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Abstract: The rise of personalized medicine and its remarkable advancements have revealed new
requirements for the availability of appropriate medical decision-making models. Computer science
is an area that plays an essential role in the field of personalized medicine, where one of the goals
is to provide algorithms and tools to extrapolate knowledge and improve the decision-support
process. The minimum clinically important difference (MCID) is the smallest change in PROM
scores that patients perceive as meaningful. Treatment that does not achieve the minimum level of
improvement is considered inappropriate as well as a potential waste of resources. Using the MCID
threshold to identify patients who fail to achieve the minimum change in PROM that results in a
meaningful outcome may aid in pre-surgical shared decision-making. The decision tree algorithm
is a method for extracting valuable information and providing further meaningful information to
the domain expert that supports the decision-making. In the present study, different tools based on
machine learning were developed. On the one hand, we compared three XGBoost models to predict
the non-achievement of the MCID at six months post-operation in the SF-12 physical score. The
prediction score threshold was set to 0.75 to provide three decision-making areas on the basis of the
high confidence (HC) intervals; the minority class was re-balanced by weighting the positive class to
penalize the loss function (XGBoost cost-sensitive), oversampling the minority class (XGBoost with
SMOTE), and re-sampling the negative class (XGBoost with undersampling). On the other hand, we
modeled the data through a decision tree (assessment tree), based on different complexity levels, to
identify the hidden pattern and to provide a new way to understand possible relationships between
the gathered features and the several outcomes. The results showed that all the proposed models
were effective as binary classifiers, as they showed moderate predictive performance both regarding
the minority or positive class (i.e., our targeted patients, those who will not benefit from surgery) and
the negative class. The decision tree visualization can be exploited during the patient assessment
status to better understand if those patients will benefit or not from the medical intervention. Both of
these tools can come in handy for increasing knowledge about the patient’s psychophysical state and
for creating an increasingly specialized assessment of the individual patient.

Keywords: personalized medicine; machine learning; explainable AI; PROMs; class imbalance;
assessment tree

1. Introduction

The rise of personalized medicine and its remarkable advancements have revealed new
requirements for the availability of appropriate medical decision-making models [1]. Per-
sonalized medicine tailors medical intervention based on patient profiles [2]. Personalized
treatments, however, are not solely based on biological factors, but should also consider
patient perspectives [3], as several studies suggest (e.g., Llamocca et al. [4]). PROMs are
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validated questionnaires that provide the patients’ subjective assessment of their health
status [5] as a direct result of a medical intervention [6]. For a high-value and patient-
centered health care system, it is essential to evaluate outcomes from the patient’s point of
view [7]. PROMs incorporate the patient-centered assessment of “value” [8] that cannot be
measured by traditional outcomes, such as infection rates and readmission rates [5]. The
degree to which pre-treatment to post-treatment PROM scores change may provide useful
information regarding the value of the intervention [9]. Treatment that does not achieve the
minimum level of improvement is considered inappropriate as well as a potential waste of
resources. The minimum clinically important difference (MCID) is the smallest change in
PROM scores that patients perceive as meaningful [10], and it is used to interpret changes
in PROM scores [11]. Using the MCID threshold to identify patients who are unlikely to
benefit from treatment, by failing to achieve the minimum change in PROM that results in
a meaningful outcome, may aid in pre-surgical shared decision-making [12]. As the MCID
has the capability to identify patients as responding to or not responding to a particular
therapy based on their own assessment of their health-related status both before and after
surgery [13], its use may also contribute to personalized medicine [10].

Computer science is an area that plays an essential role in the field of personalized
medicine, where one of the goals is to provide algorithms and tools to extrapolate knowl-
edge and improve the decision-support process. In the present study, different tools based
on machine learning were developed, which are helpful in better identifying specific
characteristics of a patient and exploiting them for increasingly effective personalized
medicine [14]. The goal is twofold: on the one hand, to present the performance of a
machine learning model that predicts the non-achievement of the MCID at six months
post-operative in the physical score of the 12-item short-form health survey (SF-12) [15]; on
the other hand, to model the data through a decision tree (assessment tree) and provide
additional knowledge to the physicians, showing them what patterns are possible among
the various features in the individual patient. Specifically, this work presents two different
decision trees based on complexity levels. The easiest ones are based on the fast and frugal
tree algorithm (FFT) [16], which performs quickly with little information because it is
designed to be simple in both its computational cost and design. The former is based on
the classical implementation of the decision tree algorithm by providing a more detailed
but complex data structure.

Both of these tools can come in handy in increasing knowledge about the patient’s
psychophysical state and creating an increasingly specialized assessment of the individual
patient [17].

