Assessing Lifestyle Behaviours of People Living with Neurological Conditions: A Panoramic View of Community Dwelling Australians from 2007–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Measurement
2.2.1. Classification of Neurological Disorders
2.2.2. Demographics
2.2.3. Lifestyle Behaviours
2.2.4. Food and Beverage Consumption
2.3. Statistical Analysis
3. Results
3.1. Characteristics of SSQ Non-Responders and Responders
3.2. Demographics of Analysis Cohort
3.2.1. Lifestyle Associations with Neurological Conditions
3.2.2. Food and Beverage Associations with Neurological Disorders
4. Discussion
5. Conclusions and Implementation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mindgardens Neuroscience Network. Review of the Burden of Disease for Neurological, Mental Health and Substance Use Disorders in Australia. 2019. Available online: https://www.mindgardens.org.au/white-paper/ (accessed on 12 January 2021).
- Mitchell, A.J.; Kemp, S.; Benito-León, J.; Reuber, M. The influence of cognitive impairment on health-related quality of life in neurological disease. Acta Neuropsychiatr. 2010, 22, 2–13. [Google Scholar] [CrossRef]
- Gandy, M.; Karin, E.; Fogliati, V.J.; Meares, S.; Nielssen, O.; Titov, N.; Dear, B.F. Emotional and cognitive difficulties, help-seeking, and barriers to treatment in neurological disorders. Rehabil. Psychol. 2018, 63, 563–574. [Google Scholar] [CrossRef]
- Prisnie, J.C.; Sajobi, T.T.; Wang, M.; Patten, S.B.; Fiest, K.M.; Bulloch, A.G.; Pringsheim, T.; Wiebe, S.; Jette, N. Effects of depression and anxiety on quality of life in five common neurological disorders. Gen. Hosp. Psychiatry 2018, 52, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Ascherio, A.; Schwarzschild, M.A. The epidemiology of Parkinson’s disease: Risk factors and prevention. Lancet Neurol. 2016, 15, 1257–1272. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J.; et al. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef][Green Version]
- Null, G.; Pennesi, L.; Feldman, M. Nutrition and Lifestyle Intervention on Mood and Neurological Disorders. J. Evid.-Based Integr. Med. 2017, 22, 68–74. [Google Scholar] [CrossRef]
- Iacoviello, L.; Bonaccio, M.; Cairella, G.; Catani, M.; Costanzo, S.; D’Elia, L.; Giacco, R.; Rendina, D.; Sabino, P.; Savini, I.; et al. Diet and primary prevention of stroke: Systematic review and dietary recommendations by the ad hoc Working Group of the Italian Society of Human Nutrition. Nutr. Metab. Cardiovasc. Dis. 2018, 28, 309–334. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Barbaresko, J.; Lellmann, A.W.; Schmidt, A.; Lehmann, A.; Amini, A.M.; Egert, S.; Schlesinger, S.; Nöthlings, U. Dietary Factors and Neurodegenerative Disorders: An Umbrella Review of Meta-Analyses of Prospective Studies. Adv. Nutr. 2020, 11, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Black, L.J.; Rowley, C.; Sherriff, J.; Pereira, G.; Ponsonby, A.-L.; Lucas, R.M. A healthy dietary pattern associates with a lower risk of a first clinical diagnosis of central nervous system demyelination. Mult. Scler. J. 2019, 25, 1514–1525. [Google Scholar] [CrossRef]
- Brink, A.C.V.D.; Brouwer-Brolsma, E.M.; Berendsen, A.A.M.; Van De Rest, O. The Mediterranean, Dietary Approaches to Stop Hypertension (DASH), and Mediterranean-DASH Intervention for Neurodegenerative Delay (MIND) Diets Are Associated with Less Cognitive Decline and a Lower Risk of Alzheimer’s Disease—A Review. Adv. Nutr. 2019, 10, 1040–1065. [Google Scholar] [CrossRef]
- Physical Exercise for Human Health. In Advances in Experimental Medicine and Biology; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 303–315.
