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Abstract: β-blockers are commonly prescribed to treat cardiovascular disease in hemodialysis pa-
tients. Beyond the pharmacological effects, β-blockers have potential impacts on gut microbiota,
but no study has investigated the effect in hemodialysis patients. Hence, we aim to investigate
the gut microbiota composition difference between β-blocker users and nonusers in hemodialysis
patients. Fecal samples collected from hemodialysis patients (83 β-blocker users and 110 nonusers)
were determined by 16S ribosomal RNA amplification sequencing. Propensity score (PS) matching
was performed to control confounders. The microbial composition differences were analyzed by the
linear discriminant analysis effect size, random forest, and zero-inflated Gaussian fit model. The
α-diversity (Simpson index) was greater in β-blocker users with a distinct β-diversity (Bray–Curtis
Index) compared to nonusers in both full and PS-matched cohorts. There was a significant enrichment
in the genus Flavonifractor in β-blocker users compared to nonusers in full and PS-matched cohorts.
A similar finding was demonstrated in random forest analysis. In conclusion, hemodialysis patients
using β-blockers had a different gut microbiota composition compared to nonusers. In particular, the
Flavonifractor genus was increased with β-blocker treatment. Our findings highlight the impact of
β-blockers on the gut microbiota in hemodialysis patients.

Keywords: microbiome; beta-blocker; hemodialysis; next-generation sequencing; propensity score
matching methods
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1. Introduction

The gut microbiota has a crucial role in metabolic, nutritional, physiological, defensive,
and immunological processes in the human body, with its composition linked to human
health and the development of diseases [1,2]. Human-microbiome association can be
considered as integration in evolution. The microbiome can modulate and restore human
health [3]. Changes in this microbial equilibrium, that is, dysbiosis, promotes and influences
the course of many intestinal and extra-intestinal diseases [4–6]. In addition to genetic
and environmental factors, several common medications (e.g., proton pump inhibitors,
nonsteroidal anti-inflammatory drugs, atypical antipsychotics, selective serotonin reuptake
inhibitors, antibiotics, statins, and antidiabetic drugs) are associated with the specific gut
microbiota composition [7–13]. Indeed, drug-microbiome-host interactions are complex
and multifactorial, impacting host metabolism [14,15]. Hence, they should be part of the
core phenotype set for human gut microbiota research [16].

Patients with chronic kidney disease (CKD) have altered gut microbiota, with a bidi-
rectional causal effect relationship [17,18]. Among the cardiovascular preventive drugs
for patients with end-stage renal disease (ESRD), β-blockers are commonly prescribed in
higher cardiovascular risk patients to prevent sudden cardiac death [19,20]. Beyond the
clinical effect of β-blockers in ESRD patients, they also have a potential impact on gut
microbiota [7,16]. Besides, the benefit of beta-blockers may be attributed to preventing
the activity of the gut microbe-generated metabolite, such as phenylacetylglutamine [21].
However, limited study has investigated the impact on ESRD patients. Herein, we evaluate
the gut microbiota composition of β-blocker users and nonusers in Taiwanese hemodialy-
sis patients.

2. Materials and Methods
2.1. Study Participants

The Ethics Committee approved the study protocols of Kaohsiung Medical University
Hospital (KMUHIRB-E(I)-20160095 and KMUHIRB-E(I)-20180118) and Taipei Tzu Chi
Hospital (07-X01-002). All participants provided written informed consent. Hemodialysis
patients were recruited from the dialysis unit of Taipei Tzu Chi Hospital and Kaohsiung
Medical University Hospital in Taiwan from August 2017 to February 2018. The inclusion
criteria were patients with age more than 18 years old and received regular hemodialysis
three times per week, 3.5–4 h with high-flux dialyzers. The exclusion criteria included
patients with partial or total colectomy, inflammatory bowel diseases, active malignancies,
or patients who were prescribed antibiotics within three months before enrollment. Fecal
samples were collected from 193 stable hemodialysis patients and analyzed by high-
throughput 16S ribosomal RNA gene sequencing to compared participants with and
without β-blocker treatment. All β-blocker users were prescribed for at least one month.