Related Works

Predictive analytics using machine learning techniques is becoming increasingly im-
portant in medicine [18], especially in orthopedics [19]. Recent studies have explored the
use of PROMs and machine learning (ML) approaches for predicting whether or not pa-
tients will experience meaningful improvements (MCID) after hip or knee replacements in
the chosen post-surgery outcome measures. For example, Zhang et al. [20] compared four
supervised machine learning algorithms (i.e., random forest, extreme gradient boosting,
logistic regression with L1-regularization, and support vector machines) and pre-operative
PROM thresholds to predict the achievement of MCID for hip and knee osteoarthritis index
(Western Ontario and McMaster University Osteoarthritis Index-WOMAC) and for the
generic health-related quality of life measures (SF-36 Physical Component Summary (PCS)
and Mental Component Summary-MCS) at 24 months following total knee arthroplasty
(TKA). Katakam et al. [5] trained five machine learning algorithms (i.e., stochastic gradient
boosting, random forest, support vector machines, neural network, and elastic net penal-
ized logistic regression) to predict the MCID’s achievement for the physical functional
index of the knee injury and osteoarthritis outcome score (KOOS-PS) within 12 months
after total knee arthroplasty. Kunze et al. [21] compared the same set of machine learning
algorithms to predict whether patients undergoing total hip arthroplasty would achieve
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clinically significant improvement 24 months post operatively on the selected outcome mea-
sure (i.e., the EuroQoL-VAS). In another study, Huber et al. [22] trained eight supervised
machine learning algorithms (i.e., logistic regression, extreme gradient boosting, random
forest, multistep adaptive elastic net, neural network, naïve Bayes, k-nearest neighbors, and
boosted logistic regression) to predict whether disease-specific and generic post-operative
outcomes of total hip and knee replacement surgery (i.e., EQ-5D-3L VAS, Oxford Hip
Score (OHS), and Oxford Knee Score -OKS) would improve within 12 months based on the
MCID. On the contrary, Fontana et al. [12] compared three machine learning algorithms
(i.e., logistic least absolute shrinkage and selection operator, random forest, linear support
vector machine) to predict whether patients undergoing total joint arthroplasty would
fail to experience clinically significant improvement 24 months post-operative on mixed
selected outcome measures (i.e., Knee Disability and Osteoarthritis Outcome Score for
joint replacement (KOOS-JR), Hip Disability and Osteoarthritis Outcome Score for joint
replacement (HOOS-JR), SF36-PCS and SF36-MCS). Similarly, Harris et al. [23] developed
four machine learning algorithms (i.e., logistic regression, logistic least absolute shrinkage
and selection operator, gradient boosting machine, and quadratic discriminant analysis)
to predict whether patients will not experience clinically significant improvements within
12 months after total knee replacement (i.e., KOOS total, knee injury and osteoarthritis
outcome score joint replacement (KOOS-JS), and KOOS subscales).

To the best of our knowledge, few studies focused on predicting whether the minimum
clinical improvement (MCID) will not be achieved in the selected post-surgery outcome
measures. On the contrary, no studies in the literature exploit the principles of the decision
tree for identifying the hidden pattern and providing a new way to understand possible
relationships between the gathered features and the several outcomes [24] of the short-form
12 questionnaires.

2. Methods
2.1. Classification Method

The extreme gradient boosting (XGBoost) algorithm [25] was selected for the classifi-
cation task. XGBoost is a decision tree ensemble learning algorithm based on the gradient
boosting framework [26]. As a random forest is an ensemble of decision trees using the
bagging method, XGBoost builds models sequentially to boost the performance of previous
models by using gradient descent to minimize errors [27]. XGBoost can be parallelized
more efficiently than gradient boosting and incorporates regularization and tree pruning to
minimize over-fitting [28]. In addition, XGBoost employs a sparsity-aware algorithm [25]
that automatically handles missing data values [29], including hyperparameters that pro-
vide tweaking for unbalanced datasets [30]. XGBoost outperforms other algorithms across
a wide range of feature sets and in various settings [31], including orthopedics (e.g., Li and
Zhang; Bugarin et al. [32,33]).

Concerning the binary classification task, the MCID was computed. The primary aim
of the study is to identify early those patients who will not achieve the MCID threshold
and will be at risk of not experiencing any clinical improvement due to surgery. It may be
beneficial to make better choices during the preoperative stage [12]. The MCID was calcu-
lated separately for the SF12 physical score and SF12 mental score, for both hip and knee
replacement surgeries, as one-half the standard deviation of the baseline or pre-operative
scores, according to the distribution-based approach [34]. Specifically, the thresholds iden-
tified for SF12 physical scores were 3.68 and 3.83 for hip and knee, respectively, whereas
the values of 5.89 and 5.68 were obtained for SF12 mental scores, in the case of hip and
knee, respectively. The overall binary targets (i.e., target for physical and the one for the
mental scores) were constructed based on these thresholds such that if the difference be-
tween the post-operative score and the pre-operative score was below the aforementioned
threshold, the label was set to 1 (indicating no improvement in the PROM score), otherwise
0 (indicating an improvement in the PROM score). Only for the SF12 Physical Score task,
the target distribution was significantly impacted by class imbalance. Indeed, the positive
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class was 21.6% of the total distribution, indicating that patient improvement was the most
frequent outcome.

XGBoost algorithm was implemented using Python 3.8.13 and Scikit-learn Python
libraries. RStudio 4.2.1 was used for pre-processing steps.

2.2. Hyper-Parameter Optimization and Cross-Validation Strategy

The data were partitioned into 85% training (and validation) and 15% test set to
evaluate the performance of the developed models.

