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Abstract: Hip fracture patients have a high risk of mortality after surgery, with 30-day postoperative
rates as high as 10%. This study aimed to explore the predictive ability of preoperative characteristics
in traumatic hip fracture patients as they relate to 30-day postoperative mortality using readily
available variables in clinical practice. All adult patients who underwent primary emergency hip
fracture surgery in Sweden between 2008 and 2017 were included in the analysis. Associations
between the possible predictors and 30-day mortality was performed using a multivariate logistic
regression (LR) model; the bidirectional stepwise method was used for variable selection. An
LR model and convolutional neural network (CNN) were then fitted for prediction. The relative
importance of individual predictors was evaluated using the permutation importance and Gini
importance. A total of 134,915 traumatic hip fracture patients were included in the study. The
CNN and LR models displayed an acceptable predictive ability for predicting 30-day postoperative
mortality using a test dataset, displaying an area under the ROC curve (AUC) of as high as 0.76. The
variables with the highest importance in prediction were age, sex, hypertension, dementia, American
Society of Anesthesiologists (ASA) classification, and the Revised Cardiac Risk Index (RCRI). Both the
CNN and LR models achieved an acceptable performance in identifying patients at risk of mortality
30 days after hip fracture surgery. The most important variables for prediction, based on the variables
used in the current study are age, hypertension, dementia, sex, ASA classification, and RCRI.

Keywords: hip fracture; postoperative mortality; prediction; variable importance; machine learning;
neural network

1. Introduction

Hip fractures are one of the most common type of fractures in elderly people with an
incidence that has doubled in the last 20 years and is expected to keep growing [1–5]. In
Sweden, the annual incidence of hip fractures is approximately 18,000 per year [6–8]. Hip
fracture patients have a high risk of mortality after surgery, with 30-day postoperative rates
as high as 10% [9]. Despite efforts made to mitigate this, the death rate after hip fracture
surgery has remained relatively unchanged during the last decades [9].

With the goal of reducing the mortality rates in this patient population, it is vital to
explore and understand the factors that potentially could predict postoperative mortality.
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This has previously been attempted using both logistic regression models and neural
networks [10–12]. Neural networks require more data and variables to be more reliable, but
also provide a unique combination of properties that cannot be assessed using traditional
generalized linear models. On the other hand, logistic regression (LR) is a commonly
used classifier in machine learning classification problems, which has been widely applied
in clinical research and is familiar to the surgeons. A single-layer feed-forward neural
network that uses a logistic transfer function is structurally identical to a LR model [13].
LR allows the most statistically significant inputs to be found in a simple manner that
highlights important variables that may aid in the decision-making processes. Furthermore,
the size and direction of the effect of each covariate can be determined in a LR model
to estimate the effect of the weighted sum of the covariates, and a risk score calculated
accordingly [14]. Outcome prediction models using neural networks could also be useful
tools in attempting to reduce mortality after hip fracture surgery by identifying modifiable
risk factors. Consequently, the current study aims to explore the predictive values of
preoperative characteristics in traumatic hip fracture patients for 30-day postoperative
mortality by using a convolutional neural network (CNN) and a LR model, in addition to
comparing the performance of the two algorithms.

2. Materials and Methods
2.1. Study Population

The data were obtained from the Swedish National Quality Registry for Hip Frac-
ture Patients, Rikshöft [15]. All adult patients ≥ 18 years old, who underwent primary
emergency hip fracture surgery in Sweden between 1 January 2008 and 31 December
2017, were included in the analysis. Pathological and conservatively treated hip fractures
were excluded from the original data retrieval. The dataset was cross referenced with the
Swedish National Board of Health and Welfare registers using the patients’ unique social
security numbers, which provided each patient’s date of death and comorbidity data. The
comorbidity data was used to determine both the Charlson Comorbidity Index (CCI) and
the Revised Cardiac Risk Index (RCRI) for each patient [16,17]. The RCRI was calculated
based on a history of ischemic heart disease, congestive heart failure, cerebrovascular
disease, renal insufficiency, and diabetes mellitus, with each variable counting as one point
if present [18]. This study complies with the principles of the Declaration of Helsinki as
well as the TRIPOD guidelines [19], and was approved by the Regional Ethical Review
Authority of Uppsala/Orebro (reference 2019-02094).

