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Abstract: The COVID-19 pandemic represents an unprecedented opportunity to exploit the advan-
tages of personalized medicine for the prevention, diagnosis, treatment, surveillance and manage-
ment of a new challenge in public health. COVID-19 infection is highly variable, ranging from
asymptomatic infections to severe, life-threatening manifestations. Personalized medicine can play a
key role in elucidating individual susceptibility to the infection as well as inter-individual variability
in clinical course, prognosis and response to treatment. Integrating personalized medicine into
clinical practice can also transform health care by enabling the design of preventive and therapeutic
strategies tailored to individual profiles, improving the detection of outbreaks or defining trans-
mission patterns at an increasingly local level. SARS-CoV2 genome sequencing, together with the
assessment of specific patient genetic variants, will support clinical decision-makers and ultimately
better ways to fight this disease. Additionally, it would facilitate a better stratification and selection of
patients for clinical trials, thus increasing the likelihood of obtaining positive results. Lastly, defining
a national strategy to implement in clinical practice all available tools of personalized medicine in
COVID-19 could be challenging but linked to a positive transformation of the health care system. In
this review, we provide an update of the achievements, promises, and challenges of personalized
medicine in the fight against COVID-19 from susceptibility to natural history and response to therapy,
as well as from surveillance to control measures and vaccination. We also discuss strategies to
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facilitate the adoption of this new paradigm for medical and public health measures during and after
the pandemic in health care systems.

Keywords: personalized medicine; precision medicine; Covid-19; SARS CoV2; epidemiology; host
genetics; viral genome

1. Introduction

Policymakers, health care leaders and physicians should improve our response to
the SARS-CoV-2 pandemic by promoting interdisciplinary collaboration and moving the
main research and innovation milestones to clinical practice. The management of this
pandemic has been a great challenge addressing health care delivery in stressful conditions
due to inadequate capacity, supply shortages, redesigning care, being more transversal and
focused on the patient and the virus, thinking in a few days on open intensive care units
distributed throughout the campus and managed by several specialties. Innovation and
research on COVID-19 required an adaptive process to be translated to clinicians as fast as
possible when usefulness was supported in evidence-based medicine. Complex adaptive
systems that operate in unpredictable environments should be replaced. Personalized
medicine implementation in clinical practice requires a multidisciplinary approach putting
together people working on genome sequences, bioinformatics, geneticists or microbiolo-
gists and physicians in charge of the patients as well as the management of big-data (BD).
A well-defined circuit is mandatory together with a multidisciplinary group able to meet
frequently to solve complex clinical situations as severe COVID-19. Precision medicine
and beyond, P4 medicine, including predictive, personalized, preventive and participatory
medicine, could find the correct scenario in this pandemic. The Andalusian Regional
Government allowed us to put together a large population-based health database together
with human genomics and viral sequencing to be addressed by Artificial Intelligence (AI)
methods to develop robust algorithms able to predict not just the natural history and
progression of the disease but also antiviral therapy response [1] and immune response to
vaccination [2].