2.2. Comorbidity, Laboratory, and Clinical Variables

All baseline characteristics of sociodemographic data, age, sex, body mass index,
dialysis vintage, arteriovenous shunt type, comorbidities, medications, and biochemical
data were collected in the built-in electronic health care system. Blood samples were
collected after overnight fasting through the arteriovenous fistula or graft before scheduled
hemodialysis sessions. The biochemical data included serum values for hemoglobin,
albumin, high sensitivity C reactive protein, total cholesterol, low-density lipoprotein,
triglycerides, ion calcium, and phosphate from routine blood samples obtained within
30 days before stool sample collection. Diet was evaluated by a licensed dietitian using a
modified short-form food frequency questionnaire. No specific antioxidant supplements
(i.e., tea, cocoa products, or wine) were recorded because of strict dietary restrictions in
hemodialysis patients. Participants have followed the nutrition guideline of the National
Kidney Foundation’s Kidney Disease Outcomes Quality Initiative (KDOQI™) [22], which
recommends a high-protein intake (1.1–1.4 g/kg/day) and reduced consumption of fruits,
vegetables, and dietary fiber to avoid potassium overload. Diabetes was defined as HbA1C
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6.5% or higher or use of oral antidiabetic agents or insulin. Hypertension was defined as
140/90 mmHg or higher or taking blood pressure-lowering drugs. A history of myocardial
infarction or documented by coronary angiography, class III or IV congestive heart failure,
or a cerebrovascular accident were defined as cardiovascular disease.

2.3. Fecal Sample Collection and Bacterial 16S rRNA Amplicon Sequencing and Processing

All stool samples were frozen immediately after collection by each participant, then
delivered in cooler bags to the laboratory (Germark Biotechnology, Taichung, Taiwan)
within 24 h. A QIAamp DNA Stool Mini Kit (Qiagen, MD, USA) was used to extract
DNA from fecal samples. Barcode-indexed PCR primers (341F and 805R) were used to
create an amplicon library by amplifying the variable regions 3 and 4 (V3–V4) of the 16S
rRNA gene [23]. The amplicons were sequenced (300 bp paired-end) using an Illumina
MiSeq sequencer at the same time in the same laboratory to avoid batch effects (Germark
Biotechnology, Taichung, Taiwan). The 16S-amplicon pipeline was adapted from 16S
Bacteria/Archaea SOP v1 of Microbiome Helper workflows [24]. Paired-End reAd mergeR
(PEAR; version 0.9.8) [25] was used to merge paired-end reads to raw reads, then filtered
low-quality reads by thresholds of sequence length ≥400 bp and quality score of 90%
bases of reads ≥20. Quantitative Insight Into Microbial Ecology (QIIME; version 1.9.1)
software was used to select operational taxonomic units (OTU) [26]. The SILVA (version
123) 16S database [27,28] was applied to cluster OTUs and assign taxonomy using the
UCLUST algorithm (version v1.2.22q) [29] with a 97% sequence identity threshold. Reads
were dereplicated, and singletons were discarded. The final OTU table was rarefied into
minimum sequencing depth in the data set.

2.4. Propensity Score Matching

Propensity score (PS) matching [30,31] was performed to balance confounders be-
tween the comparisons of interest (i.e., β-blocker users versus nonusers) and minimize
the confounding by indication resulting from nonrandom treatment study. Using a logis-
tic regression model, β-blocker use was accessed to estimate the propensity to receive a
β-blocker for each participant based on potential confounders, including age, sex, body
mass index, dialysis vintage, smoking history, vascular access type, Bristol stool scale,
dietary intake, comorbidities (diabetes mellitus, hypertension, dyslipidemia, coronary
artery disease, heart failure, cerebrovascular disease, and parathyroidectomy history),
concomitant drugs used (including ACEI (angiotensin converting enzyme inhibitors)/ARB
(angiotensin-receptor blockers), glucose-lowering drugs (such as sulfonylurea, dipeptidyl
peptidase-4 inhibitors, insulin), statin, calcium carbonate, and proton pump inhibitors), and
clinical laboratory data (hemoglobin, albumin, total cholesterol, triglyceride, high sensitiv-
ity C reactive protein (hsCRP), sodium, potassium, total calcium, phosphate, parathyroid
hormone, serum iron, ferritin, normalized protein catabolic rate (nPCR), and single pool
Kt/V). In this study, 193 hemodialysis patients were enrolled, including 83 β-blocker users
and 110 nonusers (full cohort). PS-matched (1:1) analysis was used to match participants
with β-blocker treatment (N = 62) to participants without β-blocker treatment (N = 62)
(PS-matched cohort, Figure 1).
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Figure 1. Study design.