2.2. Primary Outcome and Predictor Variables

The primary outcome is death within 30 days after surgery for a traumatic hip frac-
ture. The following variables were used in the current study for prediction of the primary
outcome: age, sex, fracture type, type of surgery, RCRI, CCI, American Society of Anes-
thesiologists (ASA) classification, and preoperative comorbidities, including peripheral
vascular disease (PVD), chronic obstructive pulmonary disease (COPD), liver disease,
dementia, connective tissue disease, cancer, metastatic carcinoma, myocardial infarction
(MI), congestive heart failure (CHF), hypertension, arrhythmia, cerebrovascular disease
(CeVD), peptic ulcer disease, diabetes mellitus, hemiplegia, and chronic kidney disease.

2.3. Descriptive Analysis and Association Analysis

Continuous variables were presented as a mean ± standard deviation (SD), and the
ordered and nominal variables were presented as a count and percentage. The Pearson’s
chi-squared test was used to test the statistical significance of differences between groups
for categorical variables, while the Student’s t-test and Mann–Whitney U test were used for
continuous variables. Because the rate of incomplete observations is very low (<2.0%), the
listwise deletion method was used for the observations with missing values in the variables
used in a specific analysis [20]. Two-tailed p-values < 0.05 were considered statistically
significant. Associations between the predictor variables and the outcome were evaluated
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using a multivariate LR model. To exclude the statistically non-significant variables from
the LR model, the bidirectional stepwise variable selection was used with the training
dataset, with the p-value for entry being 0.05 and the p-value for removal being 0.10 [21].

2.4. Predictive Models

Two supervised machine learning (ML) algorithms, LR and CNN, were used in the
current study. To reduce the overfitting of the models, we also introduced different penalties
in the LR model, including L1, L2, and elastic net, as well as only included variables with a
relative higher importance in both the prediction models. In the CNN model, ten layers
were used: three dropout layers (one for the input layer and two for the hidden layers),
two one-dimensional (1D) convolution layers, two 1D max pooling layers, one flattened
layer, and two dense layers (with 1000 computation units). The rectified linear unit (ReLU)
activation function was used for the convolution layers and the first dense layers, and the
sigmoid activation function was used for the second dense layer. The binary cross-entropy
loss function and the adaptive moment estimation (Adam) optimizer were used when
compiling the model (Figure S1). Furthermore, the number of filters were changed in the
conventional layers, along with the number of epochs used during model training to find
an optimal CNN model for final prediction [22,23]. Optimization of the hyperparameters,
including the penalty parameter for the LR model was, achieved by using a grid search
method.

2.5. Data Augmentation and Normalization

The proportion of patients who died within 30 days postoperatively is relatively low
(7.6%). This imbalance in positive and negative outcomes may significantly affect the
predictive ability of the ML models; therefore, a synthetic minority oversampling technique
(SMOTE) was performed to artificially augment the proportion of patients who died.
SMOTE generates a synthetic instance by interpolating the m instances (for a given integer
value m) of the minority class that lies close enough to each other to achieve the desired
ratio between the majority and minority groups [24]. Accordingly, a SMOTE dataset with
a 1:1 ratio between the living and dead patients was generated and used for machine
learning.

Because feature/variable scaling or normalization is crucial when working with
mixed (discrete/continuous) variables in machine learning, the categorical variables were
converted into dummy variables with values of 0 and 1, and the continuous variables were
standardized to have a mean of 0 and a standard deviation of 1 before they entered the
CNN and LR models.

2.6. Model Training and Test

Randomly selected data (80%) was used as training dataset to train the CNN and LR
models.

During model training stage, K-fold cross-validation technique was used [25]. The
training dataset was randomly split into 5 equal partitions, which instantiated 5 identical
model building and validation processes. Both the CNN and LR models were built on
4 partitions while the predictive ability was evaluated using the remaining partition. The
predictive ability of the models for the training dataset was calculated as the average
predictive ability over the 5 validations. The remaining 20% of the data was used as a test
dataset to provide an unbiased evaluation of the final models’ fit on the training dataset
(Figure S2). We also tried different partitions of the training and test datasets, i.e., 85%:15%
and 90%:10%, to examine the performance of the CNN. Validation of the models for the
test dataset was presented using the calibration plot with the true probability of the 30-day
mortality and the predicted probability.
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2.7. Model Performance Metrics