2. Impact of Human Genome on COVID-19

The clinical course in patients with COVID-19 has been reported as highly heteroge-
neous. While most people will experience a mild or asymptomatic course, some others
may develop progressive and life-threatening bilateral pneumonia and acute respiratory
distress syndrome (ARDS). Identifying which patients are at risk to progress to a severe
form could reduce the burden of COVID-19, which is currently overloading many health
care systems around the world. Factors contributing to disease severity include anthro-
pometric factors (e.g., age, gender, BMI), comorbidities (e.g., hypertension, diabetes) and
unhealthy habits (e.g., smoking) [3]. Host genetics studies in COVID-19 have reported
genomic variations associated with disease severity in chromosomes 1 (1q22.1), 2 (2p21.1),
3 (3p21.1–3), 6 (6p21.1), 8 (8q24.13), 9 (9q34.1–2), 12 (12q24.1–2), 17 (17q21.3), 19 (19p13.1–3)
and 21 (21q21–q22) as well as in specific loci that have been manually selected [4–8]. The
COVID Host Genetics Initiative has set up one of the largest communities that are currently
generating, sharing and analyzing data to learn the genetic determinants of COVID-19
susceptibility, severity and outcomes. This initiative, which has currently released its fifth
data freeze, including data from 46 studies across 19 countries worldwide and analysis
looking for genetic determinants of severity (+6000 death or intubated patients vs +1.4 M
controls), hospitalization (+13,000 hospitalized patients vs +2 M controls) and infection
(≈ 50 K infected patients vs +1.7 M controls), is currently setting up a platform in which
researchers will be able to explore the genetic variations that have a deeper impact in SARS
CoV-2 infection and severity [9]. An overview of some of the strongest genetic associations
described so far for COVID-19 infection and severity, along with some potential gene
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candidates, is shown in Table 1. Chromosome 3 genetic variation in the 3p21 locus is the
genetic variant that has shown the strongest association in terms of reproducibility to both
COVID-19 infection and severity. This region, which is thought to be present in around 30%
of people in South Asia and 8% in Europe, has been shown to increase between 1.5- and
2-times approximately an infected person’s odds of developing severe COVID-19 [4,7,10].
Carriers of rs10490770, an SNP strongly linked to this chromosome region have increased
the odds of several COVID-19 complications, including severe respiratory failure (odds
ratio [OR] 2·0, 95%CI 1·6–2·6), venous thromboembolism (OR 1·7, 95%CI 1·2–2·4), and
hepatic injury (OR 1·6, 95%CI 1·2–2·0) and higher odds of death or severe respiratory fail-
ure, which are especially relevant in patients ≤60 years (OR 2.6, 95%CI 1.8–3.9) compared
to those >60 years (OR 1.5 (95%CI 1.3–1.9, interaction p-value = 0·04) [11]. rs11385942,
another SNP strongly associated with this genetic variation, has shown no association to
biomarkers of systemic inflammation, including the C-reactive protein, ferritin, IL-6 and
circulating neutrophils and lymphocytes but has been recently associated to increased
amounts of the enhanced complement activation, both with C5a and terminal complement
complex [12,13]. The 3p21.31 locus contains 17 known protein-coding genes, including
SLC6A20, LZTFL1, CCR9, FYCO1, CXCR6, XCR1, CCR1, CCR3, CCR2 and CCR5. None
of them seems to have a straightforward connection to SARS-CoV-2 infection or severity
to date, besides maybe SLC6A20, which is a transporter regulated by the main SARS-
CoV-2 receptor ACE2. However, there are some indirect connections that might be worth
highlighting. CCR2 encodes a C-C type chemokine receptor for a chemokine (CCL2) that
mediates monocyte chemotaxis. Its expression has recently shown a strong association
with the 3p21.31 severe COVID-19-risk variant in certain CD4+ memory T cell subsets
and classical monocytes. Patients with severe COVID-19 illness have increased CCR2
expression in circulating monocytes as well as very high levels of CCR2 ligand (CCL2)
in bronchoalveolar lavage fluid, leading to the hypothesis that excessive recruitment of
CCR2-expressing monocytes may drive pathogenic lung inflammation in COVID-19 [14,15].
LZTFL1/BBS17 is a member of the Bardet-Biedl syndrome (BBS) and encodes a protein
involved in protein trafficking to primary cilia. Mutations in LZTFL1 have been reported
in human BBS patients, which develop a wide range of pathologies, including obesity,
which is so far one of the comorbidities with a stronger link to both COVID-19 infection
and severity. It has been recently shown that the deletion of LZTFL1 can cause pleiotropic
defects in mice, including obesity. Interestingly, this work links obesity to the expression
of LZTFL1 in the brain and demonstrates that the loss of this protein specifically in the
brain can lead to leptin resistance [16]. SARS-CoV-2 has been shown to be able to infect
the epithelial cells of the gastrointestinal glands of the stomach, duodenum and rectum
of COVID-19 patients. The continuous positive detection of SARS-CoV-2 viral RNA in
stools suggests that viral particles can be secreted by gastrointestinal cells infected with
the virus, and two recent works have proven the ability of this virus to infect human and
bat enterocytes in vitro [17–19]. CCR9 is a small intestinal chemokine homing receptor
normally found on most mucosal T cells in the gastrointestinal tract, and that has been
linked to celiac disease [20] It has been recently shown that the CCR9-CCL25 axis in mice
promotes the development of a Th1 population with features of TRM cell that regulates
the local immune environment and that CCR9 can exert a protective response against
infections in the gastrointestinal tract [21]. CCR9 expression has also been observed in
inflammatory cells that are recruited to the lungs and in peripheral blood eosinophils of
asthmatic subjects and can be upregulated by stimulation with proinflammatory mediators
in human eosinophils-derived cell lines [22]. FYCO1 plays a role in microtubule plus
end-directed transport of autophagic vesicles through interactions with the small GTPase
Rab7. Although the molecular mechanism of SARS-CoV2 virus infection and spread in the
body is not yet disclosed, studies on other beta-coronaviruses show that, upon cell infec-
tion, these viruses inhibit macroautophagy/autophagy flux and cause the accumulation
of autophagosomes. RNA viruses such as HBV and HCV also modify the autophagy ma-
chinery to favor viral replication, translation and propagation. [23] Experiments performed