- Kraft, E. Cognitive function, physical activity, and aging: Possible biological links and implications for multimodal interventions. Aging Neuropsychol. Cogn. 2012, 19, 248–263. [Google Scholar] [CrossRef]
- World Health Organization. Global Recommendations on Physical Activity for Health. Available online: http://www.Who.Int/dietphysicalactivity/publications/9789241599979/en/ (accessed on 24 September 2020).
- Global Council on Brain Health. The Brain-Body Connection: GCBH Recommendations on Physical Activity and Brain Health; Global Council on Brain Health: Washington, DC, USA, 2016. [Google Scholar]
- Bailey, R.R. Lifestyle Modification for Secondary Stroke Prevention. Am. J. Lifestyle Med. 2016, 12, 140–147. [Google Scholar] [CrossRef]
- Degelman, M.L.; Herman, K.M. Smoking and multiple sclerosis: A systematic review and meta-analysis using the Bradford Hill criteria for causation. Mult. Scler. Relat. Disord. 2017, 17, 207–216. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Mappin-Kasirer, B.; Pan, H.; Lewington, S.; Kizza, J.; Gray, R.; Clarke, R.; Peto, R. Tobacco smoking and the risk of Parkinson disease. Neurology 2020, 94, e2132–e2138. [Google Scholar] [CrossRef]
- Global Council on Brain Health. The Brain and Social Connectedness: GCBH Recommendations on Social Engagement and Brain Health; Global Council on Brain Health: Washington, DC, USA, 2017. [Google Scholar]
- Mitchell, M.B.; Cimino, C.R.; Benitez, A.; Brown, C.L.; Gibbons, L.E.; Kennison, R.F.; Shirk, S.D.; Atri, A.; Robitaille, A.; Macdonald, S.W.S.; et al. Cognitively Stimulating Activities: Effects on Cognition across Four Studies with up to 21 Years of Longitudinal Data. J. Aging Res. 2012, 2012, 1–12. [Google Scholar] [CrossRef][Green Version]
- Ngandu, T.; Lehtisalo, J.; Solomon, A.; Levälahti, E.; Ahtiluoto, S.; Antikainen, R.; Bäckman, L.; Hänninen, T.; Jula, A.; Laatikainen, T.; et al. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015, 385, 2255–2263. [Google Scholar] [CrossRef]
- Lee, J.E.; Bisht, B.; Hall, M.J.; Rubenstein, L.M.; Louison, R.; Klein, D.T.; Wahls, T.L. A Multimodal, Nonpharmacologic Intervention Improves Mood and Cognitive Function in People with Multiple Sclerosis. J. Am. Coll. Nutr. 2017, 36, 150–168. [Google Scholar] [CrossRef][Green Version]
- Lawrence, M.; Pringle, J.; Kerr, S.; Booth, J.; Govan, L.; Roberts, N.J. Multimodal Secondary Prevention Behavioral Interventions for TIA and Stroke: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0120902. [Google Scholar] [CrossRef][Green Version]
- Dhana, K.; Evans, D.A.; Rajan, K.B.; Bennett, D.A.; Morris, M.C. Healthy lifestyle and the risk of Alzheimer dementia. Neurology 2020, 95, e374–e383. [Google Scholar] [CrossRef] [PubMed]
- Roy Morgan. How We Collect and Process Single Source Data in Australia. Available online: http://www.Roymorgan.Com/products/single-source/single-source-fact-sheets (accessed on 12 December 2020).
- WHO Body Mass Index—BMI. Available online: https://www.euro.who.int/en/health-topics/disease-prevention/nutrition/a-healthy-lifestyle/body-mass-index-bmi (accessed on 27 October 2020).
- Australian Taxation Office. Individual Income Tax Rates. Available online: https://www.ato.gov.au/rates/individual-income-tax-rates/?=top_10_rates (accessed on 1 January 2021).