Random search optimization algorithm was exploited to find the subset of the optimal
XGBoost hyperparameters. Random search does not test every possible combination of
hyperparameter grid values but only random combinations of a range of values [35]. Only
nine hyperparameters were selected in this study, as reported in Table 1. The values for
the search space were set taking into account the default values and the effect of these
tree-related hyperparameters to prevent overfitting.

Table 1. Search space for hyperparameters optimization of XGBoost.

Learning Rate Min. Child. Weight Max Depth Gamma Colsample Bytree N. Estimators

Search Space [0.001, 0.01] [1, 10] [3, 20] [0.01, 1] [0.01, 1] [3, 150]

Using the same dataset for hyperparameter optimization and model selection can lead
to overfitting [36]. Therefore, we used nested-cross validation. Nested-cross validation
consists of two loops: inner loop and outer loop. The outer training dataset is split
into k-folds inner training and validation datasets (inner loop) where the validation and
hyperparameter optimization occur [27]. The outer loop aims at assessing the performance
of a method for fitting a model [37], including cross-validation-based hyperparameter
tuning: in each iteration of the outer loop, the test set is not used to optimize the model’s
performance, which leads to a more accurate selection of the optimal model [37].

2.3. Class Imbalance

Predictions resulting from data imbalance issues are generally biased toward the
most frequent classes [38]. In this study, class imbalance significantly impacted the target
distribution of the physical classification task. Indeed, the positive class was 21.6% of the
total distribution, indicating that patient improvement was the most frequent outcome.

The class imbalance is corrected using various sampling strategies, such as re-balancing
and cost-sensitive methods (e.g., Tasci et al. [39]). The Synthetic minority oversampling
technique (SMOTE) (Chawla et al. [40]), the under-sampling re-balancing strategy and
a built-in data balancing method in the XGBoost, the scale_pos_weight [41] were per-
formed. SMOTE is a re-sampling method that oversamples the minority class [42]; the
under-sampling strategy reduces the sample size of the majority class [39]; scale_pos_
weight is a hyperparameter that increases the weight of the positive class (i.e., the mi-
nority class) [42], hence forcing the model to account for uncommon events by raising
the penalty of incorrectly predicting them [43]. Consequently, scale_pos_weight may
be used to train a cost-sensitive version of XGBoost for imbalanced classification [44,45].
Scale_pos_weight was set as the ratio of the total number of examples of the negative class
over the total number of examples of the positive class [38]. In terms of SMOTE and under-
sampling strategy, the minority class and the majority class were re-sampled to provide an
equal number of samples to the minority class (majority class) respectively, for the SF12
physical task.

2.4. Evaluation Metrics

Various metrics have been used to assess a models’ performances.
In general, accuracy is used to assess binary classifiers’ performance [41]. This measure,

however, is useless for imbalance classification tasks [45]. In contrast, recall or sensitivity,
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the proportion of correctly classified positive examples, is an important metric in imbal-
anced medical diagnosis because it is entirely dependent on the minority class [45]. Positive
predictive value, which is the fraction of samples predicted to be positive that are actu-
ally positive, and recall are typically combined to form a single metric known as F-score,
which is ananother important metric when dealing with datasets with imbalanced class
distributions [45]. F1 score is defined as the harmonic mean of precision and recall [46].

The positive predictive value-recall curve (PR) plots the positive predictive value
against the recall [47], while the receiver operating the characteristic curve (ROC) plots
the true positive rate (sensitivity, recall) against the false positive rate (1—specificity) [47].
For highly imbalanced datasets, the area under the positive predictive value-recall curve
(AUPRC) is a more appropriate metric than the area under the receiver operating character-
istic curve (AUROC) [48].

Accurate uncertainty estimation is required to provide adequate support for human
decision-making in machine learning models, especially in high-risk settings (e.g., medicine)
where an accurate uncertainty estimation is of primary importance [49]. The definition of
calibration error is the absolute difference between the mean of the predicted probabilities
and the proportion of positive outcomes [50]. The Expected calibration error (ECE) is the
weighted average of the calibration errors defined as follows [49]:

ECE =
N

∑
i=1

P(i) ∗ |ôi − ei|

where ei is the average confidence score within bin i (i.e., ei = 1
|Si | ∑x∈Si

f (x)), ôi is the

relative frequency of the positive class in bin i (i.e., ôi =
1
|Si | ∑x∈Si

ox), Pi is the proportion of
instances that fall within Si. In this view, the lower the ECE, the better the calibration of
the model.

Therefore, with regard to the binary classification task, we performed the following
metrics: the balanced accuracy, i.e., the average of sensitivity and specificity [51]; the
balanced sensitivity; the balanced positive predictive value; the balanced F1-score; AUROC,
AUPRC, and ECE were also implemented.