J. Pers. Med. 2021, 11, 475 4 of 16

in hepatocyte cell lines have shown that HCV infection causes inhibition of ras-related
protein Rab-7 (Rab7)-dependent endosome–lysosome fusion and promotes the cleavage of
the Rab7 adaptor protein RILP (Rab interacting lysosomal protein). This cleavage allows
changing the location of this protein to the cell periphery, promoting the export of viral
particles outside the cell [24]. XCR1 is a chemokine receptor for XCL1 (Lymphotactin or
Lptn). This chemokine is produced predominantly by NK and CD8+ T cells and plays a
key role in the tissue-specific recruitment of T lymphocytes [25]. Nasal co-administration
of XCL1 and a protein antigen enhances antigen-specific antibody responses both in blood
plasma and in mucosal secretions. Lptn as adjuvant-induced antigen-specific CD4+ Th1-
and Th2- type cells and IgG1 > IgG2a = IgG2b = IgG3 antibody subclasses [26]. Viral
macrophage inflammatory protein-II, a viral protein that inhibits C class chemokines, has
been shown to be a potent antagonist able to block the signaling of the XCR1 receptor [27],
and the TAT protein of HIV can strongly increase the expression of XCL1 in several cell
types [28].
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Table 1. List of SNPs significantly associated with COVID-19 risk of infection, hospitalization, or critical illness that have been identified by three of the major genetic studies that have
analyzed host genetics. Chr: Chromosome. LD: linkage disequilibrium.

Chr SNPs Position Genetic Variation(Effect
Allele/Reference Allele) Genes in LD Region Associated

Phenotype(s)

ß-Coefficient (COVID
HGI) or ODDS RATIO

(rest)
p-Value

Reference Study, nº of
Patients

& Phenotype(s) Definition

1 rs67579710 155203736 A/G THBS3, KRTCAP2,
TRIM46, MUC1, MTX1 Hospitalization −0.138 3.4 × 10−8

COVID HGI
(Data freeze nº5 Jan 2021)

46 studies across 19 countries
worldwide

Critically Ill (6.179)
vs population control

(1.483.780)
Hospitalized COVID-19

(13.641)
vs population control

(2.070.709)
SARS-CoV-2 infection (49.562)

vs population control
(1.770.206)

PHENOTYPES:
Critically ill: Required
respiratory support or

COVID-19 related death
Hospitalized: Required
hospitalization due to

COVID-19
SARS-CoV2 infection:

Laboratory confirmed OR
electronic health record, ICD

coding OR Physician-confirmed
COVID-19 OR self-reported

COVID-19

2 rs1381109 166061783 T/G SCN1A Hospitalization −0.096 4.2 × 10−8

3 rs10490770
rs11919389

45823240
101705614

C/T
C/T

LZTFL1
RPL24, ZBTB11,
CEP97, NXPE3

Critical Illness
Hospitalization

Infection
susceptibility

Infection
susceptibility

0.634
0.5

0.149
−0.06

2.2 × 10−61

1.4 × 10−73

9.7 × 10−30

3.5 × 10−15

5 rs10070196 13939721 C/A DNAH5 Infection
susceptibility 0.044 9.7 × 10−22

6 rs1886814 41534945 C/A FOXP4
Hospitalization

Infection
susceptibility

0.233
0.101

1.1 × 10−9

2.4 × 10−8

8 rs72711165 124324323 C/T TMEM65 Hospitalization 0.314 2.1 × 10−9

9 rs912805253 133274084 T/C ABO
Hospitalization

Infection
susceptibility

−0.103
−0.1

5.4 × 10−10

1.5 X 10−39

12 rs10774671 112919388 A/G OAS1, OAS2, OAS3

Critical Illness
Hospitalization

Infection
susceptibility

0.231
0.144
0.048

4.1 × 10−13

6.1 × 10−10

1.6 X 10−11

17
rs1819040

rs77534576

46142465

49863303

A/T

T/C

ARHGAP27,
PLEKHM1, LINC02210

CRHR1, SPPL2C,
MAPT, STH, KANSL1,

LRRC37A, ARL17B,
LRRC37AA2, ARL17A,

NSF, WNT3

KAT7, TAC4

Hospitalization

Critical illness

−0.129

0.369

1.8 × 10−10

4.4 × 10−9
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Table 1. Cont.

Chr SNPs Position Genetic Variation(Effect
Allele/Reference Allele) Genes in LD Region Associated

Phenotype(s)

ß-Coefficient (COVID
HGI) or ODDS RATIO

(rest)
p-Value Reference Study, nº of Patients

& Phenotype(s) Definition

19

rs2109069
rs74956615

rs4801778

4719431
10317045

48867352

A/G
A/T

T/G

DPP9
TYK2, ICAM1 ICAM3,

ICAM4, ICAMS,
ZGLP1, FDX2,

RAVER1.