- Australian Institute of Health and Welfare. Australia’s Health 2018; Australia’s Health Series no. 16. AUS 221; AIHW: Canberra, Australia, 2018. [CrossRef]
- Lee, J.; Tan, C.S.; Chia, K.S. A practical guide for multivariate analysis of dichotomous outcomes. Ann. Acad. Med. Singap. 2009, 38, 714–719. [Google Scholar]
- Kinnett-Hopkins, D.; Adamson, B.; Rougeau, K.; Motl, R. People with MS are less physically active than healthy controls but as active as those with other chronic diseases: An updated meta-analysis. Mult. Scler. Relat. Disord. 2017, 13, 38–43. [Google Scholar] [CrossRef]
- Fang, X.; Han, D.; Cheng, Q.; Zhang, P.; Zhao, C.; Min, J.; Wang, F. Association of Levels of Physical Activity With Risk of Parkinson Disease. JAMA Netw. Open 2018, 1, e182421. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Spielman, L.J.; Gibson, D.L.; Klegeris, A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem. Int. 2018, 120, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Uyar, G.Ö.; Yildiran, H. A nutritional approach to microbiota in Parkinson’s disease. Biosci. Microbiota Food Health 2019, 38, 115–127. [Google Scholar] [CrossRef][Green Version]
- Doyle, P.; Brown, A.; Beral, V.; Reeves, G.; Green, J. Incidence of and risk factors for Motor Neurone Disease in UK women: A prospective study. BMC Neurol. 2012, 12, 25. [Google Scholar] [CrossRef][Green Version]
- Gallo, V.; Vineis, P.; Cancellieri, M.; Chiodini, P.; Barker, R.A.; Brayne, C.; Pearce, N.; Vermeulen, R.; Panico, S.; Bueno-De-Mesquita, B.; et al. Exploring causality of the association between smoking and Parkinson’s disease. Int. J. Epidemiol. 2018, 48, 912–925. [Google Scholar] [CrossRef]
- Pan, B.; Jin, X.; Jun, L.; Qiu, S.; Zheng, Q.; Pan, M. The relationship between smoking and stroke. Medicine 2019, 98, e14872. [Google Scholar] [CrossRef]
- Nelson, M.E.; Jester, D.J.; Petkus, A.J.; Andel, R. Cognitive Reserve, Alzheimer’s Neuropathology, and Risk of Dementia: A Systematic Review and Meta-Analysis. Neuropsychol. Rev. 2021, 1–18. [Google Scholar] [CrossRef]
- Booth, J.; Connelly, L.; Lawrence, M.; Chalmers, C.; Joice, S.; Becker, C.; Dougall, N. Evidence of perceived psychosocial stress as a risk factor for stroke in adults: A meta-analysis. BMC Neurol. 2015, 15, 233. [Google Scholar] [CrossRef][Green Version]
- Stuart, K.E.; Padgett, C. A Systematic Review of the Association Between Psychological Stress and Dementia Risk in Humans. J. Alzheimer’s Dis. 2020, 78, 335–352. [Google Scholar] [CrossRef] [PubMed]
- Kimbrough, A.M.; Guadagno, R.E.; Muscanell, N.L.; Dill, J. Gender differences in mediated communication: Women connect more than do men. Comput. Hum. Behav. 2013, 29, 896–900. [Google Scholar] [CrossRef]
