = 90.2)

[30]

1- Feature extraction
2- Feature selection

(A) ANOVA
(B) Benjamini-Hochberg

Procedure

3- Classification using:

(A) RF

1- Rest
2- Arithmetic
3- N-back task

FUSED PPG:
PPG + ECG + SCG
RF (Accuracy = 0.85 ± 0.09, Recall = 0.84 ± 0.14,
Precision = 0.83 ± 0.1, F1 = 0.80 ± 0.13)

[25]

1- Feature extraction
2- Feature selection

(A) Greedy Stepwise Method

3- Classification using:

(A) kNN
(B) SVM
(C) Naïve Bayes

1- Not stressed
2- Stressed

FUSED PPG:
PPG + ECG + GSR
SVM (Accuracy = 0.95)

[24]

(I) WRISTBAND BASED STRESS
DETECTION
1- Feature extraction
2- Feature selection

(A) Supervised feature selection

3- Classification using:

(A) Random Forest

(II) BLOOD
PRESSURE
ESTIMATION
1- Feature extraction
2- Feature selection

(A) Supervised feature selection

3- Regression studies using:

(A) MLP
(B) DT
(C) Adaboost
(D) Adaboost + DT

1- Not stressed
2- Stressed

FUSED PPG:
PPG + EDA
RF (Accuracy = 0.94, F-measure = 0.92)

4. Discussion

This section focuses on highlighting gaps or limitations found within the literature
and seeks to provide fundamental questions to consider when researching, designing, or
using a wearable device to measure mental health, in particular stress detection, within the
context of the results of this review. Table 6 refers to a summary of common limitations.
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Table 6. Limitations of PPG stress-detection.

Category Limitations

Experimental Limitations

• Participants
• Data collection

(1) Small participant sample sizes
(2) Relatively homogenous population
(3) Failure to report participants’ medical history or additional
conditions
(4) Exclusion of participants with health conditions
(5) Lack of a ground-truth method
(6) Use of subjective stress evaluations
(7) Poorly designed stress induction process
(8) Non-automated process for noisy signal processing
(9) Neglected to account for motion and motion artifacts

Device Design

• Physical Device
• Methodologies

(1) Device was obtrusive
(2) Lack of built-in battery; the device did not have an
integrated battery
(3) Lack of accompanying user-friendly app to communicate data
(4) Lack of consistent cut off values for filters
(5) The absence of commonly used commercial devices (e.g.,
Apple Watch and FitBit) among the studies
(6) Use of small datasets that cannot reliably train a generalized
ML model
(7) Lack of continuum measurement of stress level

Although this review is aimed at providing an assessment of PPG wearable sensors
to detect various mental health issues, most of the papers that met the eligibility criteria
focused on stress detection methods. Stress is indeed a prevalent mental health issue;
however, there are many other important ones. For example, depression is the leading cause
of disability worldwide [36]. The lack of studies on using PPG to evaluate other forms of
mental health issues shows a clear gap in the literature. Preliminary studies, such as the one
conducted by Sheridan et al. [31], shows that PPG could be greatly beneficial for application
in depression—specifically in detecting and intervening during acute suicidality—or for
assistance in monitoring PTSD.

The results of this review also raise additional considerations about the state of the
technology. The first of these considerations is the design of the devices. Although most
studies included in this review generally followed the same framework for experimental
set-up (see results section), the devices used to collect PPG data varied greatly—with no
two studies using the same device. As is the case in designing a device itself, the specific
design choices made by the authors for their studies have corresponding advantages and
disadvantages, discussed in detail in the following paragraphs.

One design choice is whether to use only PPG to monitor mental health issues or
whether to use a combination of sensors. The results of this review indicate that using
a PPG sensor alone to measure HRV is adequate to detect stress; however, results also
indicate that adding information from other sensors tends to lead to a higher accuracy
of stress detection. Although this may indicate that using multiple sensors instead of
only PPG is desirable, limitations arise. The first is the cost: more sensors entail more
monetary expense. The second is power consumption: more sensors need more power and
hence will limit battery life—which could negatively impact a device meant for continuous
monitoring. Time spent charging is time generally lost collecting user data and, as such,
should be minimized.

There is also the design choice of processing the PPG data using a hardware-based
method or ML. Although it is difficult to compare the accuracy of the two methods in the
results of this review due to differing ground truths and datasets, there are still advantages
and limitations that can be considered. One advantage in using a hardware-based method
is direct access to the physical parameters, such as RR intervals and HR. Unlike with ML,
where signals are passed into an algorithm that abstracts the selection of features used for
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analysis, hardware-based methodologies require deliberate calculation of health parameters
to measure stress, potentially allowing for detection of other health states simultaneously
with little additional overhead. A second advantage of hardware is speed: dedicated,
optimized, and embedded hardware can calculate health parameters much faster than
software [37]. However, hardware is much less flexible than ML: [37] it cannot adapt to
a specific user, nor can it be easily modified once created. It is also far more monetarily
expensive than using ML.