PLEKHA4,
PPP1R115A, TULP2,

NUCB1

Critical Illness
Hospitalization

Infection
susceptibility

Hospitalization
Critical Illness

Infection
susceptibility

0.231
0.144
0.048
0.36

0.236
−0.055

9.7 × 10−22

2.8 × 10−17

4.1 × 10−9

5.1 × 10−10

9.7 × 10−22

1.2 × 10−8

21 rs13050728 33242905 C/T IFNAR2 Critical Illness
Hospitalization

−0.20
−0.15

1.1 × 10−16

2.7 × 10−20

3 rs11385942 45876460 insertion–deletion
GA or G

LZTFL1, SLC6A20,
CCR9, FYCO1, CXCR6,

XCR1

Severe Covid
Intubation

1.77
(1.48–2.11)

1.70;
(1.27 to 2.26)

1.2 × 10−10

3.3 × 10−4

COVID 19
Host(a)ge

(1st release)
(Spain+Italy)

Severe Covid (1980)
vs Population controls (2381)

Severe Covid:
Hospitalization + respiratory

failure + confirmed SARS-CoV-2

9

rs657152
rs8176719
rs41302905
rs8176747

Between
133255928

and
136139265

A/C
261delG

A/G
C/G

ABO Severe Covid

A group
1.32

(1.20–1.47)
O group

0.65
(0.53 to 0.79)

1.48 × 10−4

1.1 × 10−5

3 rs73064425 45901089 T/C LZTFL1 Severe Covid 2.1
(1.88–2.45) 4.8 × 10−30

GenOMICC
(Genetics Of Mortality

In Critical Care)
UK

Severe Covid (2771)
vs Population control (45.875)

Severe Covid:
Patients in critical care, being profound

hypoxaemic respiratory failure the
archetypal presentation.

6
rs9380142

rs143334143
rs3131294

29798794
31121426
32180146

A/G
A/G
G/A

HLA-G
CCHCR1
NOTCH4

Severe Covid
Severe Covid
Severe Covid

1.3
(1.18–1.43)

1.9
(1.61–2.13)

1.5
(1.28–1.66)

3.2 × 10−8

8.8 × 10−18

2.8 × 10−8

12 rs10735079 113380008 A/G OAS1/3 Severe Covid 1.3
(1.18–1.42) 1.6 × 10−8

19 rs2109069
rs74956615

4719443
10427721

A/G
A/T

DPP9
TYK2

Severe Covid
Severe Covid

1.4
(1.25–1.48)

1.6
(1.35–1.87)

4.0 × 10−12

2.3 × 10−8

21 rs2236757 33252612 A/G IFNAR2 Severe Covid 1.3
(1.17–1.41) 2.3 × 10−8
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3. Role of Viral Genetic Variants in Covid-19

Coronaviruses (CoVs) are positive ssRNA viruses, non-fragmented, 26–32 kb belong-
ing to the coronaviridae family. At least four types have been described (α, β, γ and δ).
Alpha and beta are pathogenic to mammalians, including humans. Until now, they have
been associated with respiratory diseases—α: HCoV-229E and HCoV-NL63 and β: HCoV-
OC43, HCoV-HKU1, SARS-CoV-1, MERS-CoV and SARS-CoV-2. The virus did infect
and replicate in the cell-expressing ACE-2 receptors. Infection is diagnosed by RT-PCR
detecting at least two of these four genes (envelope, spike, nucleocapsid or RNA-dependent
RNA polymerase) [29]. The enormous international effort in SARS-CoV-2 sequencing and
the subsequent data sharing in sequence databases, along with the popularization of the
interactive epidemiological map viewer Nexstrain [30], has uncovered a huge variability
spectrum in the viral sequences reported, which are estimated to accumulate nucleotide
mutations at a rate of about 1–2 mutations per month [31]. As new sequences cumulated,
an increasing number of studies started to describe mutations with an apparent impact
on increased infectivity of the virus, such as the well-known D614G variant in the spike
protein, or even on increased mortality [32]. Additionally, mutations in the spike have been
associated with mABs evasion, which implies a potential risk for vaccine effectivity [33].
Beyond the spike protein, mutations in other proteins, such as the RNA-dependent-RNA
polymerase, can reduce the copy fidelity that could result in resistance to antiviral treat-
ments [34] On the other hand, mutations present at the receptor-binding site of the spike
protein apparently cause reduced infectivity [33]. ORF8 deletion has also been associ-
ated with a milder clinical infection and less post-infection inflammation [35]. Actually,
it has been suggested that superspreading events seem to be driving the SARS-CoV-2
pandemic evolution [36]. Moreover, sometimes a more drastic evolutionary event can
occur, such as the recently described transmission between humans and mink, and back to
humans [37], which triggered a preventive systematic mink slaughter in Denmark because
of the presence of variants in the spike protein that might compromise the effectivity of
a vaccine [38]. Another case of a new SARS-CoV-2 variant with an unexpectedly large
number of mutations in several proteins is the new lineage, B.1.1.7, described in the UK,
which is apparently associated with higher transmission rates and mortality [39], or the
more recent strains B.1.351 from South Africa and B.1.1.28.1 from Brazil.