- Lavorgna, L.; Russo, A.; De Stefano, M.; Lanzillo, R.; Esposito, S.; Moshtari, F.; Rullani, F.; Piscopo, K.; Buonanno, D.; Morra, V.B.; et al. Health-Related Coping and Social Interaction in People with Multiple Sclerosis Supported by a Social Network: Pilot Study With a New Methodological Approach. Interact. J. Med Res. 2017, 6, e10. [Google Scholar] [CrossRef][Green Version]
- Kuźma, E.; Lourida, I.; Moore, S.F.; Levine, D.A.; Ukoumunne, O.C.; Llewellyn, D.J. Stroke and dementia risk: A systematic review and meta-analysis. Alzheimer’s Dement. 2018, 14, 1416–1426. [Google Scholar] [CrossRef][Green Version]
- Attems, J.; Jellinger, K.A. The overlap between vascular disease and Alzheimer’s disease—Lessons from pathology. BMC Med. 2014, 12, 206. [Google Scholar] [CrossRef] [PubMed][Green Version]
Lifestyle | SSQ Variables Queried as Done in the Last 3 Months (Used in Last 4 Weeks, Communication Apps) |
---|---|
Cognitive engagement | Went to a short course/seminar/convention/public lecture; read a novel; read a non-fiction book; used a computer at home; used a computer at work or school; played a musical instrument or sung in a choir; worked on a car; dressmaking |
Physical activity | Did some formal exercise; played a sport |
Smoker | Current |
Social face-to-face | Visited friends/relatives; entertained friends/relatives; held a dinner party |
Social online | Facebook Messenger, Skype, Viber, WeChat, WhatsApp, teleconference, telephone |
Stress reduction | Hobbies |
Food | SSQ Variables Queried as Consumed in the Last 7 days |
Bakery/cereal | Rolls/bread, porridge, cereals (biscuit, other), toast, bagels |
Dairy | Milk (from drinks: white, UHT, flavoured, breakfast), yoghurt (natural, flavoured, drinking), cheese (natural, dip), dairy desserts, ice cream (single, tub) |
Fish/seafood | Fish, other seafood |
Fruit/vegetables | Fresh, canned, frozen, dried |
Meat | Chicken, beef, veal, lamb/mutton, pork, turkey, duck, rabbit, ham/bacon, other cold meats, other meats |
Natural grains | Rice, pasta/spaghetti, noodles |
Snacks | Pastries, muffins/doughnuts, croissants, biscuits (all), chips, muesli bars, breakfast bars, chocolate (all), lollies/mints/gum, frozen desserts, other snacks |
Beverage | SSQ Variables Queried as Consumed in the Last 7 days |
Alcohol | Beer, wine, cider, spirits |
Soft drinks | Cola, lemonade, lemon, orange, other soft drinks (diet and regular), mixers. |
Tea/coffee | Tea, coffee (hot and cold) |
Characteristic | Non-Responder | Responder | PR |
---|---|---|---|
(N = 345,236) | (N = 192,091) | (95% CI) | |
Sex | |||
Male | 180.2k (68.7%) | 82.0k (31.3%) | 1.00 |
Female | 165.0k (60.0%) | 110.1k (40.0%) | 1.28 (1.27, 1.29) |
Age, years | |||
18–39 | 131.9k (75.8%) | 42.2k (24.2%) | 1.00 |
40–59 | 111.2k (62.2%) | 67.5k (37.8%) | 1.56 (1.54, 1.57) |
≥60 | 102.1k (55.3%) | 82.4k (44.7%) | 1.84 (1.83, 1.86) |
Country of birth | |||
Australia/NZ | 251.0k (62.3%) | 151.8k (37.7%) | 1.00 |
Europe | 40.4k (61.6%) | 25.2k (38.4%) | 1.02 (1.01, 1.03) |
Asia | 31.0k (79.5%) | 8.0k (20.5%) | 0.54 (0.53, 0.55) |