2.5. Statistical and Bioinformatics Analyses of Microbiota

The study design is presented in Figure 1. Demographic characteristics are shown as
the mean, median, or frequency, with differences between β-blocker users and nonusers
determined using an independent T-test or chi-squared test, as appropriate. A rarefac-
tion curve was built to prevent methodological artifacts originating from variations in
sequencing depth. The α-diversity indices (Shannon and Simpson’s indices) estimated the
evenness of taxa within each sample and were generated using the R “vegan” package and
calculated the p-value by the Kruskal–Wallis test. The β-diversity provides a comparison
of the taxonomic profiles’ differences between pairs of individual samples. The β-diversity
was calculated based on the Bray–Curtis distance matrices and was visualized using prin-
cipal coordinates analysis (PCoA) and calculated using homogeneity of group dispersions
by Permutational Analysis of Multivariate Dispersions (PERMDISP) [32].

Co-occurrence analysis was used to determine the relationships within communities,
with core microbiome analysis performed at the genus level using MicrobiomeAnalyst [33],
in which sample prevalence and relative abundance cut-off values were set at 20 and
0.2%, respectively. For visualization of the internal interactions and further measurement
of the microbial community, Sparse Correlations for Compositional data (SparCC) was
used to calculate the Spearman correlation coefficient with the corresponding p-value
between every two taxa. Microbiota community structure was assessed by co-occurrence
networks built by the SparCC algorithm [34]. The p-values were estimated by 100 random
permutations and iterations for each SparCC calculation, and correlation matrices were
computed from the resampled data matrices. Only OTUs with correlation scores greater
than 0.4 and p-value less than 0.05 were categorized into co-abundance groups (CAGs);
these coefficients were also used to assess the length of edges on the network. An undirected
network, weighted by SparCC correlation magnitude, was generated using bioinformatics
tools in MicrobiomeAnalyst [33].

The bacterial OTU difference between β-blocker users and nonusers was analyzed
by the linear discriminant analysis (LDA) of effect size (LEfSe) analysis with samples
presenting more than 0.1% relative abundance and found >30% of all samples. The LEfSe
analysis employed the nonparametric factorial Kruskal–Wallis test or Wilcoxon rank-sum
test and LDA to identify differentially abundant taxa between the groups. Only taxa with
LDA score greater than two or less than two at a p-value < 0.05 were considered significantly
enriched. All statistical tests are two-tailed, and a p-value < 0.05 was considered statistically
significant. The random forest method [35] was performed to determine a ranked list of
all bacterial taxa to identify the most predictive bacterial community to classify β-blocker
users and nonusers. The random forest is a supervised learning algorithm ranking OTUs
based on their ability to discriminate among the groups, while accounting for the complex
interrelationships in high dimensional data. The MetagenomeSeq method was also used to
evaluate differential abundance in sparse marker-gene survey data using a zero-inflated
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Gaussian (ZIG) fit model to account for undersampling and sparsity in OTU count data
after normalizing the data through cumulative sum scaling (CSS) [36]. Finally, the log-
transformed read counts difference of the top selected genera from the ZIG fit model
between β-blocker users and nonusers was analyzed in the full and PS-matched cohorts.

Co-occurrence and random forest analyses were performed by MicrobiomeAnalyst [33].
The other statistical analyses were performed using R statistical software (version 3.5.1) and
STATA statistical software (version 14; StataCorp LLC, College Station, TX, USA).

2.6. Functional Prediction Analysis

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States
(PICRUSt2) [37] was used to predict the metagenome, which was based on Integrated
Microbial Genomes (IMG) database [38] to evaluate the functions of gut microbiota among
β blocker users and nonusers in the full cohort and PS-matched cohort. An OTU table was
used for predicting metagenome based on Kyoto Encyclopedia of Genes and Genomes
(KEGG) Orthology (KO) annotations. Metabolic module enrichment analysis was done
with functional sets enrichment analysis (FSEA) described by Liu et al. [39]. The ‘FSEA’
function in the MARco R package based on the Liu et al. paper was applied in this
study [39]. The ‘FSEA’ was embedded with the ‘gage’ R-package [40]. Enrichment scores
were scored based on the GSEA algorithm of the Database for Annotation, Visualization,
and Integrated Discovery (DAVID) bioinformatics resources [41,42].