The potential effect of many of these mutations has been questioned as speculative
and often based on a small number of cases with no much clinical information associated,
which casts serious doubts on their actual significance [40]. However, there is an obvious
scenario where viral mutations are known to have a potential effect: resistance to antiviral
treatments. A noticeable example is remdesivir, an antiviral agent developed against the
Ebola virus with demonstrated in vitro activity against SARS-CoV-2. In vitro studies have
linked some drug-resistance variants, mainly amino acid changes on RNA-dependent
RNA-polymerase (corresponding to residues F480; V557; F480 + V553; F480 + V557), with
reduced susceptibility to remdesivir (between 2.4- and 6-fold changes). In clinical cases,
some emergent variants promoting drug resistance, mainly in the RNA-dependent RNA-
polymerase region (D484Y), as a therapeutic target of the drug, have been reported in
patients receiving remdesivir [41–43]. Indeed, new variants are continuously emerging
every day and may affect drug binding sites and, consequently, may bear the potential
to promote drug resistance or escape to current vaccines. Therefore, the benefit of com-
bined genomic and epidemiological analysis for the investigation of health-care-associated
COVID-19 seems apparent, as has recently been reported, enabling the detection of cryptic
transmission events and identify opportunities for early interventions.

4. Genetic Epidemiology of COVID-19

In recent years, the European Center for Disease Prevention and Control (ECDC) has
published several documents informing about both the roadmap for and state of the art on
the current situation of the integration of microbiological data in Public Health surveillance
and proposing the need to implement molecular typing and genomic sequencing data for
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outbreak surveillance and control [44,45]. The use of genomic surveillance and molecular
typing in public health surveillance involves the availability of complementary information
to the epidemiological survey and identification of contacts (allowing traceability of the
transmission chain). It allows knowing if the cases belong almost unequivocally to the
same exposition or transmission line. Using this technique, exposures to a common source
can quickly and easily be identified, as demonstrated in the recently reported UK SARS-
CoV-2 variant [46]. The creation of a regional geographic database allows to know which
pathogens are endemic and which are imported and the identification of new clades,
strains or variants that are imported. The analysis of genetic data with phylodynamic
methods allows making inferences about the characteristics of the individuals involved in
the transmission of the infection and about how contact patterns and the dynamics of risk
behaviors affect the flow of transmission through a population [39]. Thus, epidemiological
surveillance has to monitor for abrupt changes in rates of transmission or disease severity
as part of a systematic process of identifying, response and assessing the impact of variants.
A recent example has been the emergence and rapid spread of the above-mentioned new
SARS-CoV-2 B.1.1.7 variant with multiple spike protein changes and mutations in other
genomic regions associated with higher transmissibility [46].

Although retrospective incorporation has made it possible at the local level to secure
the data that had been identified by epidemiologists through surveys when the virus
sequencing of confirmed cases has to be carried out faster, the pathways of infection have
been prospectively traced, and chains of transmission have been precisely identified, at
the hospital level [44,45,47–49]. Technological advances in the classification of pathogens
according to the genomic sequence propel us into a new era of massive availability of
genomic data at increasingly reduced costs. This information applied to current surveillance
systems allows the pathogen causing an infection to be more accurately discriminated,
improves the detection of outbreaks and circumscribes the scope and impact of these
outbreaks as it allows defining transmission patterns at an increasingly local level. SARS-
CoV-2 sequencing has also proven to be useful for studying reinfection. The first case of
SARS-CoV-2 reinfection was reported on 24 August 2020 in a Hong Kong citizen re-infected
while travelling in Europe. A few other COVID-19 reinfections have been published
or deposited in repositories; however, as diagnosing reinfection requires whole-genome
sequencing strategies to evaluate the differences between the first and the second strain
and samples from both episodes may not be available, it is suspected that reinfection may
be a more frequent event than reported.

Another important aspect of genomic surveillance of SARS-CoV-2 is related to vac-
cination. An effective vaccine should consider the natural variation of the pathogen in
order to provide protection with coverage as extensive as possible. The evolution of viruses
by mutating epitopes to escape from different pressures has been demonstrated in vitro
in the presence of monoclonal antibodies [50] and also in clinical trials [51]. Additionally,
some cases of viruses that evade the immune response elicited by vaccines have been
described [52,53]. As expected, SARS-CoV-2 can escape in vitro from neutralizing anti-
bodies against the spike protein [54]. However, the recent report of the escape in vitro
from a neutralizing COVID-19 convalescent plasma with only three mutations [55], is
a serious warning that cannot be ignored and points to the convenience of surveillance
that considers immune aspects. The use of immunogenomics, bioinformatics and systems
biology helps to understand the basis of interindividual responses to vaccines, both in
terms of acquired immunity and adverse effects. The application of these concepts opens
the door to the possibility of quantifying and predicting the protective immune response
induced by vaccines according to the genomic signature, both of the microorganism and
of the vaccine recipient itself [56]. In fact, a bioinformatic approach has recently been
described that can predict candidate targets for immune responses to SARS-CoV-2 [57],
providing crucial information for understanding human immune responses to this virus
and for evaluating vaccine candidates [58]. In fact, these predictions, based on Artificial
Intelligence (AI) methodologies [59], allows understanding the individual responses of
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patients against the virus [60]. Thus, genomic surveillance and patient screening of risk
variants need to be considered for personalized approaches to SARS-CoV-2 vaccination
and to prevent possible future vaccine failures [61].