Other | 22.9k (76.4%) | 7.0k (23.6%) | 0.63 (0.61, 0.64) |
University education | |||
No | 217.3k (63.0%) | 127.6k (37.0%) | 1.00 |
Yes | 127.9k (66.5%) | 64.5k (33.5%) | 0.91 (0.90, 0.91) |
Employment status | |||
Employed | 205.7k (68.3%) | 95.6k (31.7%) | 1.00 |
Unemployed | 29.9k (66.8%) | 14.8k (33.2%) | 1.05 (1.03, 1.06) |
Student/Home Duties | 29.5k (66.0%) | 15.2k (34.1%) | 1.07 (1.06, 1.09) |
Retired | 80.2k (54.7%) | 66.5k (45.3%) | 1.42 (1.42, 1.44) |
Income, AUD | |||
0–19,999 | 114.3k (62.2%) | 69.5k (37.8%) | 1.00 |
20,000–39,999 | 86.4k (62.3%) | 52.4k (37.7%) | 1.00 (0.99, 1.01) |
40,000–89,999 | 103.9k (66.1%) | 53.3k (33.9%) | 0.90 (0.89, 0.91) |
≥90,000 | 40.4k (70.5%) | 16.9k (29.5%) | 0.78 (0.77, 0.79) |
(Missing) | (202; 80.5%) | (49; 19.5%) | n/a |
Remoteness | |||
Capital city | 209.7k (66.2%) | 106.9k (33.8%) | 1.00 |
Regional | 135.6k (61.4%) | 85.2k (38.6%) | 1.14 (1.13, 1.15) |
Partnered | |||
No | 146.9k (67.3%) | 71.4k (32.7%) | 1.00 |
Yes | 198.3k (62.2%) | 120.7k (37.8%) | 1.16 (1.15, 1.17) |
Lives with others | |||
No | 69.5k (62.0%) | 42.6k (38.0%) | 1.00 |
Yes | 272.5k (64.8%) | 147.8k (35.2%) | 0.93 (0.92, 0.93) |
(Missing) | (3.3k; 66.1%) | (1.7k; 34.0%) | n/a |
Alcohol consumption, past 7 days | |||
No | 144.7k (64.6%) | 79.4k (35.4%) | 1.00 |
Yes | 200.6k (64.0%) | 112.7k (36.0%) | 1.02 (1.01, 1.02) |
Current smoker | |||
No | 271.8k (62.6%) | 162.2k (37.4%) | 1.00 |
Yes | 73.4k (71.1%) | 29.9k (28.9%) | 0.77 (0.77, 0.78) |
Characteristic | AD | MND | MS | PD | Stroke | |||||
---|---|---|---|---|---|---|---|---|---|---|
(N = 125) | (N = 72) | (N = 441) | (N = 415) | (N = 647) | ||||||
PR | 95%CI | PR | 95%CI | PR | 95%CI | PR | 95%CI | PR | 95%CI | |
Sex | ||||||||||
Men | Ref | Ref | Ref | Ref | Ref | |||||
Women | 0.48 | (0.33,0.69) | 1.03 | (0.65,1.64) | 2.56 | (2.04,3.20) | 0.59 | (0.48,0.71) | 0.56 | (0.48,0.66) |
P | <0.001 | P | =0.91 | P | <0.001 | P | <0.001 | P | <0.001 | |
Age | ||||||||||
18–39 | Ref | Ref | Ref | Ref | Ref | |||||
40–59 | 0.70 | (0.30,1.60) | 0.70 | (0.33,1.51) | 2.61 | (1.97,3.46) | 7.09 | (2.55,19.73) | 5.54 | (3.25,9.43) |
≥60 | 4.58 | (2.43,8.62) | 1.93 | (1.05,3.55) | 1.26 | (0.93,1.72) | 44.79 | (16.62,120.68) | 14.69 | (8.78,24.58) |
PTREND | <0.001 | PTREND | =0.034 | PTREND | =0.14 | PTREND | <0.001 | PTREND | <0.001 | |
BMI | ||||||||||
Under/normal | Ref | Ref | Ref | Ref | Ref | |||||
Overweight | 1.03 | (0.67,1.59) | 1.49 | (0.84,2.64) | 0.97 | (0.77,1.23) | 1.06 | (0.84,1.34) | 0.93 | (0.76,1.13) |
Obese | 1.01 | (0.63,1.62) | 1.07 | (0.56,2.02) | 1.08 | (0.85,1.36) | 0.96 | (0.74,1.24) | 1.29 | (1.06,1.57) |
PTREND | =0.97 | PTREND | =0.79 | PTREND | =0.55 | PTREND | =0.77 | PTREND | =0.011 | |
Country of birth | ||||||||||
Australia/NZ | Ref | Ref | Ref | Ref | Ref | |||||
Europe | 1.04 | (0.65,1.67) | 1.77 | (0.99,3.15) | 1.18 | (0.90,1.53) | 0.81 | (0.62,1.06) | 0.94 | (0.76,1.17) |