2.5. Decision Tree for Pattern Analysis & Decision Support

The white-box models can be used for purely predictive purposes and model data
patterns [52]; for instance, by applying a decision tree to identify patterns valid for decision
support [53]. In this study, we developed a decision tree primarily for two purposes:
(1) to identify a possible structure in the data that would facilitate the level of evaluation
of the various cases; (2) to identify potential hidden relationships [54]. In addition, the
development of the decision tree serves not only as a tool for decision support but also
as a means to facilitate the identification of possible variable information from domain
experts. Specifically, we sampled data by exploiting the under-sampling approach for the
majority class to limit possible model bias [55]. Then, we trained a decision tree based
on the following principle: trade-off between overfitting and explainability. Since the
application of the model is for pattern discovery purposes only, we purposely overfitted the
model to be able to identify in a more granular way the relationships between the various
variables. At the same time, we were interested in maintaining a relatively low level model
complexity to facilitate feature comprehension and visualization. The hyperparameters
setting is reported in Table 2.

Table 2. Hyperparameters setting of decision tree.

Max Depth Min. Samples Leaf Min. Samples Split Max Leaf Nodes

8 2 2 40
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The model achieves on average ~77% on all the analyzed metrics (e.g., accuracy,
sensitivity). Once the tree was developed, we created two visualizations of the same model,
based on the level of complexity and read time. Depending on the split node, it will be
necessary to use the representation of that specific subset.

We also developed a simpler decision tree based on the FFT [16] algorithm for the
aforementioned reasons. The tree’s construction is based on a few key questions where a
binary answer (e.g., yes/no) is returned as output. These questions follow an order based
on the level of information contained. The main goal of FFTs is to make decisions in an
optimized manner with as few cues as possible. Such models are used especially in contexts
where decisions have to be made in a short time. Unlike the decision tree, two subsets of
data were used for the development of the FFT: one for the training and one for the test set
(the same as those used for XGBoost). During the training phase, the data were sampled
following the majority class undersampling approach.

3. Results

The study encompassed patients admitted to IRCCS Galeazzi Orthopaedic Institute
between January 2013 and February 2022. IRCCS Galeazzi Orthopaedic Institute (IOG) in
Milan, Italy, is a teaching hospital specializing in diagnosing and treating of musculoskeletal
problems. Approximately 5000 surgeries are performed each year at IOG, which are
usually joint (hips and knees) as well as spine-related procedures; we collected PROM
data at the IOG via means of computer-assisted telephone-interview or computer-assisted
web self-interview both before surgery (pre-operative) and at 6 months after hip and
knee surgery.

Data on 3782 patients who had undergone hip arthroplasty and 3024 patients who had
undergone knee arthroplasty were extracted from the web-based PRO registry (DataREG)
of IOG. The SF-12 scale ranges from 0 (worst possible health condition) to 100 (best possible
health condition).

Two records from the hip dataset and one record from the knee dataset were excluded
from the analysis. Additionally, 170 patients were excluded because they had not completed
both the pre-operative scores and the 6-month follow-up questionnaires for both PROMs
of interest (SF12 physical score and SF12 mental score). A total of 3610 patients who
had undergone hip replacement surgery and 2911 patients who had undergone knee
arthroplasty completed at least one of the baseline or 6-month post-operative scores for
the variables of interest. This resulted in a total of 6521 patients being considered for the
descriptive analysis.

As reported in Table 3, the majority of the patients had undergone primary unilat-
eral replacements of both hip surgery (89.14%, n = 3218) and knee replacement (91.34%,
n = 2659). However, both unilateral revisions and bilateral arthroplasties were also per-
formed (Table 3). More than half of the patients who had undergone hip replacement
were women (55.29%, n = 1996); likewise, two-thirds of the sample for knee surgeries were
women (67.5%, n = 1964). Patients with hip arthroplasty were aged 67.88 ± 11.97 years
(mean ± SD). The mean age of the patients with knee replacement was 71.08 ± 8.95.
The summaries of ASA scores and length of stay in days are shown recorded in Table 2.
Categorical variable was codified as follows: gender (0 female. 1 male).

The percentage of missing values in the instances was used to filter the instances out.
Specifically, the observations containing more than 40% missing values were dropped.
1622 cases of hip arthroplasty and 1470 instances related to knee replacement surgeries
were missing in the pre-operative or 6 months post-surgery scores for both PROMs of
interest (SF12 physical score and SF12 mental score), and they were accordingly dropped.
After removing missing values by rows, the features had less than 3% of missing values,
excepted for the ASA score (12.21%).
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Table 3. Descriptive statistics.

HA
(n = 3610)

Number (%)

KA
(n = 2911)

Number (%)

Unilateral primary 3218 (89.14) 2659 (91.34)
Unilateral revision 349 (9.67) 213 (7.32)
Bilateral 43 (1.19) 39 (1.34)
Gender
Female 1996 (55.29) 1964 (67.5)
Male 1614 (44.71) 947 (32.5)
ASA score
1 390 (10.83) 131 (4.52)
2 2326 (64.58) 1854 (63.93)
3 267 (7.41) 217 (7.48)
4 1 (0.03) -
Missing 618 (17.16) 698 (24.07)

Mean Sd Min Max Mean Sd Min Max
Age (years) 67.88 11.97 14 97 71.08 8.95 33 93
Length of stay (days) 4.86 2.09 0 32 4.72 2.05 0 35

The distribution of the classes was imbalanced. Positive class (minority class) com-
prised 21.6% of the total distribution for the SF12 physical score task, indicating that patient
improvement was the most common outcome. In contrast, the positive class was 61.6%
of the total distribution regarding the SF12 mental score task. The study’s primary aim
was to develop a machine learning model that finds patients who do not significantly
improve within 6 months after surgery. Accordingly, we shed light only on the physical
task, where the imbalance data issue may impact the model’s predictive performance due
to the minority class.