5. Data Science in Health Data Sheet from Large Populations: An Opportunity
for COVID-19

Recent estimates suggest that, while more than 50 years were needed to duplicate
all the medical knowledge by 1950, only 70 days were necessary for this increase by the
end of 2020 [62], thus providing an idea of the real dimension of current clinical BD and
their amazing growing pace. This increasing volume of data poses growing challenges
for its management, but at the same time, offers an invaluable opportunity for discovery.
In fact, the secondary use of stored clinical data is gaining importance progressively
and provides a solid substrate for an increasing number of real-world evidence (RWE)
studies [63]. Additionally, in parallel to the growth of clinical data repositories, the field of
AI has recently experienced a remarkable development, particularly in the case of clinical
applications [64]. The AI is starting to integrate into many aspects of medicine with the
perspective of optimizing processes, diagnostic procedures and treatments, as well as
helping to reduce medical errors [65].

It is worth noting that, despite the short time since the first COVID-19 outbreak, the
activity in the development of applications for the retrospective analysis of electronic health
records (EHR) by means of artificial intelligence (AI) applied to different aspects of the
pandemic is remarkable [66]. With a rapidly growing amount of data available, predictors
for different endpoints are being proposed based on different clinical data, that include
a medical image [67], clinical text data [68] or, in general, clinical data contained in the
EHRs [69]. One of the strengths of AI is its ability to “learn” how individual EHR variables
(potential risk factors) can be used and combined among them to produce personalized risk
predictions. While conventional approximations (e.g., Cox proportional hazards model)
cannot properly combine heterogeneous data from different natures and often incomplete
EHRs, modern AI techniques, based on supervised learning, can efficiently learn from such
a complex variable dataset and generate risk predictors, as well as update their predictions
as data evolve with time [70].

Beyond clinical data from EHRs, the abundance of genomic data in public databases,
as well as international initiatives to rapidly increase the biological knowledge on the
viral infection process, such as the COVID-19 disease map [71], is fostering innovative
applications of AI in the field of drug repurposing [72]. It has recently been demonstrated
that a combination of AI methods and mathematical models of the COVID-19 disease map2

has been able of predicting all targeted drugs for COVID-19 treatment currently in clinical
trials [73], opening the door to a new era in which AI-based in silico studies will become
mainstream. AI may also help in the design of new randomized trials by selecting the most
appropriate subpopulations for testing specific drugs according to the best fitted a-priory
hypothesis based on the mechanisms of action of the drugs.

6. Ethics, Data Science and Data Sharing in the Times of COVID-19

Sharing data and results arising from public research projects promotes scientific
progress. This concept, widely accepted among research communities, funding bodies,
and regulatory agencies, has acquired an unprecedented dimension during the COVID-19
pandemic. The scientific and medical communities have both put in enormous effort to
promote data sharing as fast as possible in order to advance our knowledge during the pan-
demic and design more effective ways to fight it back. Huge efforts have been performed
to identify biological and non-biological factors behind the enormous heterogeneity of
COVID-19 outcomes and to design strategies able to improve the standard of care given
to patients. Sharing clinical and genomic data can improve research efficiency, especially
in the genetics field, where the number of samples required to achieve enough statistical
power is high. The analysis and re-use of large datasets also allow performing studies that
integrate better genomic and phenomic variations, increasing research translationality and
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reproducibility. Last but not least, it ensures transparency of previous studies while maxi-
mizing the utility of existing datasets. Several public resources have been set in place to
access genomic data. 1000 Genomes Project [74], dbGaP [75], European Genome-phenome
Archive [76] or the NHGRI AnVIL [77], a US cloud environment for the analysis of large
genomic and related datasets, are some examples of databases that have provided services
for the archiving and distribution of genetic and phenotypic data resulting from biomedical
research projects during this pandemic.

Big data genomic and phenomic databases are necessary to promote personalized
medicine but imply certain risks and challenges that need to be taken into consideration
that can be roughly grouped into three main categories: issues associated with privacy,
the occurrence of incidental findings and challenges associated with the safe management
and sharing of genomic data. Researchers need to ensure that patients are well-informed
about the benefits and potential risks of data sharing while educating participants about
the importance of sample donation as the main pillar of scientific and medical progress.
A great example is depicted in some sentences included in the 1000 Genomes Project
consent template: "there may be new ways of linking information back to you that we cannot
foresee now. [...] We believe that the benefits of learning more about human genetic variation
and how it relates to health and disease outweigh the current and potential future risks, but
this is something that you must judge for yourself." Strategies to ensure patient privacy go
from oversampling (recruiting more individuals than the final number to be included) to
not collecting personal data besides sex. Aggregating data, such as allele frequency or
allele-presence information, is another strategy that allows protecting participant privacy
and also simplifies data sharing and storage. Genomic and phenomic databases usually
incorporate controlled-access mechanisms to protect the privacy and confidentiality of
research participants, limiting and/or restricting access to personal information. Implement
technology safeguards to prevent unauthorized access, use, or disclosure of confidential
and private data is a common feature of most of them. Data at EGA, for example, is
collected from individuals that authorize data release only for specific research use, and
strict protocols govern how information is managed, stored and distributed. EGA databases
contain several measures to ensure the security of data, including a regular risk assessment
and mitigation, audit logs, cryptography and communication security, among others [76].
IT security has become especially relevant with the transition from locked filing cabinets to
digital databases, which bring enormous opportunities for big data analysis but also have
an additional set of risks that need to be taken into account. NHGRI AnVIL, for example,
uses NIST 800-53 Rev 4 security controls at the Moderate baseline and NIST 800-53 privacy
controls documented, security protocols similar to those established in the industry [77].