Given that our prediction task was a binary classification question, i.e., whether the
patient would die or survive, we first used threshold-dependent metrics, including overall
accuracy, sensitivity, specificity, to evaluate the performance of the CNN and LR models.
Terminology and derivations of the metrics have been previously published [26]. To use
the threshold-dependent performance metrics, model-predicted probabilities of presenting
outcomes were transformed into binary (survival or dead) predictions by selecting a
threshold probability τ. If a model-predicted a probability above τ, the prediction was
classified as death, and below τ was classified as survival, which may be expressed as [27]:

p̂i =

{
1 (death), pi > τ

0 (survival), pi ≤ τ
(1)

where p̂i is a binary prediction, and pi is a model-predicted probability of death in
Equation (1). For binary predictions, when the threshold τ is defined, a confusion matrix
can be assembled, representing the joint distribution of prediction-observation pairs, from
which all the threshold-dependent metrics are calculated. Because every threshold results
in a different confusion matrix and consequently different threshold-dependent metrics,
the change of specificity and sensitivity with τ increasing from 0 to 1 was presented using
the receiver operating characteristic (ROC) curve. In the current study, we reported the
accuracy, specificity, and sensitivity at the τ that maximized the Youden index (or sensitiv-
ity + specificity − 1), which emphasizes both sensitivity and specificity and is a commonly
used index for identifying the optimal threshold τ [28].

On the other hand, because the area under the ROC curve (AUC), a threshold-
independent metric, has been widely adopted by the medical society as a global measure of
the predictive ability of the models [29], which avoids the potential arbitrariness associated
with the selection of the threshold and is also prevalence-independent [30], we reported
AUC values of the models based on the model-predicted probabilities. The boundaries for
acceptable, good, and great predictive models were defined as an AUC value greater than
0.7, 0.8, and 0.9, respectively [31].

2.8. Variable Importance

Predictor variables’ importance was evaluated for LR models (with all the variables
and the selected variables by the stepwise method) using both the LR and random forest
(RF) algorithms and presented as the permutation importance (PI) and the Gini importance
(GI), respectively. PI was measured by looking at how much a predefined performance
metric (in our study is the sum of sensitivity and specificity) decreases when the information
of a specific variable is not available. It was calculated for each variable in a model. To
mask the information of a variable during validation, instead of removing the variable
from the dataset, the PI method replaces it with random noise from other participants by
shuffling the values of the variable. The relative importance of a variable was calculated
as the accuracy decrease of the variable relative to the range of the accuracy decreases of
all the variables [32]. In random forest models, the GI was calculated as the sum over the
number of splits (across all trees) that include the variable, proportionally to the number
of samples in each split. The GI indicates how often a particular variable was selected for
a split and how large its overall discriminative value was for the classification problem
under study [33].

2.9. Software and Hardware Used

The descriptive and ML analyses were conducted in Stata 16.1 (StataCorp LLC, Col-
lege Station, TX, USA). The creation of the ML models using CNN and LR algorithms, the
calculation of each model’s predictive ability, along with the PI and GI indices was per-
formed in Python 3.6 (Python Software Foundation, https://www.python.org/, accessed
on 26 April 2021) using the Keras 2.4.0, Scikit-learn 0.23 and ELI5 0.10.1 packages. All the

https://www.python.org/
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computation was completed on a computer with 64-bit Windows 7 Enterprise operating
system (Service Pack 1), Intel ® Core TM i5-4210U CPU of 2.40 GHz, and 16.0 GB installed
random access memory.

3. Results
3.1. Characteristics of the Patients

In total, 134,915 traumatic hip fracture cases were included in the study of whom
10,208 (7.6%) died within the 30-day postoperative period. The patients who died were
on average older and more often male. There was a statistically significant difference in
all characteristics and comorbidities except for connective tissue disease and hemiplegia
(Table 1).

Table 1. Characteristics of the traumatic hip fracture patients in Sweden between 2008 and 2017.

Variable Total
(n = 134,915)

Alive
(n = 124,707)

Dead
(n = 10,208) p-Value

Age, mean ± SD 82.0 ± 10.0 81.5 ± 10.1 86.9 ± 7.3 <0.001
Male * (%) 42,988 (31.9) 38,314 (30.7) 4674 (45.8) <0.001

ASA classification * (%) <0.001
1 6656 (5.0) 6536 (5.34) 120 (5.03)
2 48,264 (36.4) 46,507 (38.0) 1757 (17.6)
3 66,857 (50.5) 60,857 (49.7) 6000 (60.0)
4 10,534 (8.0) 8459 (6.9) 2075 (20.7)
5 135 (0.1) 79 (0.1) 56 (0.1)

RCRI (%) <0.001
0 79,941 (59.3) 75,864 (60.8) 4077 (39.9)
1 36,848 (27.3) 33,476 (26.8) 3372 (33.0)
2 13,086 (9.7) 11,284 (9.1) 1802 (17.7)
3 3971 (2.9) 3245 (2.6) 726 (7.11)
≥4 1069 (0.8) 838 (0.7) 231 (2.26)

Fracture type * (%) <0.001
Non-displaced cervical (Garden 1–2) 17,868 (13.3) 16,840 (13.5) 1028 (10.1)