3. Results
3.1. Patient Characteristics

Patient characteristics are shown in Table 1, with those receiving β-blockers having a
higher proportion of diabetes, hypertension, dyslipidemia, coronary artery disease, heart
failure, cerebrovascular disease, and more commonly used ACEI/ARB, glucose-lowering
drugs (such as dipeptidyl peptidase-4 inhibitors or insulin) and statin. PS matching resulted
in 62 matched pairs with balanced baseline characteristics (Table 1).

3.2. Gut Microbiota Profile Differs in Hemodialysis Patients with and without β Blocker Treatment

The rarefaction curves were close to asymptotic based on the number of OTUs ob-
served. To represent the microbiome community with enough coverage, the rarefaction
curves reached saturation at a cutoff point of 45,000 sequences per sample (Supplementary
Figure S1). Compared to the gut microbiota composition and structure between β-blocker
users and nonusers, no substantial differences were observed in the relative abundance
proportion in the full and PS-matched cohorts (Supplementary Figure S2). Hemodialysis
patients taking β-blockers had a higher α-diversity and a distinct β-diversity compared
to nonusers in the full and PS-matched cohorts (Figure 2). The core microbiome was
Bacteroides in hemodialysis patients (Supplementary Figure S3A), with a similar core
microbiome in β-blocker users and nonusers (Supplementary Figure S3B).
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Table 1. Baseline characteristics of hemodialysis patients with and without β blocker treatment.

Baseline Characteristics Before Propensity Score Matching After Propensity Score Matching

β-Blocker
Users

(N = 83)

β-Blocker
Nonusers
(N = 110)

p-Value
β-Blocker

Users
(N = 62)

β-Blocker
Nonusers
(N = 62)

p-Value

Age (years) 64.3 ± 11.4 65.4 ± 11.2 0.511 64.7 ± 11.6 66.3 ± 11.8 0.446
Male 49 (59.0%) 57 (51.8%) 0.318 37 (59.7%) 28 (45.2% 0.106

Body mass index 23.4 ± 3.25 23.6 ± 3.91 0.708 23.5 ± 3.34 23.5 ± 3.93 0.988
Dialysis vintage (months) 86.24 ± 56.53 96.54 ± 63.21 0.243 93.22 ± 57.61 85.4 ± 55.67 0.444

Smoking history 15 (18.1%) 12 (10.9%) 0.156 9 (14.5%) 6 (9.7%) 0.409
Arteriovenous fistula 75 (90.4%) 99 (90.0%) 0.934 57 (91.9%) 57 (91.9%) >0.999

Comorbidities
Diabetes mellitus 45 (54.2%) 34 (30.9%) 0.001 24 (38.7%) 30 (48.4%) 0.277

Hypertension 80 (96.4%) 87 (79.1%) <0.001 59 (95.2%) 59 (95.2%) >0.999
Dyslipidemia 31 (37.3%) 24 (21.8%) 0.018 16 (25.8%) 15 (24.2%) 0.836

Coronary artery disease 34 (41.0%) 22 (20.0%) 0.001 21 (33.9%) 18 (29.0%) 0.562
Heart failure 22 (26.5%) 15 (13.6%) 0.025 14 (22.6%) 11 (17.7%) 0.502

Cerebrovascular disease 31 (37.3%) 24 (21.8%) 0.018 5 (8.1%) 8 (12.9%) 0.379
Parathyroidectomy history 7 (8.4%) 18 (16.4%) 0.104 6 (9.7%) 6 (9.7%) >0.999

Medications
ACEI/ARB 29 (34.9%) 24 (21.8%) 0.043 23 (37.1%) 15 (24.2%) 0.119

Glucose lowering drugs 34 (41.0%) 23 (20.9%) 0.003 20 (32.3%) 19 (30.6%) 0.847
Sulfonylurea 14 (16.9%) 13 (11.8%) 0.317 6 (9.7%) 11 (17.7%) 0.192