The COVID-19 Host Genetics Initiative represents a good example of a huge world-
wide effort made for COVID-19 genetic and phenotypic data sharing (+160 registered
studies +19 countries). This initiative allows submitting individual-level data that includes
genetic and clinical phenotype data and also study summary statistics. Individual-level
data is shared via the European Genome-phenome Archive (EGA) or via NHGRI AnVIL
(US studies). Researchers are allowed to download the metanalysis summary statistics
as they are released by the consortia and also have a genome browser that allows them
to explore all genetic variations found associated with infection and/or disease severity.
Researchers can also apply for study-specific summary statistics and can also request
access to the initiative’s data deposited on EGA and AnVIL via their respective Data Access
Committee, which is composed of the PIs of the studies that have deposited the data (EGA)
or managed directly by the NIH (AnVIL). Several genetic studies from Spain, including
some launched from Andalusia, are currently contributing with data and samples to this
initiative, which is currently working together with the EGA and with the ELIXIR network
to establish the EGA Federation network and ensure that data from all countries can be
deposited within all national jurisdictions [78].
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7. Translating Personalized Medicine into Clinical Practice: The Andalusian Experience

Andalusia, located in the south of Spain and with 8.5 million inhabitants, is the third
most populated region in Europe, and it is larger than half of the countries of the Euro-
pean Union. Remarkably, Andalusia has the whole population under a unique universal
electronic health record, thus forming the largest resource of this kind in the European
Union. Under this scenario, all the decisions and strategies taken around this huge clinical
database acquire enormous relevance. Since 2001, the data recorded by the Andalusian
Public Health System (SSPA) are systematically uploaded to the Population Health Base
(BPS), making it one of the largest repositories of highly detailed clinical data in the world
(with over 13 million registries) [79]. BPS constitutes a unique and privileged environment
to carry out large-scale RWE studies. Actually, one of the BPS missions is facilitating the
discovery of new biomedical knowledge by means secondary use of clinical data [80],
paying special attention to the evaluation of impact in personal data protection [81].

The Andalusian SARS-CoV-2 genomic surveillance project [82] set the ground for
the implementation of a clinical circuit for controlling the COVID-19 pandemic as well as
other potential future emergent viruses. This project engaged the 16 main tertiary hospitals
in Andalusia, along with three research centers with genome sequencing facilities (IBIS,
Genyo and CABIMER) and the Bioinformatics Area of the Progress and Health Foundation
in a circuit of genomic data production. In parallel, the COVID-19 registries from Public
Health and the BPS provide ongoing and retrospective clinical data, respectively, to the
Bioinformatics Area, where the data are linked to the genomic data in a circuit of genomic
data interpretation. Bioinformatics then provide (i) to the microbiologists at hospitals with
information on the lineage, clade and relevant mutations in the virus; (ii) to Public Health
with epidemiological data; (iii) to BPS with the viral sequences for further secondary clinical
data studies; (iv) to the research community with the viral genome sequences through the
European Nucleotide Archive (ENA).