Displaced cervical (Garden 3–4) 50,172 (37.2) 46,248 (37.1) 3924 (38.5)
Basicervical 4480 (3.3) 4126 (3.3) 354 (3.5)

Pertrochanteric (two fragments) 26,859 (19.9) 24,775 (19.9) 2084 (20.4)
Pertrochanteric (multiple fragments) 24,493 (19.2) 22,487 (18.0) 2006 (19.7)

Subtrochanteric 10,988 (8.2) 10,178 (8.2) 810 (7.9)
Surgery type * (%) <0.001

Pins or screws 23,548 (17.4) 21,849 (17.5) 1609 (15.8)
Screws or pins with sideplate 34,902 (25.9) 32,146 (25.8) 2756 (27.0)

Intramedullary nail 31,992 (23.7) 29,496 (23.7) 2496 (24.5)
Hemiarthroplasty 34,596 (25.7) 31,473 (25.3) 3123 (30.6)

Total hip replacement 9889 (7.33) 9676 (7.8) 213 (2.1)
CCI (%) <0.001

≤4 59,611 (44.2) 57,634 (46.2) 1977 (19.4)
5–6 50,247 (37.2) 45,733 (36.7) 4514 (44.2)
≥7 25,057 (18.6) 21,340 (17.1) 3717 (36.4)

PVD (%) 5890 (4.4) 5236 (4.2) 654 (6.4) <0.001
COPD (%) 15,577 (11.6) 13,933 (11.2) 1644 (16.1) <0.001

Liver disease (%) 1370 (1.0) 1232 (1.0) 138 (1.4) <0.001
Dementia (%) 27,304 (20.2) 27,789 (19.1) 3515 (34.4) <0.001

Connective tissue disease (%) 6487 (4.8) 6036 (4.8) 451 (4.4) 0.055
Cancer (%) 14,560 (10.8) 13,108 (10.5) 1452 (14.2) <0.001

Metastatic carcinoma (%) 2962 (2.2) 2498 (2.0) 464 (4.6) <0.001
MI (%) 8063 (5.9) 6789 (5.4) 1274 (12.5) <0.001

CHF (%) 21,097 (15.6) 17,475 (14.0) 3633 (35.8) <0.001
Hypertension (%) 51,756 (38.4) 47,990 (38.5) 3766 (36.9) 0.001
Arrhythmia (%) 24,998 (18.5) 22,305 (17.9) 2693 (26.4) <0.001
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Table 1. Cont.

Variable Total
(n = 134,915)

Alive
(n = 124,707)

Dead
(n = 10,208) p-Value

CeVD (%) 23,382 (17.3) 21,036 (16.9) 2346 (23.0) <0.001
Peptic ulcer disease (%) 4328 (3.21) 3918 (3.1) 410 (4.0) <0.001

Diabetes (%) 19,856 (14.7) 18,166 (14.6) 1690 (16.6) <0.001
Hemiplegia (%) 2911 (2.2) 2715 (2.2) 196 (1.9) 0.086

Chronic kidney disease (%) 6945 (5.2) 5774 (4.6) 1171 (11.5) <0.001

* Listwise deletion was used for the observations with missing values.

3.2. Associations between 30-Day Mortality and the Predictor Variables

The full LR model including all the variables indicates that age, male sex, PVD, COPD,
liver disease, dementia, cancer, metastatic carcinoma, ASA classification, fracture type,
CCI, hypertension, and arrhythmia are significantly associated with 30-day postoperative
mortality (Table 2).

Table 2. Odds ratio (OR) of predictor variables for 30-day mortality after surgery (full LR model).

Variable OR p-Value
95% Confidence Interval

Upper Limit Lower Limit

RCRI
0 Reference
1 1.371 0.210 0.837 2.246
2 1.787 0.247 0.669 4.774
3 2.249 0.280 0.516 9.802
≥4 2.764 0.324 0.367 20.821

Age 1.074 <0.001 1.070 1.078
Male 1.927 <0.001 1.842 2.017
PVD 1.146 0.005 1.042 1.259

COPD 1.291 <0.001 1.209 1.378
Liver disease 2.150 <0.001 1.766 2.618

Dementia 1.837 <0.001 1.738 1.941
Connective tissue disease 0.948 0.320 0.852 1.054

Cancer 1.166 <0.001 1.076 1.262
Metastatic carcinoma 2.751 <0.001 2.400 3.152

ASA classification
1 Reference
2 1.271 0.013 1.051 1.536
3 2.149 <0.001 1.782 2.593
4 4.228 <0.001 3.484 5.131
5 12.007 <0.001 7.928 18.185