In total, 2998 instances and 22 features (Table 4) were considered for training
and validation.

Table 4. Selected Features.

Missing Values (%)

Gender 0
Age 0
ASA score 12.21
VAS total_PreOp 0.97
SF12 Physical ScorePreOp 0
SF12 Mental Score_PreOp 0
BMI height PreOp 2.13
BMI weight PreOp 2.13
SF12 autoevaluation health answer PreOp 0.17
SF12 Score answer PreOp 0.17
SF12 lastmonth resa answer PreOp 0.17
SF12 lastmonth limite answer PreOp 0.17
SF12 lastmonth emo answer PreOp 0.17
SF12 lastmonth ostacolo answer PreOp 0.17
SF12 lastmonth sereno answer PreOp 0.17
SF12 lastmonth energia answer PreOp 0.17
SF12 lastmonth triste answer PreOp 0.17
SF12 lastmonth sociale answer PreOp 0.17
Target phy 0
Operating zone 0
Bilateral Hip 0
Bilateral knee 0
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The XGBoost machine learning algorithm was used as a classifier for training and
testing. The XGBoost algorithm with random search optimization procedure was per-
formed threefold.

In the first round, we imputed missing values using the Bayesian ridge estimator of
the Python iterative imputer function on the training folds and then on the validation folds.
The random search optimization algorithm was applied with a budget of 100 by using the
F1 score as model performance evaluation on nested-cross validation (k inner loop = 9,
k outer loop = 6). StratifiedkFold cross-validation was used for both loops of the double
cross-validation, i.e., inner and outer, to preserve class distributions similar to those in
the original data [56]. The XGBoost evaluation metric was set to the default logarithmic
loss function, i.e., logloss, a probability-based metric for measuring the performance of
classification problems; the scale_pos_weight hyperparameter was set to the ratio of the
total number of examples of the negative class over the total number of examples of the
positive class to reduce the imbalance bias.

In the second round, the imputation of missing values was performed on the training
folds and then applied to the validation folds by using the Bayesian ridge estimator of the
iterative imputer function available in Python. The SMOTE technique was applied only to
the training folds by re-balancing the minority class, instead of the cost-sensitive approach
chosen in the first round. The above-mentioned steps were performed using the pipeline
function of Python to chain the steps and prevent data leakage issues. The hyperparameters
optimization stage and the XGBoost classifier’s parameters were left unchanged.

In the third round, the Bayesian ridge estimator was trained on the training folds and
then executed on the validation folds to handle missing values. Using a common strategy
for the imputation of missing values between models enables a fair comparison of the
models under development. Furthermore, the majority class was under-sampled in order
to provide an equal number of samples to the minority class. As a result of executing the
above steps using Python’s pipeline function, data leakage was prevented. The subset of
XGBoost’s parameters remained unchanged as well as the hyperparameters tuning phase.

Table 5 shows the hyperparameters identified by the random search optimization
procedure for the three models developed.

Table 5. Hyperparameters identified by the random search optimization procedure of the models.

Learning Rate Min. Child.
Weight Max Depth Gamma Colsample_bytree N. Estimators

XGBoost—Cost
sensitive 0.171 9 3 0.41 0.91 33

XGBoost—SMOTE 0.051 8 3 0.31 0.51 33
XGBoost—

UnderSampling 0.151 5 3 0.51 0.21 63

Models were compared on the test set (i.e., the 15% excluded from training and
validation steps) on the basis of the balanced evaluation metrics. The prediction score
threshold that divides the classes was set at 0.75 in order to identify only highly confident
patients who have not experienced a clinical improvement after surgery (Table 6).

Figure 1 reports the ROC curve and the positive predictive value-recall curve for the
XGBoost cost sensitive version, XGBoost model with SMOTE over-sampling and XGBoost
model with under-sampling approach. The prediction score threshold is conventionally set
at 0.5.

Figure 2 represents the hidden relationships identified by the decision tree. This
sub–tree is referred to the left-hand side of the main decision tree, and it is identified as the
tree with the lower readable complexity. For the most complex ones see Appendix A.
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Table 6. The models’ high confidence performance on test set. Binomial confidence intervals are
shown at 95% confidence level.