Asia | 3.75 | (1.93,7.30) | 1.31 | (0.37,4.56) | 0.18 | (0.06,0.55) | 0.51 | (0.19,1.37) | 1.47 | (0.91,2.35) |
Other | 1.61 | (0.67,3.91) | 2.32 | (0.89,6.07) | 0.42 | (0.20,0.88) | 0.75 | (0.39,1.46) | 1.14 | (0.73,1.79) |
PTREND | =0.017 | PTREND | =0.031 | PTREND | =0.002 | PTREND | =0.063 | PTREND | =0.47 | |
Religion | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 1.34 | (0.85,2.11) | 0.67 | (0.41,1.09) | 0.83 | (0.67,1.01) | 1.13 | (0.89,1.42) | 1.03 | (0.86,1.23) |
P | =0.21 | P | =0.11 | P | =0.065 | P | =0.32 | P | =0.77 | |
University education | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.61 | (0.40,0.95) | 1.28 | (0.80,2.05) | 1.19 | (0.97,1.45) | 0.91 | (0.72,1.14) | 0.64 | (0.52,0.78) |
P | =0.027 | P | =0.30 | P | =0.088 | P | =0.40 | P | <0.001 | |
Employment status | ||||||||||
Employed | Ref | Ref | Ref | Ref | Ref | |||||
Unemployed | 3.89 | (1.82,8.29) | 2.70 | (1.13,6.44) | 2.86 | (2.17,3.78) | 2.93 | (1.83,4.69) | 4.46 | (3.25,6.12) |
Student/home duties | 2.30 | (0.81,6.48) | 2.52 | (1.00,6.33) | 1.36 | (0.95,1.95) | 0.66 | (0.24,1.85) | 3.41 | (2.26,5.15) |
Retired | 3.23 | (1.78,5.84) | 2.69 | (1.19,6.07) | 3.18 | (2.26,4.48) | 3.03 | (2.14,4.29) | 4.13 | (3.09,5.52) |
PTREND | <0.001 | PTREND | =0.009 | PTREND | <0.001 | PTREND | <0.001 | PTREND | <0.001 | |
Income, AUD | ||||||||||
0–19,999 | Ref | Ref | Ref | Ref | Ref | |||||
20,000–39,999 | 0.72 | (0.48,1.08) | 1.32 | (0.79,2.22) | 0.85 | (0.67,1.06) | 0.96 | (0.77,1.19) | 0.67 | (0.56,0.80) |
40,000–89,999 | 0.37 | (0.21,0.66) | 0.58 | (0.29,1.16) | 0.60 | (0.46,0.79) | 0.65 | (0.48,0.87) | 0.34 | (0.26,0.43) |
>–90,000 | 0.17 | (0.04,0.68) | 0.30 | (0.07,1.28) | 0.57 | (0.37,0.87) | 0.32 | (0.17,0.62) | 0.21 | (0.12,0.35) |
PTREND | <0.001 | PTREND | =0.040 | PTREND | <0.001 | PTREND | <0.001 | PTREND | <0.001 | |
Remoteness | ||||||||||
Capital city | Ref | Ref | Ref | Ref | Ref | |||||
Regional | 0.88 | (0.62,1.24) | 0.83 | (0.51,1.33) | 1.06 | (0.87,1.28) | 1.07 | (0.88,1.29) | 1.03 | (0.88,1.20) |
P | =0.46 | P | =0.43 | P | =0.58 | P | =0.52 | P | =0.70 | |
Partnered | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.89 | (0.61,1.30) | 0.50 | (0.31,0.81) | 1.00 | (0.82,1.22) | 0.90 | (0.73,1.11) | 0.62 | (0.53,0.73) |
P | =0.55 | P | =0.005 | P | =0.98 | P | =0.34 | P | <0.001 | |
Lives with others | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.90 | (0.60,1.35) | 0.43 | (0.26,0.71) | 0.89 | (0.71,1.13) | 0.89 | (0.71,1.11) | 0.68 | (0.57,0.81) |
P | =0.62 | P | =0.001 | P | =0.36 | P | =0.32 | P | <0.001 |
Lifestyle Behaviour | AD | MND | MS | PD | Stroke | |||||
---|---|---|---|---|---|---|---|---|---|---|
(N = 125) | (N = 72) | (N = 441) | (N = 415) | (N = 647) | ||||||
PR | (95%CI) | PR | (95%CI) | PR | (95%CI) | PR | (95%CI) | PR | (95%CI) | |