Fracture type
Non-displaced cervical (Garden 1–2) Reference

Displaced cervical (Garden 3–4) 1.367 <0.001 1.240 1.506
Basicervical 1.266 0.008 1.064 1.506

Pertrochanteric (two fragments) 1.337 <0.001 1.141 1.568
Pertrochanteric (multiple fragments) 1.443 <0.001 1.226 1.699

Subtrochanteric 1.455 <0.001 1.222 1.731
Surgery type

Pins or screws Reference
Screws or pins with sideplate 0.947 0.468 0.817 1.098

Intramedullary nail 0.895 0.168 0.765 1.048
Hemiarthroplasty 0.998 0.957 0.915 1.088

Total hip replacement 0.593 <0.001 0.505 0.696
CCI
≤4 Reference
5–6 1.150 <0.001 1.064 1.242
≥7 1.143 0.037 1.008 1.295
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Table 2. Cont.

Variable OR p-Value
95% Confidence Interval

Upper Limit Lower Limit

MI 1.070 0.786 0.654 1.752
CHF 1.472 0.124 0.899 2.410

Hypertension 0.649 <0.001 0.618 0.682
Arrhythmia 0.930 0.010 0.881 0.983

CeVD 0.854 0.528 0.522 1.396
Peptic ulcer disease 1.038 0.521 0.927 1.162

Diabetes 0.808 0.396 0.494 1.322
Hemiplegia 0.8620 0.073 0.732 1.014

Chronic kidney disease 1.126 0.638 0.687 1.844

The stepwise LR model indicates that RCRI, age, male sex, PVD, COPD, liver dis-
ease, dementia, arrhythmia, cancer, metastatic carcinoma, ASA classification, fracture
type, surgery type, diabetes, CeVD, hemiplegia, CHF, and hypertension are statistically
significantly associated with 30-day postoperative mortality (Table 3).

Table 3. Odds ratio (OR) of predictor variables for 30-day mortality after surgery (stepwise LR model).

Variable OR p-Value
95% Confidence Interval

Upper Limit Lower Limit

RCRI
0 Reference
1 1.500 0.000 1.373 1.638
2 2.138 0.000 1.857 2.462
3 2.948 0.000 2.436 3.569
≥4 4.011 0.000 3.105 5.182

Age 1.074 0.000 1.070 1.078
Male 1.933 0.000 1.847 2.022
PVD 1.147 0.004 1.043 1.261

COPD 1.289 0.000 1.208 1.376
Liver disease 2.161 0.000 1.776 2.630

Dementia 1.838 0.000 1.741 1.942
arrythmia 0.931 0.011 0.881 0.983

Cancer 1.165 0.000 1.077 1.261
Metastatic carcinoma 2.750 0.000 2.405 3.145

ASA class
1 Reference
2 1.270 0.014 1.051 1.536
3 2.148 0.000 1.781 2.591
4 4.229 0.000 3.485 5.131
5 11.987 0.000 7.918 18.147

Displaced cervical (Garden 3–4) 1.366 0.000 1.267 1.473
Basicervical 1.217 0.004 1.064 1.391

Peritrochanteric (two fragments) 1.271 0.000 1.169 1.382
Peritrochanteric (multiple fragments) 1.373 0.000 1.251 1.506

Subtrochanteric 1.384 0.000 1.235 1.552
Diabetes 0.739 0.000 0.680 0.802

Intramedullary nail 0.944 0.094 0.883 1.010
CeVD 0.780 0.000 0.722 0.843

Total hip replacement 0.595 0.000 0.515 0.687
CCI
≤4 Reference
5–6 1.147 0.000 1.063 1.238
≥7 1.143 0.028 1.014 1.288

Hemiplegia 0.861 0.070 0.732 1.013
CHF 1.345 0.000 1.237 1.463

Hypertension 0.649 0.000 0.618 0.682
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3.3. Predictive Ability of the ML Models

While the CNN and LR models including all the predictive variables displayed a good
predictive ability on the training dataset (AUC = 0.87 and 0.83, respectively), they only
demonstrated an acceptable predictive ability on the test dataset for predicting 30-day
postoperative mortality (AUC = 0.72 and 0.73 respectively) (Figures 1 and 2).
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Figure 2. ROC of the LR model including all the variables without penalty.

Compared to the CNN model, the LR model exhibited a relatively higher sensitivity
(0.57 vs. 0.52), and a comparable specificity (0.75 vs. 0.76) and accuracy (0.73 vs. 0.74) in
the test (Table 4).