Dipeptidyl peptidase 4 inhibitors 28 (33.7%) 13 (11.8%) <0.001 17 (27.4%) 11 (17.7%) 0.198
Insulin 17 (20.5%) 10 (9.1%) 0.024 9 (14.5%) 8 (12.9%) 0.794
Statin 29 (34.9%) 17 (15.5%) 0.002 17 (27.4%) 12 (19.4%) 0.289

Calcium carbonate 67 (80.7%) 94 (85.5%) 0.382 51 (82.3%) 50 (80.6%) 0.817
Proton pump inhibitors 13 (15.7%) 10 (9.1%) 0.163 9 (14.5%) 7 (11.3%) 0.592
Clinical laboratory data

Hemoglobin (g/dL) 10.62 ± 1.14 10.71 ± 1.41 0.650 10.6 ± 1.05 10.74 ± 1.49 0.555
Albumin (g/dL) 3.52 ± 0.51 3.56 ± 0.46 0.538 3.53 ± 0.46 3.54 ± 0.47 0.902
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Table 1. Cont.

Baseline Characteristics Before Propensity Score Matching After Propensity Score Matching

β-Blocker
Users

(N = 83)

β-Blocker
Nonusers
(N = 110)

p-Value
β-Blocker

Users
(N = 62)

β-Blocker
Nonusers
(N = 62)

p-Value

Total cholesterol (mg/dL) 154.01 ± 33.75 161.89 ± 33.62 0.109 151.94 ± 33.57 163.51 ± 35.30 0.064
Triglyceride (mg/dL) 140.52 ± 103.77 129.61 ± 90.35 0.437 136.21 ± 105.99 131.14 ± 95.51 0.780

High sensitivity CRP (mg/dL) 2.15 ± 4.65 2.5 ± 4.21 0.589 2.45 ± 5.23 2.21 ± 3.95 0.779
Sodium (mmol/L) 136.92 ± 2.68 137.07 ± 2.62 0.700 137.19 ± 2.80 136.64 ± 2.44 0.241

Potassium (mmol/L) 4.73 ± 0.68 4.61 ± 0.62 0.195 4.77 ± 0.66 4.65 ± 0.65 0.294
Total calcium (mg/dL) 9.15 ± 0.86 9.29 ± 0.94 0.277 9.19 ± 0.92 9.25 ± 0.86 0.683

Phosphate (mg/dL) 5.08 ± 1.21 4.95 ± 1.24 0.453 5.16 ± 1.15 5.09 ± 1.35 0.768
Parathyroid hormone (pg/mL) 376.53 ± 338.79 383.5 ± 278.13 0.876 394.16 ± 370.62 357.29 ± 245.84 0.515

Serum iron (µg/dL) 63.57 ± 26.73 65.85 ± 21.16 0.508 63.94 ± 26.61 67.52 ± 22.93 0.424
Ferritin (ng/mL) 567.53 ± 549.64 496.67 ± 377.33 0.291 534.93 ± 330.67 538.54 ± 413.54 0.957

nPCR (g/kg/day) 1.12 ± 0.21 1.16 ± 0.27 0.326 1.12 ± 0.20 1.18 ± 0.28 0.180
Single pool Kt/V 1.67 ± 0.27 1.65 ± 0.27 0.591 1.67 ± 0.28 1.68 ± 0.27 0.817

Dietary intake (serving/day)
Meat 0.86 ± 0.57 0.82 ± 0.53 0.652 0.86 ± 0.57 0.74 ± 0.52 0.241

Vegetable 2.01 ± 1.09 1.86 ± 1.11 0.265 2.05 ± 1.06 1.91 ± 1.18 0.499
Fruit 0.93 ± 0.72 0.95 ± 0.72 0.583 0.86 ± 0.63 0.89 ± 0.75 0.837

Bristol stool scale 3.94 ± 1.86 3.74 ± 1.76 0.448 4 ± 1.78 3.71 ± 1.67 0.352

Abbreviation: ACEI/ARB, angiotensin-converting enzyme inhibitors/angiotensin-receptor blockers; CRP, C reactive protein; nPCR, normalized protein catabolic rate.
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Figure 2 

 

 

Figure 2. The α-diversity and β-diversity in hemodialysis patients with and without β blocker
used in full cohort (A,B) and propensity score matching cohort (C,D). β blocker users had a higher
α-diversity than β blocker nonusers in full cohort (A) and propensity score matching cohort (C)
β blocker users had a different β-diversity (Bray–Curtis index) compared to β blocker nonusers in full
cohort (B) and propensity score matching cohort (D). The β-diversity p-value was calculated using
the homogeneity of group dispersions by the Permutational Analysis of Multivariate Dispersions
(PERMDISP) test.