Once a methodology for processing the PPG data is selected, there are still many
design choices to be made within the methodology. For hardware, one must decide what
type of signal preprocessing to use; for ML, one must decide whether signal preprocessing
is desired. Studies included in this review primarily used two types of pre-processing:
applying averaging/normalization to the PPG signal (e.g., [7,17,22]) or using filters to
remove unwanted signals. Averaging a signal with past input provides an advantage in
that it does not remove any of the data; however, smoothing the signals in such a way
may cause the device to be slower in detecting changes in mental health because more
signals of a new pattern than input signals of an old pattern must be received before the
average truly begins to reflect a change. Using a filter to remove noisy signals is likely to
be more responsive to changes, provided that cut-off frequencies for the filters are chosen
correctly. This is yet another design choice, with each study in this review selecting different
cut-off ranges for their devices. Once again, it is difficult to say due to differing datasets
and ground-truth methods which cut-offs from the studies are best; however, it is worth
considering that cut-off values should be selected to avoid letting in too much noise (as may
be the case in study reported by Gurel, N.Z. et al. [30] because the included frequencies are
much broader than other papers), while ensuring important signals are not lost (as may be
the case with [15], which has a much tighter low pass signal cut-off than most of the other
papers). Machine learning also has many design choices to consider including the type of
classifier, numbers of layers, activation functions, etc. Although many studies compared
multiple types of classifiers as part of the study, the overall results between studies did not
agree on a ‘best’ classifier for detecting stress; this indicates that the performance of the
classification algorithms could be dataset dependent. Furthermore, when using classifiers,
there is also a design choice of how many classifications should be made. The most common
classifiers are binary: either stress is detected or not. However, in practice, stress is often
experienced in varying levels. Accordingly, it is not clear how many classifications should
be used. It is also not clear whether there is an appropriate ground-truth method that can
be easily mapped to the classifications to determine whether they are correct.

Aside from methodology, there are design choices to consider in the physical placement
of the device. Results of this review indicate that PPG sensors located at the ear were less
affected by motion artifacts, leading Tomita et al. [22] to conclude this characteristic made
ear-worn PPG sensors more suitable for real-life stress detection [22]. Although the decrease
in motion artifacts is a desirable outcome, comfort of the wearer must also be considered.
Ear-mounted sensors are non-obtrusive; however, a quick poll of commercial devices shows
them to be considerably less popular than wrist-worn devices.

Finally, there is the design choice of whether to build a custom device or whether
to use a device that is already commercially available. Once again, both categories have
their strengths and weaknesses. Custom wearable devices offer full flexibility in terms
of included sensors, data protocols, and the ability to include custom hardware filters.
However, they are much more expensive to manufacture. Commercial wearable devices
offer less flexibility in terms of available sensors. However, one does not have to invest
in developing a new product and may achieve better uptake of a stress detection system
if the patient already owns—or is at least familiar with—the wearable device. It is worth
noting that none of the studies used the Apple Watch—which is known to have the most
accurate PPG sensor [38]. The Fit-Bit, another popular wearable device that contains an SC
sensor as well as PPG, was also not used in any of the studies [38]. Studies investigating
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the potential of these devices for monitoring mental health issues would be an excellent
contribution to the literature due to the popularity and accuracy of the two products.

Although there are many considerations revolving around the design of the device
itself, one must also take a critical look at the experiments conducted to test the accuracy of
these devices. Because all studies in this review followed the same general framework for
experimentation, they all suffered similar limitations.

The first limitation within the experiments is accurately assessing when a patient is
experiencing stress. Many studies used self-report questionnaires, which rely on a patient’s
ability to assess their own experiences. By nature, this assessment is highly subjective and
can cause variance in the accuracies depending on the participants. Some studies used
physical sampling such as salivary cortisol measurements, which are much less subjective
but far more expensive and difficult to use as a measurement tool in everyday life because
they require specialized scientific equipment. Other studies measured accuracy simply
by comparing the PPG signal—or the health parameter being measured by PPG—to that
of another sensor. Although this technically measures the accuracy of the signal or the
ability to extract a specific health parameter such as HR, it can be argued that it does not
technically measure the accuracy of detecting stress; just because a signal can measure a
health parameter such as HR does not mean that the parameter fluctuations indicate stress.
In short, a non-subjective, cost-effective solution for assessing the ground truth of a patient’s
mental health does not yet appear to be established, making it difficult to confidently draw
conclusions on the accuracy of wearable devices in mental health monitoring.