Table 4. Predictive ability of the CNN, LR, and RF models.

Model
Training Test

Accuracy SpecificitySensitivity AUC Accuracy SpecificitySensitivity AUC

CNN 1 0.77 0.76 0.80 0.87 0.74 0.76 0.52 0.72
CNN 2 0.80 0.79 0.80 0.89 0.76 0.79 0.46 0.71
CNN 3 0.79 0.78 0.80 0.88 0.75 0.77 0.47 0.69
CNN 4 0.70 0.71 0.70 0.77 0.71 0.71 0.68 0.76

LR 0.74 0.74 0.74 0.83 0.73 0.75 0.57 0.73
LR 5 0.74 0.72 0.76 0.82 0.72 0.73 0.60 0.74
LR 6 0.74 0.74 0.74 0.83 0.73 0.75 0.58 0.73
LR 7 0.74 0.74 0.75 0.83 0.73 0.74 0.58 0.73
LR 4 0.70 0.69 0.71 0.76 0.70 0.70 0.69 0.76
RF 0.68 0.54 0.81 0.76 0.57 0.55 0.76 0.72

1 The training and test datasets were split into 80%:20% partitions. 2 The training and test datasets were split into
85%:15% partitions. 3 The training and test datasets were split into 90%:10% partitions. 4 Using the variables with
a relative importance of >0.05 in the stepwised LR model. 5 Including an elastic net penalty. 6 Including an L1
penalty. 7 Including an L2 penalty.
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Compared to the 80%:20% partition of the training and test datasets, there was no
significant change found in the results of the 85%:15% partition (AUC = 0.89 and 0.71 for
the training and test datasets, respectively), and the performance of the CNN was even
slightly worse for the 90%:10% partition (AUC = 0.88 and 0.69 for the training and test
datasets, respectively) (Table 4).

The CNN model’s predictive ability increases on the training dataset with an increas-
ing number of filters and epochs. However, the predictive ability was only constant or
even decreased on the test dataset. When we used 50 filters and 5 epochs in the CNN
model, the greatest predictive ability in terms of AUC was observed for the test dataset
(Figures S3 and S4).

The overfitting issue presented in Figures 1 and 2 could be alleviated with the hyper-
parameter optimization in the models using all the variables, however, the performance
of the models on the test dataset did not show obvious improvement, which fluctuated
between approximately 0.70 and 0.74.

We also evaluated the RF model with all the variables and optimized hyperparameters,
which did not show any superiority over the CNN and LR models (Table 4).

3.4. Importance of the Predictor Variables

Both the PI and GI methods presented similar results regarding the importance of
the variables in predicting 30-day postoperative mortality, however, the orders of the
most important variables were different. When using all the predictive variables, age,
hypertension, sex, dementia, and ASA classification were the most important variables
according to the PI method; CCI, CHF, ASA classification, age, and sex had the highest
predictive ability based on the GI method (Figure 3).
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When using the statistically significant variables selected by the stepwise LR analysis
in Table 3, the top five variables with the greatest predictive ability are age, hypertension,
dementia, sex, and ASA classification according to the PI method, and CHF, CCI, ASA, age,
and RCRI according to the GI method (Figure 4).
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Using the variables with a relative importance of >0.05, >0.10, or >0.20 in the stepwise
LR model, we reevaluated the predictive ability of the CNN and LR models. It turned out
that, even though the overall accuracy of the two models decreased (from 0.74 to 0.71, and
0.73 to 0.70 in the test dataset for the CNN and LR, respectively), the two models using
the variables with a relative importance of >0.05 performed best, with an AUC of as high
as 0.76 (Table 4), and the overfitting problem in both the models was also significantly
reduced (Figures 5 and 6).
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4. Discussion

Predicting the trajectory of care provided and identifying futile aspects of care, is
of paramount importance in clinical practice. For that reason, the use of different risk
scores or individual patient characteristics may guide clinicians to better determine how to
proceed with care as well as aid in discussions with patients and their relatives, which can
avoid the escalation of care with non-futile interventions. To the best of our knowledge, the
current study is the largest to date investigating the predictive ability of LR and CNN, and
demonstrating the relative importance of the individual variables, using readily available
variables in clinical settings to predict 30-day postoperative mortality in hip fracture
patients. Both models demonstrated an acceptable predictive ability on the test dataset
with an AUC of as high as 0.76 [31]. The CNN model’s performance was not superior to
the LR model. This suggests that the LR model is the preferable method for predicting
mortality in this patient population as it has the same predictive ability but is simpler
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to implement in research and clinical practice. The calibration plot for the test dataset
reveals that both the models tend to underestimate the probability of 30-day mortality at
the lower probability end and overestimate the probability at the higher probability end,
and the prediction at the higher probability end appears unstable (Figure S5). The potential
reason for this phenomenon deserves further investigation, but it could be partly explained
by the small proportion (7.6%) of the patients who died within 30 days postoperatively.
Imbalanced data where classes are not represented equally are common in clinical studies.
The problem can be tackled in different ways, including changing performance metrics,
resampling dataset, data augmentation, adding penalties to the model, etc. There is no
rule of thumb for which method should be used, either in isolation or in combination,
but can only be determined through a process of trial-and-error. In the current study, we
only presented the performance of the training dataset based on the SMOTE; however,
its variations such as the majority weighted SMOTE and other oversampling methods or
class-weighted training methods deserve further investigation in the future.