The Andalusian Health Research and Innovation Strategy 2020–2023, presented on
2 September 2020, focused on the improvement of the wellbeing of citizens in the frame-
work of Horizon Europe 2027, including a response to the impact of the challenges of the
SARS-CoV2 pandemic. The Regional Health Ministry has been working and collaborating
on different initiatives for some time: (a) To promote Digital Clinical records (Diraya®),
integrating all the information on people into a Single Health Record and facilitating access
to all the services and provisions of the health system, ensuring that all the relevant infor-
mation is structured. As opposed to systems that merely assemble records, the design of the
applications in Diraya shared tables, codes and catalogues; (b) To create the Bioinformatics
Research Area [82], on 14 June 2016, to improve the technological support of personalized
medicine, genomics and clinical genetics programs in the SSPA; (c) To create, by resolu-
tion of the management direction of the Andalusian Health Service 11 March 2018, the
information system called BPS of the Andalusian Public Health System, which integrates
clinical and epidemiological data from each patient; (d) The resolution of 9 March 2018, of
the Public Business Entity Red.es, by which the Agreement with the Andalusian Health
Service is published for the application of Information and Communication Technologies
in the management of chronicity and continuity of care in the SSPA; (e) On 27 June 2019,
at the meeting of the board of the Progress and Health Foundation (FPS), the creation of
the B-D Area in Health of Andalusia was approved as an area integrated into the FPS
in order to provide the SSPA of a platform of powerful, safe and data analysis tools ori-
ented to health results and the optimization of healthcare processes based on personalized
medicine; (f) During the last quarter of 2020, the coordination of the information and
communication technologies (ICT) strategy of the SSPA was promoted; (g) The promotion
of research on COVID19 in Andalusia, as of December 6, the number of research studies
related to COVID-19, presented and/or evaluated in our Research Ethics Committees in
Andalusia has been 277, with participation in 24 clinical trials addressing all the spectrum
of COVID-19 from epidemiology, diagnosis, biomarkers, genetics (as a contributing study
of the COVID-HGI), therapeutic interventions and vaccination. Some of them granted
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under the specific support for financing research, development and innovation (R+D+i)
in COVID-19; (h) The Ministry of Health and Families, through its General Secretariat for
Research, Development and Innovation in Health, has also set up three working groups:
(1) prospective studies on the evolution of the pandemic; (2) personalized medicine in
Covid-19; and (3) supplement and nutritional intervention against the SARS-Cov2 virus.

Implementing personalized medicine in Covid19 included developing actions to de-
fine by means of BD and AI the interaction of genomics, epigenetics, metagenomics and
viral sequencing in the development of events such as infection, severe disease, response to
treatment and response to vaccination. A joint instruction was carried out on January 2020
from the General Secretariat for Research, Development and Innovation in Health and the
Management Directorate of the Andalusian Health Service for the Management of samples
in the approach to Personalized Medicine in COVID-19. Healthcare professionals will also
have access to SARS-CoV-2 virus complete sequencing study by electronic biochemical
request (MPA). The San Cecilio Clinical Hospital for Eastern Andalusia and Virgen del
Rocio University Hospital for Western Andalusia were established as reference centers for
receiving viral samples (Figure 1A) and sequencing them, respectively (Figure 1B), and
the Bioinformatics Area process sequencing data (Figure 1C), joint with COVID registry
metadata (Figure 1D), previously collected from the Hospitals (Figure 1E), and reporting
back relevant epidemiological information to the COVID registry (Figure 1F) and informa-
tion on lineages and variants to the Hospitals for supporting clinical decisions (Figure 1G).
As previously stated, the clinical data of the Andalusian Health System is stored in the
BPS (Figure 1H), but in this case, viral genomes are also stored in BPS (Figure 1I) linked
to the rest of the patient’s clinical data, offering an unprecedented opportunity for large-
scale secondary studies and implementation in clinical practice (Figure 1). Finally, the
Bioinformatics Area submits the viral sequences to the ENA database, which is available
to the scientific community. Since February, more than 2000 whole viral genomes have
been sequenced, allowing the construction of a resource that depicts the evolution of SARS-
CoV-2 along time and across the geography of Andalusia [82]. This systematic genomic
surveillance system has allowed following the increase of the B.1.1.7 since February to
become a majority or to detect new VOCs, such as the Brazilian lineage P1 or the South
African B.1.351, and VOIs such as the Ugandan variant A.23.1 or others.J. Pers. Med. 2021, 11, x FOR PEER REVIEW 13 of 17 
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Figure 1. Circuit for COVID19 genomic surveillance. (A) Two reference Hospitals, San Cecilio and
Virgen del Rocio, collect SARS-CoV-2 samples from Eastern and Western Andalusia, respectively.
(B) Samples are sent to GENYO or IBIS sequencing facilities. (C) Sequencing data are sent to the
Bioinformatics Area for processing and (D) linking to metadata from the COVID registry, (E) previ-
ously collected from the Hospitals. (F) Bioinformatics reports relevant epidemiological information
to the COVID registry and (G) information on lineages and variants to the Hospitals for supporting
clinical decisions. (H) Clinical data on COVID-19 patients recorded in the Hospitals is stored in the
BPS. (I) Viral genomes are also stored in BPS linked to the rest of the patient’s clinical data for further
secondary use.
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8. Concluding Remarks

The pandemic has pushed us to a new scenario promoting association and relation-
ship between governments and the scientific community at the same time that emerged
multidisciplinary teams to take care of this complex disease together with telemedicine to
guarantee health care keeping at home. Deep sequencing, bioinformatic area and clinicians
working on personalized medicine could help to better understand the interaction between
the virus and the host. These tools should be available for physicians able to include in
their everyday decision-making process. The increasing need for personalized medicine
supported by scientific and objective data, big data and AI systems to create algorithms
based on individual variables (genomic), the host and the guest (pathogen and patient
subject). Public and private investment for the generation and transfer of knowledge could
support the development of high-quality translational and collaborative research to face a
threatening situation similar to this terrible pandemic.
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