HC
Balanced
Accuracy

HC
Balanced

Sensitivity

HC
Balanced
F1 Score

HC
Balanced

PPV

HC
AUROC

HC
AUPRC

HC
1-ECE Coverage

XGBoost—
Cost

sensitive

0.79
[0.71, 0.87]

0.84
[0.77, 0.91]

0.84
[0.77, 0.91]

0.84
[0.77, 0.91]

0.79
[0.71, 0.87]

0.72
[0.63, 0.81]

0.93
[0.88, 0.98] 22%

XGBoost—
SMOTE

0.82
[0.71, 0.93]

0.91
[0.83, 0.99]

0.91
[0.83, 0.99]

0.91
[0.83, 0.99]

0.82
[0.71, 0.93]

0.79
[0.67, 0.91]

0.86
[0.76, 0.96] 10%

XGBoost—
UnderSampling

0.76
[0.68, 0.84]

0.75
[0.67, 0.83]

0.76
[0.68, 0.84]

0.80
[0.73, 0.87]

0.76
[0.68, 0.84]

0.70
[0.62, 0.78]

0.92
[0.87, 0.97] 25%
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dation steps) on the basis of the balanced evaluation metrics. The prediction score thresh-
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tients who have not experienced a clinical improvement after surgery (Table 6). 
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Figure 1 reports the ROC curve and the positive predictive value-recall curve for the 
XGBoost cost sensitive version, XGBoost model with SMOTE over-sampling and XGBoost 
model with under-sampling approach. The prediction score threshold is conventionally 
set at 0.5. 

  

Figure 1. Physical classification task: ROC curve (on the left) and positive predictive value-recall 
curve (on the right) (on test set). 

Figure 2 represents the hidden relationships identified by the decision tree. This sub-
-tree is referred to the left-hand side of the main decision tree, and it is identified as the 
tree with the lower readable complexity. For the most complex ones see Appendix A. 

Figure 1. Physical classification task: ROC curve (on the left) and positive predictive value-recall
curve (on the right) (on test set).
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Figure 3 shows the FFT structure, where only a few features were considered. Specifi-
cally, only four variables were taken into account: SF12 physical and mental Score, VAS,
and Gender. This simple model achieves the following performance on the test set: bal-
anced accuracy 64%, balanced sensitivity 61%, balanced positive predictive value 40%, and
AUC 61%.
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4. Discussion

We developed three XGBoost models with three strategies for coping with the data
imbalance issue: an XGBoost model with a built-in data balancing method; an XGBoost
model with SMOTE over-sampling technique; and an XGBoost model with an under-
sampling technique.

The prediction score threshold that divides the classes was set to 0.75 in order to
identify only the patients who would not likely experience clinical improvement after
surgery. We adopted this reporting convention and reported only high confidence (HC)
accuracy scores to recognize the importance of avoiding false positives and detecting real
positives, so as to avoid suggesting inappropriate operations that would not be beneficial for
the patients involved. According to this convention, we defined three decision-making areas
on the basis of the high confidence (HC) intervals. The rejection area of non-improvement,
which includes those patients who will gain from the hip or knee re-placement surgery (i.e.,
patients who do achieve the MCID threshold); the acceptance area of the target outcome (i.e.,
the non-improvement), which identifies highly confident patients who will not experience
a meaningful improvement after surgery (i.e., patients who do not achieve the MCID
threshold); the uncertainty area where the decision making process should be ruled by
other criteria, likely to be external.

As shown in Table 6, our results indicate that HC-balanced accuracy was
0.79 [0.71, 0.87], 0.82 [0.71, 0.93], and 0.76 [0.68, 0.84] for the XGBoost cost-sensitive version,
XGBoost with SMOTE, and XGBoost model with under-sampling strategy, respectively.
The XGBoost model with SMOTE re-balancing option achieved the highest HC-balanced
positive predictive value (0.91 [0.83, 0.99]); notwithstanding this, the cost-sensitive version
of XGBoost outperforms on the weighted predictive positive value (0.84 [0.77, 0.91]) the
XGBoost model with under-sampled majority class (0.80 [0.73, 0.87]). Both the cost-sensitive
version of XGBoost and the XGBoost model with SMOTE re-balancing option showed the
highest HC-balanced sensitivity (0.84 [0.77, 0.91] and 0.91 [0.83, 0.99], respectively) com-
pared to the XGBoost model with the under-sampling approach, whose average weighted
value was 0.75 with an upper bound of 0.83 (0.75 [0.67, 0.83]). Furthermore, the XGBoost
model with the under-sampling approach had the lowest HC-F1 score (0.76 [0.68, 0.84])
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compared to the other models. Coverage, that is the proportion of cases where the models
propose a classification that is relatively low, except for XGBoost under-sampling; however,
although this is a limitation of our current study, we believe that this feature should not
be considered a shortcoming of the proposed predictive models, but rather a measure to
reduce the risk of false alarms and of inducing automation bias. Obviously, these coverage
rates should be assessed in real-world settings, by asking human decision makers if they
consider receiving appropriateness-related advise for one case out of four or five of small
benefit with respect to non-receiving such an advice at all or, rather, a valuable support
despite its abstention behaviors for all non-high-confidence cases.