The importance of the variables in the prediction were evaluated twice, first with
all the variables and thereafter on a pruned list of variables chosen using bidirectional
stepwise variable selection, which removed variables that were statistically non-significant
in the LR analysis. However, a difference was observed for the 5 most important predictive
variables when comparing the results of the PI and GI. The PI, based on LR model, indicates
that some simple variables, such as age, hypertension, dementia, and sex are important;
while Gini importance indicates that some composite variables, such as ASA classification,
CCI, and RCRI have a higher predictive ability.

This result is consistent with a previous systematic review that found no benefit of
machine learning, including neural networks, over logistic regression for clinical prediction
models [34]. Nevertheless, several smaller studies have found different results when com-
paring regression models to neural networks to predict 1-year mortality after hip fracture
surgery [35–38]. Two of the studies compared logistic regression with a neural network
and found that the neural network outperformed the alternative [35,36]. These studies
were, however, limited by small datasets comprising 286 and 434 cases, respectively [35,36].
Another study investigated the same question using a larger dataset with 2150 patients and
also found that a neural network was better than a logistic regression model for predicting
mortality [37]. Finally, the largest of these studies, containing 10,534 patients, found that
a neural network outperforms a Cox proportional hazards model [38]. While the small
sample size might limit the generalizability of the neural networks produced in the first
two studies [39], the fact remains that all the studies calculated significantly larger AUCs
for their neural networks compared to our CNN, with most having an AUC > 0.9 [35–38].
Despite all of our efforts, such as using different split partitions in the training and test
datasets, introducing dropout layers, and including only variables with relative higher
importance, to improve the performance of the CNN model, the AUC did not reflect the
same high values as previous studies. This may in part be due to the inclusion of variables
that were not available in the current study, such as mobility, functional status, socioe-
conomic characteristics, hospital level, surgeon volume, and hospital volume. Although
these variables could theoretically increase the predictive ability of the models, these are
not very useful or readily available in clinical practice. Additionally, to be noted, is that
the previous studies focused mainly on 1-year mortality rather than 30-day postoperative
mortality. However, including only variables with relatively higher importance seems an
effective method for reducing overfitting and increasing the performance in the current
study cohort.

Threshold-dependent metrics are widely used to evaluate predictive models’ perfor-
mance in the clinical settings, often on the grounds that binary predictions are necessary
for treatment planning. They may help to identify a model that best predicts a specific
outcome, assess the importance of a variable in prediction, and suggest the direction for
model improvement. However, they show a reduced discrimination ability in cases where
more than two occurrence probabilities exist [27]. Moreover, the threshold τ used in the
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current study was identified by maximizing the Youden index (or sum of sensitivity +
specificity − 1). However, in cases where there are wide disparities in the cost of false
negatives vs. false positives, it may be critical to minimize one type of classification error.
For example, in a cancer screening test, sensitivity is more important because a delay in
the diagnosis might result in the need for more expensive treatments and increase the
risk of fatal outcomes. In this case, the maximized value of the Youden index would not
be a useful threshold for this type of classification, and we would expect to achieve a
higher sensitivity and prioritize minimizing false positives during the classification. On
the other hand, threshold-independence has been regarded as a desirable property of the
performance metrics such as AUC, however, they are limited to measuring discrimination
ability (the ability to distinguish presence above absence) and cannot measure calibration.
Therefore, rather than just reporting the AUC, the complete ROC curve is recommended to
be reported together with the AUC [30].

Given the simplicity in clinical application of LR, and that no significant difference in
predictive ability was observed between the LR and CNN models in our data, a LR model
using age, hypertension, dementia, sex, and ASA classification would be useful to predict
the acute mortality in traumatic hip fracture patients after surgery. Therefore, the PI will
be used instead of the GI to compare the predictive power for individual variables in the
current study.