3.3. Specific Microbial Taxa Differences between β-Blocker Users and Nonusers

Discriminant analysis using LEfSe identified the significant differentiating taxa be-
tween study groups. In the full cohort, the genera Ruminococcus 2, Collinsella, Ruminococ-
caceae UCG-004, Ruminiclostridium 5, Anaerotruncus, Eisenbergiella, and Flavonifractor were en-
riched in β-blocker users compared to nonusers (Figure 3A). In the PS-matched cohort, the
enriched genera were Faecalibacterium, Subdoligranulum, Tyzzerella, Pantoea, Lachnospiraceae
UCG-004, and Flavonifractor were found (Figure 3B). Using random forest models for taxon-
omy prediction, the top three ranked genera to discriminate between β-blocker users and
nonusers were Parabacteroides, Flavonifractor, and Ruminococcaceae UCG-004 in the full cohort
(Figure 4A), Prevotella 9, Flavonifractor, and Tyzzerella in the PS-matched cohort (Figure 4B).

To reduce the effect of zero-inflation in the microbiome data, we performed the
MetagenomeSeq algorithm integrating the CSS method and a statistical model based on
the ZIG distribution. Evaluating the significant difference in genus taxonomy between
β-blocker users and nonusers, we found eight genera differences in the full cohort and
PS-matched cohort (Supplementary Table S1). There were three different genera (Flavonifrac-
tor, Tyzzerella, and Prevotellaceae NK3B31 group) in both the full and PS-matched cohorts
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(Figure 5A). Focusing on the ZIG fit model to predict specific genera, there was an in-
creased Flavonifractor genus in β-blocker users compared to nonusers using a classical
univariate test (Kruskal–Wallis test) in the full (p = 0.023) and PS-matched cohorts (p = 0.01)
(Figure 5B). However, no differences were found in Tyzzerella or Prevotellaceae NK3B31
group (Figure 5B).

 

2 

 

Figure 3 

 
Figure 3. Taxonomic differences were detected between β blocker users and nonusers in the full
cohort (A) and propensity score matching cohort (B). Linear discriminative analysis (LDA) effect size
(LEfSe) analysis between β blocker users (red) and nonusers (blue) with an LDA score > 2.0 or < −2
with p-value > 0.1 among β blocker users and nonusers.

Figure 4. Determination of specific bacteria for discriminatory across hemodialysis patients with and
without β blocker treatment in full cohort (A) and propensity score matching cohort (B). The discrim-
inatory taxa were determined by applying Random Forest analysis using the genus-level abundance.
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Figure 5 

 

Figure 5. The genera difference between β blocker users and nonusers in the full cohort and
propensity score matching cohort using zero-inflated Gaussian fit model. (A) The Venn diagram
showed the different significant genera in the full cohort and propensity score-matched cohort. (B)
Univariate test between selected genera from zero-inflated Gaussian fit model. Significance was
considered for p < 0.05.

Using PICRUSt2 as a metagenome predictive exploratory tool, genes were categorized
into KEGG Orthology metabolic pathways. All predicted KEGG Orthology (KOs) were
mapped to KEGG metabolic pathways. Each pathway was tested with gene-set enrichment
by comparing expected gene abundance between β blocker users and nonusers in full and
PS-matched cohorts. However, no significant KEGG enriched pathways were observed
(Figures S4 and S5).

4. Discussion

In the present study, hemodialysis patients treated with β-blockers had a higher α-
diversity and a distinct β-diversity compared to nonusers. The microbial communities
contained higher levels of Bacteroidetes and lower levels of Firmicutes in all hemodialysis
patients, which is similar to CKD rat microbial communities [43] and in a human CKD
microbiota study [44]. Co-occurrence analysis revealed no difference in keystone taxa
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Bacteroides between β-blocker users and nonusers. Overall, there was an enriched genus
Flavonifractor in β-blocker users in the full and PS-matched cohorts. Furthermore, LEfSe
analysis, random forest algorithm, ZIG fit model, and univariate test all confirmed this
difference between groups. However, we did not determine KEGG metabolic pathways
between β blocker users and nonusers using PICRUSt2 functional prediction analysis.