Cognitive engagement | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.48 | (0.33,0.69) | 1.03 | (0.59,1.80) | 0.99 | (0.78,1.26) | 0.83 | (0.67,1.02) | 0.45 | (0.38,0.53) |
P | <0.001 | P | =0.91 | P | =0.94 | P | =0.077 | P | <0.001 | |
Physical activity | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.50 | (0.33,0.76) | 0.61 | (0.38,0.96) | 0.72 | (0.59,0.87) | 0.83 | (0.68,1.01) | 0.69 | (0.58,0.81) |
P | =0.001 | P | =0.034 | P | <0.001 | P | =0.064 | P | <0.001 | |
Smoker | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 1.07 | (0.62,1.82) | 2.14 | (1.21,3.77) | 1.13 | (0.88,1.46) | 0.57 | (0.39,0.84) | 1.49 | (1.22,1.83) |
P | =0.82 | P | =0.008 | P | =0.34 | P | =0.005 | P | <0.001 | |
Social face-to-face | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.38 | (0.26,0.57) | 1.10 | (0.53,2.30) | 1.10 | (0.79,1.52) | 0.93 | (0.71,1.21) | 0.45 | (0.37,0.53) |
P | <0.001 | P | =0.80 | P | =0.57 | P | =0.58 | P | <0.001 | |
Social online | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.36 | (0.11,1.16) | 1.39 | (0.66,2.91) | 1.68 | (1.29,2.19) | 1.07 | (0.73,1.58) | 0.74 | (0.51,1.06) |
P | =0.088 | P | =0.39 | P | <0.001 | P | =0.73 | P | =0.10 | |
Stress reduction | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.62 | (0.40,0.99) | 1.07 | (0.65,1.78) | 1.22 | (1.00,1.48) | 0.88 | (0.70,1.10) | 0.76 | (0.63,0.92) |
P | =0.043 | P | =0.78 | P | =0.048 | P | =0.25 | P | =0.004 |
Food & Beverage | AD | MND | MS | PD | Stroke | |||||
---|---|---|---|---|---|---|---|---|---|---|
(N = 125) | (N = 72) | (N = 441) | (N = 415) | (N = 647) | ||||||
PR | (95%CI) | PR | (95%CI) | PR | (95%CI) | PR | (95%CI) | PR | (95%CI) | |
Food consumed last 7 days | ||||||||||
Bakery/cereals | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.45 | (0.30,0.66) | 1.83 | (0.79,4.25) | 0.96 | (0.74,1.25) | 0.85 | (0.65,1.11) | 0.60 | (0.49,0.72) |
P | <0.001 | P | =0.16 | P | =0.75 | P | =0.22 | P | <0.001 | |
Dairy | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.48 | (0.29,0.77) | 1.53 | (0.55,4.25) | 0.97 | (0.69,1.37) | 0.78 | (0.57,1.08) | 0.52 | (0.42,0.65) |
P | =0.002 | P | =0.41 | P | =0.86 | P | =0.14 | P | <0.001 | |
Fish/seafood | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.69 | (0.48,0.98) | 0.97 | (0.60,1.57) | 0.87 | (0.72,1.06) | 1.05 | (0.85,1.30) | 0.70 | (0.60,0.82) |
P | =0.041 | P | =0.92 | P | =0.17 | P | =0.64 | P | <0.001 | |
Fruit | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.54 | (0.36,0.79) | 1.46 | (0.72,2.97) | 1.13 | (0.87,1.47) | 0.78 | (0.62,0.99) | 0.61 | (0.51,0.72) |
P | =0.002 | P | =0.29 | P | =0.36 | P | =0.044 | P | <0.001 | |
Fruit ≥ 2 serve/day | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 1.04 | (0.66,1.62) | 1.00 | (0.57,1.76) | 1.20 | (0.96,1.51) | 1.21 | (0.97,1.52) | 0.79 | (0.64,0.98) |
P | =0.87 | P | =0.99 | P | =0.11 | P | =0.096 | P | =0.029 | |
