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Abstract: The management of retinal diseases relies heavily on digital imaging data, including optical
coherence tomography (OCT) and fluorescein angiography (FA). Targeted feature extraction and the
objective quantification of features provide important opportunities in biomarker discovery, disease
burden assessment, and predicting treatment response. Additional important advantages include
increased objectivity in interpretation, longitudinal tracking, and ability to incorporate computational
models to create automated diagnostic and clinical decision support systems. Advances in computa-
tional technology, including deep learning and radiomics, open new doors for developing an imaging
phenotype that may provide in-depth personalized disease characterization and enhance opportuni-
ties in precision medicine. In this review, we summarize current quantitative and radiomic imaging
biomarkers described in the literature for age-related macular degeneration and diabetic eye disease
using imaging modalities such as OCT, FA, and OCT angiography (OCTA). Various approaches
used to identify and extract these biomarkers that utilize artificial intelligence and deep learning
are also summarized in this review. These quantifiable biomarkers and automated approaches
have unleashed new frontiers of personalized medicine where treatments are tailored, based on
patient-specific longitudinally trackable biomarkers, and response monitoring can be achieved with
a high degree of accuracy.

Keywords: retinal imaging; quantitative biomarkers; diabetic retinopathy; diabetic macular edema;
age-related macular degeneration; precision medicine; anti-VEGF therapy

1. Introduction

Ophthalmology and the field of retinal diseases relies heavily on information derived
from ophthalmic imaging for diagnosis, treatment and disease activity monitoring. The
development of different imaging modalities, including optical coherence tomography (OCT)
and ultra-widefield fluorescein angiography (UWFA), have provided incredible visualization
of retinal microstructures and abnormalities, which has helped to build new insights for the
management of retinal diseases, including diabetic eye disease (diabetic retinopathy, DR;
diabetic macular edema, DME) and age-related macular degeneration [1,2].

Optical coherence tomography (OCT) is a rapid, non-invasive diagnostic test that
provides outstanding visualization of cross-sectional and 3D morphological characteristics
in addition to high-definition anatomy. OCT has become the backbone for the diagnosis
and management of retinal diseases, with more than 30 million OCT scans being performed
annually [3–5]. Due to its widespread utilization for retinal disease, OCT has become a
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key source for the exploration of imaging biomarkers through computational and deep
learning techniques. The assessment of targeted features, such as retinal compartment
volumes or volumetric pathology characterization, has been shown to be associated with
disease burden and has the potential to enhance personalized treatment decisions [6–8].
OCT angiography (OCTA) uses non-invasive OCT technology to obtain vascular structural
information by assessing decorrelation in the OCT signal due to vascular flow.

There are some important limitations to consider related to current OCT technology. With
a limited field of view in most widely available OCT devices, the primary imaging location is
the macula, and peripheral changes may be missed, especially in early disease [9,10]. Further,
artifacts due to inconsistent montage techniques, motion-blur, and projection shadows may
impact interpretation [9,10].

UWFA is an emerging imaging technique which enables visualization of panretinal
vascular abnormalities including leakage, microaneurysms, and nonperfusion [2]. UWFA
is a critical tool in the panretinal evaluation of retinal vascular and inflammatory disorders.
With up to a 200-degree field of view, this imaging modality is the gold standard for
detecting peripheral disease, especially early on in the disease process [11–14]. However,
the technique does require the intravenous injection of fluorescein dye, which poses
potential systemic risks [11–14]. Additionally, peripheral shadowing, eyelash artifacts, and
image quality control can limit the consistency of interpretations [11–13].

Optical coherence tomography angiography (OCTA) is a major leap forward in this
regard as it is completely non-invasive and provides high-resolution 3D binarized vessel
maps that are objective and easy to interpret. The depth-encoded nature of the OCTA
vascular data provides a unique advantage for evaluating the location of vascular abnor-
malities. However, current technology is primarily limited to macular pathology and can
be subject to significant quality challenges, such as motion artifacts [11,12,14]. Additionally,
OCTA does not provide information on leakage.

Current imaging systems provide outstanding details of disease burdens and the
impact of different retinal diseases. Traditionally, this information has been utilized in a
qualitative manner and relies on an ophthalmologist’s interpretation and expertise. This
inherently introduces bias and subjectivity in the assessment of these images, and therefore
may limit consistency and the opportunities for precision medicine. Additionally, all
of these images encode incredible amounts of data related to the underlying imaging
phenotype of a given disease. These features, such as the location and type of leakage in
UWFA or the reflectivity features of cysts on OCT, may carry critical information regarding
the underlying pathophysiology and driving cellular pathways of a given disease [15–19].