β-blocker use was associated with a higher α-diversity than nonusers in hemodialysis
patients, which was linked to a favorable healthy state [45]. Increased α-diversity has
been associated with foods generally considered healthy, such as plant consumption or
red wine [46–48]. Furthermore, commonly used medications such as antibiotics or proton
pump inhibitors can decrease gut α-diversity [49]. Regarding the specific taxonomy of
the gut microbiome, the genus Flavonifractor was enriched in β-blocker users in both the
full and PS-matched cohorts. Flavonifractor is associated with several diseases, such as
obesity [50], atrial fibrillation [51], coronary artery disease [52], and medications (antidi-
abetic drugs, such as Metformin and Glucagon-like peptide 1 Receptor agonist [53]). It
can convert quercetin or other flavonoids into acetic acid and butyric acid [54] and is
also correlated with oxidative stress and inflammation [55]. The presence of Flavonifrac-
tor was found in association with circulating inflammatory markers (i.e., interleukin-6,
interleukin-8, interleukin-1β) [56], which were linked to cardiovascular disease. Besides,
oral administration of Flavonifractor plautii was involved in the inhibition of tumor necrosis
factor-α expression in obese adipose tissue inflammatory environments [57]. Thus, the
increased abundance of Flavonifractor by β-blocker treatment may have a potential benefit
in cardiovascular disease via gut microbiota regulation.

We also identified a potential link between β-blocker use and the genus Tyzzerella in the
PS-matched cohort. Importantly, Tyzzerella was enriched in those with a high cardiovascular
risk profile [58]. However, the small sample size limited the potential association between
β-blocker use and Tyzzerella in univariate analysis, so more extensive studies are needed to
confirm this association. Regarding the link between β-blocker and microbiota changes; a
chimera mouse model suggested bone marrow beta1/2 adrenergic receptor signaling can
regulate host-microbiota interactions, leading to the generation of novel anti-inflammatory
treatments for gut dysbiosis [59]. Therefore, depletion of this sympathetic regulation in
bone marrow promotes beneficial shifts in gut microbiota associated with gut immune
suppression [59]. It is proposed that beta-blockers may provide a beneficial microbiome in
such conditions.

We compared the microbiota differences between β-blocker users and nonusers using
PS matching analysis in the present study. Since β-blocker intake is highly correlated with
age, cardiovascular risk, comorbidities, and concurrent medication, each factor represents
a relevant confounder for microbiome analyses [16,60]. Most observational studies have
controlled for possible confounding variables, but even rigorous data adjustment cannot
eliminate the risk of bias. PS matching is an alternative to reduce the effect of influencing
factors on gut microbiota analysis [30,31]; thus, we selected variables of interest as potential
confounders and then performed PS matching to reduce these effects deviations and
confounding variables to conduct a reasonable comparison between groups. The intestinal
microbiota was affected by various factors, including demographic data, comorbidities,
concomitant medications, and clinical laboratory data, and the application of PS matching
eliminated confounding factors. Using PS analysis, there was still a higher α-diversity
and different β-diversity in β-blocker users compared to nonusers. We also identified six
genera associated explicitly with the β-blocker user in the LEfSe analysis, four top-ranked
genera in random forest analysis, and eight genera in ZIG fit model analysis. Although
there were some differences in bacterial associations with β-blocker use in our full (before
PS matching) and PS-matched cohorts, we investigated the taxa represented in both the
full and PS-matched cohorts. Importantly, three genera (Flavonifractor, Tyzzerella, and
Prevotellaceae NK3B31 group) were both significant differences in ZIG fit model among
the full and PS-matched cohorts. The genera abundance differences between β-blocker
users and nonusers were changed in the PS matching procedure. The genera abundance
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significant differences in Ruminiclostridium 9, Ruminococcaceae UCG-004, Anaerotruncus,
and Ruminiclostridium 5 were attenuated after PS matching, suggesting that these genera
abundances may be more strongly associated with other confounding variables, such as
comorbidities or concomitant medications, which was accounted for in the PS models.
In specific, genus Anaerotruncus was reported related to hypertension [61–63], diabetes
mellitus [64], and dipeptidyl peptidase 4 inhibitors used [65], which were unbalance in the
pre-matched cohort. The genus Ruminiclostridium and Ruminococcaceae were correlated to
hypertension in the previous study [66–68]. Thus, the change of gut microbiome difference
in β-blockers users and nonusers before and after PS matching reflected confounders’
influence. Since many factors influencing gut microbiota, we performed PS matching as an
alternative technique to account for multiple confounders in this study.