These findings suggest that all the proposed models were effective as binary classifiers,
as they showed moderate predictive performance both regarding the minority or positive
class (i.e., our targeted patients, those who will not benefit from surgery) and the negative
class. Indeed, as shown by the HC-AUROC in Table 6, each one of the developed XGBoost
models demonstrates its ability to discriminate between patients who will not perceive
an improvement six months post-surgery and those whose health-related status will get
better after 6 months. Even more relevant to the purpose of this study, all models showed
their ability to handle the minority class (i.e., patients who are unlikely to gain from the
surgery). This means that the models are effective in correctly classifying positive examples
(i.e., detecting patients who do not improve) and are accurate in predicting the outcome of
interest (i.e., avoiding false positives), as reported by HC-AUPRC in Table 5. In particular,
the XGBoost model with SMOTE re-balancing option presents the highest HC-AUPRC
(0.79 [0.67, 0.91]) compared to XGBoost that is cost-sensitive (0.72 [0.63, 0.81]) and XGBoost
with an under-sampled majority class (0.70 [0.62, 0.78]), as shown in Table 6. However, it
can only be argued that the XGBoost model with a SMOTE re-balancing strategy would
appear to be the best model based on the choices made for the models’ development.
Indeed, the models’ performance is inextricably linked to the study setting and the type of
(randomized in our case) search used to optimize the hyperparameters. Additionally, the
models exhibit calibrated confidence scores, as the HC-1-ECE ranges from 0.86 [0.76, 0.96] to
0.93 [0.88, 0.98]; due to the calibrated results of the models used in this study, the likelihood
of the patient’s worsening (our target outcome) is well grounded. Moreover, whenever
predictive models produce calibrated probabilities, the more calibrated the probabilities
are, the greater the utility expected from the decisions they generate is [50]. Non-calibrated
models can have a detrimental effect on healthcare. As a result, we should consider the
results of our analysis to be of interest.

ML models’ performance estimates may be negatively affected by imbalanced data, as
these models may place disproportionate emphasis on sub-groups with high prevalence
(i.e., the proportion of the true negative, which, in our case, is the number of patients
whose condition is expected to improve), resulting in an over-estimation of their accuracy.
In unbalanced datasets, using AUROC as the sole metric to measure the performance of
the models can be misleading, as it may not detect slight changes in the false positive
rate and provide overly optimistic results. Indeed, in our study, the HC-AUROC in each
model outperforms the related HC-AUPRC, showing the utility of performance estimates
unaffected by data imbalance.

Regarding pattern discovery, interesting and possibly helpful information was ex-
tracted from the decision tree. For instance, in Figure 2, we can understand how the likely
outcome would be if the patient reflects specific feature values. If the SF12 pre-operative
physical score is less than 29.55, the height is less than ~156.6 cm, and the weight is more
than 73.5 kg, there are high chances of not improving. However, if the weight is less
than 73.5 kg, the possibility of improvement from the surgery increases. This information
suggests that if the pre-operative physical score is low and the patient is overweight, the
patient’s response to the medical intervention could be negative, as shown in the medical
literature [57–59]. Indeed, it would be of interest to pay more attention to the patient’s di-
etary habits before the surgery to reduce possible recovery complications [60]. Interestingly,
an identified pattern is related to comorbidities. A few patients with a low pre-operative
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physical score affected by several comorbidities and with an unfortunate emotional state
of perceived pain have a lower chance of improvement within the next six months of
the surgery.

These examples show how the decision tree visualization can be exploited during the
patient assessment status to better understand if those patients will benefit or not from
the medical intervention. Moreover, this instrument can be useful for more personalized
and precise medicine [61]. In addition, if the domain expert wants to read and understand
quickly, FFT can be exploited for this purpose. Indeed, FFTs tend to be resilient against
overfitting, speedier and less information-intensive, and simple to understand, use, and
convey. By considering the cues, a physician could assess just by looking at the physical
score and VAS score (general condition of the patient’s health status). From the FFT, it
seems that if the patient has a higher VAS, it starts with a worse state, and if a physical score
is lower than 34, there are high chances of improvement after the medical intervention.

5. Conclusions

The primary aim of this study is to present the performance of a machine learning
model that predicts the non-achievement of the minimal clinically important differences
(MCID) in the SF12 physical score six months after surgery. On the other hand, the second
aim is to develop a decision tree model (based on several complexity levels) to discover
possible important hidden patterns behind the data and develop an informative tool for the
decision support systems. The effectiveness of medical therapy should even be grounded
on evaluating the changes in PROM scores that patients perceive as meaningful [34]. Indeed,
it is crucial to identify early those patients who are unlikely to gain from surgery due to
failing to meet the MCID threshold. This may be supported by making more suitable
choices in preoperative stages [12] for a more precise and personalized medicine.