Several indices have been proposed in order to predict postoperative mortality af-
ter hip fracture surgery, such as the Nottingham Hip Fracture Score (NHFS), CCI, and
Physiological and Operative Severity Score for the enumeration of Mortality and morbid-
ity (POSSUM) [16,40–42]. The association between the CCI and postoperative mortality
has been observed in numerous studies [7–9,38,43,44]. The ability of the CCI to predict
postoperative mortality in hip fracture patients has also been compared to the NHFS and
POSSUM in prior studies [45,46]. In some, the NHFS performs slightly better and in
others POSSUM performs marginally worse, but overall, these indices have a comparable
predictive ability when all studies are taken into consideration [45,47,48]. In general, all
three indices demonstrate AUCs tending to lie between 0.7 and 0.8 depending on the study.

As can be seen by the PI, the RCRI presented a similar predictive ability to the CCI
in the unfiltered variable set and even outperformed it in the feature-reduced models.
This seems to indicate that the RCRI has the same level of predictive ability as the CCI.
Consequently, the RCRI should also be comparable to the NHFS and POSSUM as they
both have an equivalent predictive power to the CCI [45,46]. It might therefore be argued
that the RCRI is preferable to all of these indices. The RCRI makes use of six binary
variables, all of which can be retrieved without further blood tests or intraoperative
data [17]. Conversely, all the other indices require significantly more variables [16,40–42].
The NHFS itself necessitates the calculation of a completely different score, the Abbreviated
Mental Test score, in order to function [40]. Both the NHFS and POSSUM also call for
blood tests, in addition to the use of vital signs and intraoperative data already required by
POSSUM [40–42].

The importance of applying risk stratification tools such as the RCRI for patients
undergoing noncardiac surgery is stressed by The American College of Cardiology’s and
American Heart Association’s (ACC/AHA) most recent guidelines [49]. In clinical practice,
they recommend initiation of beta-blockers in patients with an RCRI ≥ 3 to reduce the risk
of adverse postoperative cardiac events. This association has been previously shown in
patients undergoing noncardiac surgery [18].

Nevertheless, the fact remains that irrespective of which risk score is used, none
seems to achieve anything beyond an acceptable predictive ability based on the AUC [31].
POSSUM and NHFS scores are poorly calibrated in hip fracture patients, often resulting in
an underestimation of mortality in the lower risk strata and overestimating mortality in
the higher risk strata and the CCI does not appear to fare any better [45,50]. The simplest
explanation may be that all of these indices, including the RCRI, are missing factors required
to paint a complete picture. Each of these scoring systems are in essence measures of a
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patient’s comorbidity burden; most do not include any measures of functional status of the
patient prior to surgery [16,40–42]. The solution may therefore be the use of several indices
in order to capture all aspects of a patient’s preoperative risk, for example a comorbidity
index, a frailty index, which would include mobility and functional status, and a fitness-for-
surgery index, such as the ASA classification [51,52]. This is in part supported by results
presented in the current study, where the ASA classification was retained in addition to the
RCRI and CCI after removing variables that demonstrated a high degree of collinearity;
this indicates that the ASA classification is providing new information to the model that is
not already found in the other indices.

A central goal of developing the CNN and LR models is to facilitate clinical decision-
making, for example by predicting 30-day postoperative mortality. In these situations,
however, preoperative information and time are often limited, which makes distinguishing
the specific variables with the highest predictive ability essential. Being able to predict
outcomes allows clinicians to make optimal and timely decisions regarding interventions
as well as allows for better discussions with patients and their relatives regarding medical
and surgical strategies. To be able to achieve this, variables that result in models with both
high sensitivity and high specificity are fundamental.

This study benefits from a large dataset based on ten consecutive years of data from
the Swedish National Quality Registry for Hip Fracture Patients. Contributions to this
database from all orthopedic departments in Sweden allows for high case coverage, ranging
between 80–90% [6,53]. Nonetheless, due to the nature of register data, the models were
limited to the variables available in the national quality registers. Future analyses including
factors such as functional status and frailty would be of value. This study also limits its
scope to the prediction of 30-day postoperative mortality. Consequently, additional studies
investigating long-term mortality as well as functional outcome and complications should
be conducted.

5. Conclusions

The CNN and LR models, both achieved an acceptable performance in terms of AUC
in identifying patients at risk of mortality 30 days after hip fracture surgery. The overfitting
issue presented in the full CNN or LR models might be mitigated by including only the
variables with a higher importance. The most important variables for prediction, based
on the variables used in the current study are age, hypertension, dementia, sex, ASA
classification, and RCRI.
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