Vegetables | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.41 | (0.27,0.62) | 1.22 | (0.56,2.67) | 1.42 | (1.00,2.02) | 0.71 | (0.55,0.92) | 0.56 | (0.46,0.68) |
P | <0.001 | P | =0.62 | P | =0.048 | P | =0.011 | P | <0.001 | |
Veg ≥ 5 serve/day | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 1.22 | (0.59,2.49) | 0.94 | (0.34,2.57) | 1.21 | (0.83,1.78) | 1.23 | (0.84,1.80) | 1.29 | (0.95,1.75) |
P | =0.59 | P | =0.90 | P | =0.32 | P | =0.28 | P | =0.11 | |
Meat | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.39 | (0.24,0.61) | 1.51 | (0.55,4.13) | 0.90 | (0.65,1.25) | 0.66 | (0.48,0.91) | 0.58 | (0.46,0.74) |
P | <0.001 | P | =0.42 | P | =0.53 | P | =0.010 | P | <0.001 | |
Natural grains | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.51 | (0.35,0.75) | 1.24 | (0.69,2.23) | 1.08 | (0.85,1.36) | 0.81 | (0.66,1.00) | 0.72 | (0.61,0.85) |
P | <0.001 | P | =0.47 | P | =0.53 | P | =0.047 | P | <0.001 | |
Snacks | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.51 | (0.33,0.77) | 0.98 | (0.49,1.95) | 0.93 | (0.70,1.25) | 0.70 | (0.55,0.91) | 0.53 | (0.44,0.64) |
P | =0.002 | P | =0.95 | P | =0.64 | P | =0.006 | P | <0.001 | |
Beverages consumed past 7 days | ||||||||||
Alcohol | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.61 | (0.43,0.89) | 1.27 | (0.78,2.06) | 0.86 | (0.71,1.04) | 0.67 | (0.55,0.82) | 0.49 | (0.42,0.58) |
P | =0.009 | P | =0.34 | P | =0.11 | P | <0.001 | P | <0.001 | |
Soft drinks | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.92 | (0.62,1.39) | 0.99 | (0.61,1.62) | 0.74 | (0.61,0.90) | 1.02 | (0.83,1.25) | 1.10 | (0.93,1.31) |
P | =0.70 | P | =0.97 | P | =0.003 | P | =0.88 | P | =0.26 | |
Tea/coffee | ||||||||||
No | Ref | Ref | Ref | Ref | Ref | |||||
Yes | 0.53 | (0.35,0.81) | 1.34 | (0.68,2.66) | 0.82 | (0.64,1.04) | 0.80 | (0.62,1.02) | 0.67 | (0.55,0.82) |
P | =0.004 | P | =0.40 | P | =0.10 | P | =0.074 | P | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nag, N.; Lin, X.; Yu, M.; Simpson-Yap, S.; Jelinek, G.A.; Neate, S.L.; Levin, M. Assessing Lifestyle Behaviours of People Living with Neurological Conditions: A Panoramic View of Community Dwelling Australians from 2007–2018. J. Pers. Med. 2021, 11, 144. https://doi.org/10.3390/jpm11020144
Nag N, Lin X, Yu M, Simpson-Yap S, Jelinek GA, Neate SL, Levin M. Assessing Lifestyle Behaviours of People Living with Neurological Conditions: A Panoramic View of Community Dwelling Australians from 2007–2018. Journal of Personalized Medicine. 2021; 11(2):144. https://doi.org/10.3390/jpm11020144
Chicago/Turabian StyleNag, Nupur, Xin Lin, Maggie Yu, Steve Simpson-Yap, George A. Jelinek, Sandra L. Neate, and Michele Levin. 2021. "Assessing Lifestyle Behaviours of People Living with Neurological Conditions: A Panoramic View of Community Dwelling Australians from 2007–2018" Journal of Personalized Medicine 11, no. 2: 144. https://doi.org/10.3390/jpm11020144