The study offers room for further development. First, our study relies on a distribution-
based MCID. Future research should also include anchor-based MCID. A recent review by
Çelik and colleagues [11] revealed a wide variation in existing estimates of MCIDs using
anchor-based techniques in orthopedics across various PROs. However, anchor-based
MCID should be able to better reflect changes in outcomes from a patient’s perspective [11].
Moreover, MCID thresholds for different types of surgery should be discussed. Second, this
study compares three XGBoost models with three approaches to address the data imbalance
issue. While the XGBoost models show moderate and comparable performance, more
robust approaches should be considered. Nguyen and Duong [42] compare the predictive
performance of resampling methods, such as SMOTE, and cost-sensitive methods, such
as focal loss and weighted loss, concluding that methods that adjust the relative cost of
error during the training phase are more effective than re-sampling, especially in highly
imbalanced data (i.e., ranging from 1% to 5%). Developing a more robust approach to
dealing with data imbalance is required even to enhance the effective use of these theoretical
solutions as supporting tools in the decision-making process of whether or not medical
treatment should be applied. Furthermore, developing a decision tree model, and using
it as a method of assessment, may, in some cases, be more practical and more effective
in decision support in precision and personalized medicine. It is oriented toward merely
explaining the structure and patterns in the data. Supporting humans through machine
learning could improve the accuracy and assessment of humans themselves [62]. For
instance, assessing the individual patient leads to more and more ad hoc evaluations
by limiting possible complications not considered, thanks to the support of machine
learning systems.
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11. Çelik, D.; Çoban, Ö.; Kılıçoğlu, Ö. Minimal clinically important difference of commonly used hip-, knee-, foot-, and ankle-specific
questionnaires: A systematic review. J. Clin. Epidemiol. 2019, 113, 44–57. [CrossRef] [PubMed]

12. Fontana, M.A.; Lyman, S.; Sarker, G.K.; Padgett, D.E.; MacLean, C.H. Can Machine Learning Algorithms Predict Which Patients
Will Achieve Minimally Clinically Important Differences From Total Joint Arthroplasty? Clin. Orthop. Relat. Res. 2019, 477,
1267–1279. [CrossRef] [PubMed]

13. Keurentjes, J.C.; Van Tol, F.R.; Fiocco, M.; Schoones, J.W.; Nelissen, R.G. Minimal clinically important differences in health-related
quality of life after total hip or knee replacement: A systematic review. Bone Jt. Res. 2012, 1, 71–77. [CrossRef]

14. Holzinger, A. Trends in Interactive Knowledge Discovery for Personalized Medicine: Cognitive Science meets Machine Learning.
IEEE Intell. Inform. Bull. 2014, 15, 6–14.

15. van der Willik, E.M.; Terwee, C.B.; Bos, W.J.W.; Hemmelder, M.H.; Jager, K.J.; Zoccali, C.; Dekker, F.W.; Meuleman, Y. Patient-
reported outcome measures (PROMs): Making sense of individual PROM scores and changes in PROM scores over time.
Nephrology 2021, 26, 391–399. [CrossRef] [PubMed]

16. Gigerenzer, G.; Goldstein, D.G. Reasoning the fast and frugal way: Models of bounded rationality. Psychol. Rev. 1996, 103,
650–669. [CrossRef]

17. Khan, O.; Badhiwala, J.H.; Grasso, G.; Fehlings, M.G. Use of machine learning and artificial intelligence to drive personalized
medicine approaches for spine care. World Neurosurg. 2020, 140, 512–518. [CrossRef]

18. Staartjes, V.E.; de Wispelaere, M.P.; Vandertop, W.P.; Schröder, M.L. Deep learning-based preoperative predictive analytics for
patient-reported outcomes following lumbar discectomy: Feasibility of center-specific modeling. Spine J. 2019, 19, 853–861.
[CrossRef]

19. Pedersen, C.F.; Andersen, M.Ø.; Carreon, L.Y.; Eiskjær, S. Applied machine learning for spine surgeons: Predicting outcome for
patients undergoing treatment for lumbar disc herniation using PRO data. Global Spine J. 2022, 12, 866–876. [CrossRef]

20. Zhang, S.; Lau, B.P.H.; Ng, Y.H.; Wang, X.; Chua, W. Machine learning algorithms do not outperform preoperative thresholds
in predicting clinically meaningful improvements after total knee arthroplasty. Knee Surg. Sport. Traumatol. Arthrosc. 2022, 30,
2624–2630. [CrossRef] [PubMed]

21. Kunze, K.N.; Karhade, A.V.; Sadauskas, A.J.; Schwab, J.H.; Levine, B.R. Development of machine learning algorithms to predict
clinically meaningful improvement for the patient-reported health state after total hip arthroplasty. J. Arthroplast. 2020, 35,
2119–2123. [CrossRef] [PubMed]

22. Huber, M.; Kurz, C.; Leidl, R. Predicting patient-reported outcomes following hip and knee replacement surgery using supervised
machine learning. BMC Med. Inform. Decis. Mak. 2019, 19, 1–13. [CrossRef] [PubMed]

23. Harris, A.H.; Kuo, A.C.; Bowe, T.R.; Manfredi, L.; Lalani, N.F.; Giori, N.J. Can Machine Learning Methods Produce Accurate and
Easy-to-Use Preoperative Prediction Models of One-Year Improvements in Pain and Functioning After Knee Arthroplasty? J.
Arthroplast. 2020, 36, 112–117. [CrossRef]

24. Song, Y.-Y.; Lu, Y. Decision tree methods: Applications for classification and prediction. Shanghai Arch. Psychiatry 2015, 27,
130–135. [CrossRef] [PubMed]

25. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference
on knowledge discovery and data mining, California, CA, USA, 13–17 August 2016; pp. 785–794.
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