A second limitation within the experiments was the small number of participants.
Small participant sample sizes pose an issue for two main reasons: lack of diversity and lack
of training data for ML models. Only one study had a participant sample size of greater
than 70 (see Table 2). Compared to the thousands of patients suffering from mental health
issues, it is highly unlikely that these small participant sample sizes effectively capture the
many differing ways in which stress presents itself. Similarly, it is also unlikely that these
small sample sizes provided enough data samples to train a generalized ML model for
detecting stress. Although the ML models all seemed to be able to succeed in classifying
stress for the participants in the study, it is uncertain whether the models would be as
successful when attempting to classify someone from outside of the participant group;
this is a common risk with ML, although the risk is potentially higher within the included
studies due to the small sample sizes used in the training of the models.

Lastly, although the methods for inducing stress in participants were useful to see
whether a wearable device could detect stress, they were not reflective of a more real-world
setting. The stress-inducing activities used in most of these experiments relied on applying
short bursts of extreme stress, followed immediately by rest and relaxation. In everyday
life, quickly swinging between these extremes of stress states may not be common, and
wearable devices monitoring patients in the real world cannot rely on such clear emotional
changes to operate correctly.

Although this review provides the foundations to begin filling in the gaps in the
current literature of how to use wearable devices for reliable stress detection, future studies
should strive to collect a large number of participants from which to collect data and make
them available on a well-documented database for others to analyze or augment. Future
studies should also strive to move away from the lab environment and attempt to engineer
easy ways for participants to evaluate their mental health as a ground truth, for example
by using online applications to remind the users and assess their stress level through
questionnaires or by creating at-home stress test kits that participants can self-administer.
Studies comparing several technologies with the same dataset may also help contribute to
answering the questions about the ‘best’ design choices.

Many of the questions revolving around design choice can in fact be answered by
involving prospective patients in the design of the device. Patients suffering from mental
health issues are the most reliable source for understanding what is best for them, whether
that be input on device size, the comfort for the location of the sensor, the usefulness of
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any interactive applications, or whether a custom-made device vs. a commercial device
would be easier for them to learn to use and make a habit of using. Patients with mental
health issues could likely also provide invaluable insights on the experiment design itself,
primarily regarding what techniques of data collection would be least intrusive for them—
making data collection more reliable. Within this review, no studies mentioned consulting
prospective patients as part of the design. Yet, input from the people who will actually
be using the device is a simple way to ensure researchers work towards building the best
mental health monitoring device possible.

5. Conclusions

This scoping review provides an analysis of 23 studies on the usage of wearable PPG
sensors for monitoring mental health. The majority of the studies focused on detecting
stress. These studies followed similar experimental procedures, but they greatly varied
in the design and type of PPG wearables used. Due to the use of different participant
sample sizes, the lack of ground truth or the use of subjective ground truth, and the varying
methodologies and classifications, conclusions could not be drawn on which device is
best in terms of accuracy. However, all studies succeeded in detecting some form of
stress-indicating that stress detection with PPG is indeed possible.

Although the current literature shows that the use of PPG wearables to monitor
mental health issues is possible, the future challenge will be to determine how to make
such monitoring effective and usable for large-scale, real-world environments. The studies in
this review all suffered from limitations to this effect: only having small participant sample
sizes for data collection, using orchestrated moments of extreme stress when collecting data,
and primarily relying on subjective ground-truth evaluations. To move the technology
of wearables forward in mental health monitoring, studies dedicated to collecting PPG
data from large and diverse populations and studies focusing on mental health monitoring
in real-world settings are crucial. Studies comparing differing technologies and studies
incorporating feedback from prospective patients would also contribute to advancing this
field. When an individual is under stress or triggered by stressors, the body counteracts
by various physiologic and behavioral responses, e.g., the body starts to sweat, skin
temperature increases, etc. Studies analyzing the inclusion of other sensors, such as EDA,
ECG, or GYRO, could also benefit the current research because the addition of these sensors
would allow wearable devices to capture other physical signs of stress such as sweating,
temperature increase, or increase in movement.

Monitoring mental health using PPG—or any other sensor—on a wearable device is a
new and exciting field that has continued to gain prevalence during the pandemic. The
results of the scoping review show that using a wearable device to monitor mental health
is possible, but there are still many unanswered questions and gaps in the literature.
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