In addition, there were more zeros than expected under the assumption of Poisson or
negative binomial distributions for microbiome OTU counts, known as zero-inflation. One
popular strategy to circumvent the zero-inflation problem is to add a pseudo-count [69];
however, this assumption may not be appropriate due to the large extent of structural
zeros due to physical absence. Moreover, the pseudo-count choice is arbitrary, and the
clustering results can be highly dependent upon the choice [70]. Thus, CSS was developed
for microbiome sequencing data, and a zero-inflated model was used to model read counts
that have an excess of zeros [36,71,72]. In CSS, raw counts are divided by the cumulative
sum of counts up to a percentile determined using a data-driven approach to capture the
relatively invariant count distribution for a dataset. To solve the zero-inflation issue, we
applied the ZIG fit model and calculated the CSS. Interestingly, the four genera in the
full (Ruminococcaceae UCG-004, Ruminiclostridium 5, Anaerotruncus, and Flavonifractor) and
PS-matched cohorts (Flavonifractor, Tyzzerella, Faecalibacterium, Subdoligranulum) overlapped
in the LEfSe analysis and ZIG fit model analysis.

Several limitations should be mentioned. First, cross-sectional studies only provide
an impression of the relative abundance of bacterial taxa at a single time point, so causal
inference cannot be addressed. Besides, the observational study only demonstrates the
association rather than the causality. Second, the microbiota was assessed with a fecal
sample, which may differ from microbiota from other parts of the intestine. Besides, 16S
rRNA sequencing is limited as it cannot differentiate viable from non-viable bacteria. A
significant portion of the taxa identified by sequencing may not be metabolically active.
Thus, further study is needed to investigate various samples, such as small intestine or
colon mucosal bacteria. Third, PS matching might not fully balance the overall effects of
medications or disease severity, such as the dose of medications or the status between
controlled and uncontrolled DM. Finally, the study was performed in Asia hemodialysis
patients whose diet is different from other populations, so dietary effects on the gut
microbiome should be interpreted with caution.

5. Conclusions

This study demonstrated that the composition of the gut microbiota was different in
hemodialysis patients treated with β-blockers, with a higher level of α-diversity and genus
Flavonifractor. These findings support the additional benefits of β-blocker treatment, which
may mediate the microbiota in hemodialysis patients. However, the functional relevance of
the β-blocker induced microbial differences is unclear. Hence, larger prospective treatment
naïve studies are warranted to understand the impact of β-blockers on the gut microbiome
of CKD patients and their implications for health and disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-4
426/11/3/198/s1, Figure S1: Rarefaction curves of the number of OTUs versus the sequencing
effort per sample in the full cohort. Figure S2: The relative abundance percentage of intestinal
microbiota between β-blocker users and nonusers in the full cohort and propensity score matching
cohort. (A) Phylum level (B) Class level (C) Order level. Figure S3: Core microbiome analysis in
hemodialysis patients with and without β-blocker used. (A) SparCC correlation analysis (genus
level using 100 SparCC permutations, 0.35 correlation threshold, and 0.05 p-value threshold) in
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all hemodialysis patients with and without β-blocker used (B) Relative abundance and sample
prevalence of bacterial genus in β-blocker users and nonusers. Figure S4: Enrichment analysis
for predictive Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic modules between
β-blocker users and nonusers in full (before propensity score matching) cohort. No significant KEGG
enriched pathways were observed (all p-value > 0.05). Figure S5: Enrichment analysis for predictive
Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic modules between β-blocker users
and nonusers in propensity score-matched cohort. No significant KEGG enriched pathways were
observed (all p-value > 0.05). Table S1: Summary table of significant genus difference in hemodialysis
patients with and without β-blocker treatment in zero-inflated Gaussian fit model.
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