Recently, machine learning (ML) based algorithms has gained traction for use in
several medical image processing operations such as organ segmentation [20], cancer
detection [21] and numerous diseases including diabetic eye diseases [20,22,23]. Deep
learning (DL) is a subfield of ML and uses multi-layered neural-network structures. Most
typical ML models employ pre-defined or engineered features, while DL models can
learn useful representations of data and features directly from the raw data itself [20,23].
Hence DL approaches are also referred to as unsupervised feature generation-based ML
approaches. The opportunities for the application of DL for different ophthalmologic
diseases is quite rich. DL models are not without their challenges. The opacity of DL models
creates unique issues in transparency of understanding the underpinnings of classification
and model performance. DL models consider segmentation or classification problem as a
binary problem and does not evaluate the heterogeneity within the tissue. Optimization
of the deep neural network hyperparameters is a significant challenge. The search space
for the model parameters is generally very high. Also in a data scarce environment, DL
models tend to perform only marginally better than random guessing [24].

Radiomics is an emerging field of medical image processing that refers to the com-
puterized data extraction from medical images and aims to capture the subvisual image
attributes that may not be identified by the human experts. It provides opportunity to
physicians to interpret images better regarding individualized therapy, surveillance, diag-



J. Pers. Med. 2021, 11, 1161 3 of 15

nosis, and prognosis [25]. These advanced image analysis techniques have been described
broadly in the domain of brain tumor [26], breast cancer [27], prostate cancer [28] and
several other diseases. The role of radiomics features in predicting therapeutic response
and prognosis in ophthalmic diseases is emerging as an exciting opportunity for enhanced
personalized care [17,18].

The boom in this image analysis space over the past decade has made it possible to
automate the quantification and interpretation of ophthalmic imaging biomarkers. These
computational imaging elements can then be evaluated for their role as biomarkers for
disease diagnosis, prognosis, treatment initiation, and therapeutic response. For this
review, we describe these measured features that are found to have clinical applications
for the management of disease as “quantitative imaging biomarkers”, which may serve as
objective tools for the future in the context of diabetic eye disease and age-related macular
degeneration (Figure 1).
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Figure 1. Schematic summarizing changes in various quantitative imaging biomarkers in (A) diabetic
eye disease and (B) age-related macular degeneration. CNV: choroidal neovascularization.

Review Methodology. A literature search was performed using the key words “quan-
titative imaging”, “diabetic retinopathy”, “age related macular degeneration”, “OCT”,
“OCTA”, “fluorescein angiography”, and “quantitative biomarkers” on databases, in-
cluding PubMed Central and Google Scholar. Studies reporting quantitative imaging
biomarkers using OCT, OCTA, and FA in diabetic eye disease and age-related macular
degeneration. Studies that included only qualitative findings or that focused on pathologies
other than diabetic eye disease and AMD were not included in this study.
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2. Diabetic Eye Disease: Diabetic Retinopathy and Diabetic Macular Edema
2.1. Structural Biomarkers: Optical Coherence Tomography (OCT)
2.1.1. Characterizing Disease Burden and Functional Significance

In diabetic retinopathy, increased central subfield retinal thickness (CST) and de-
creased retinal nerve fiber layer thickness have been associated with increased severity
of retinopathy (DR) [29–31]. Furthermore, disruption of retinal inner layers (i.e., DRIL)
has been shown to be associated with worse visual acuity in DR patients [32,33]. The
presence of DRIL has been shown to have very high specificity for macular nonperfusion
in DR [34]. DRIL, as well as outer retinal disruption (e.g., ellipsoid zone and external
limiting membrane loss), have been shown to be associated with visual acuity in both
DR and diabetic macular edema (DME) (Figure 2) [33,35]. Morphological signs such as
hyperreflective foci (HRF) have been described in diabetic retinopathy and diabetic macular
edema as a sign of lipid extravasation and inflammatory cellular aggregates [36–38]. They
often initially appear in the inner retina adjacent to the native microglia, only appearing in
the outer retina in more advanced stages of the disease [38]. These HRF have been shown to
be aggregated activated microglial cells with numbers significantly higher in diabetic eyes
when compared to controls [39,40]. HRF count has been explored as a potential biomarker
to assess inflammation in diabetic eye disease. Manual and automated approaches of the
segmentation of these HRF have been tested [40–42]. A recent study monitored the HRF
counts in diabetic retinopathy and diabetic macular edema in eyes that received anti-VEGF
and steroid injections. This study reported a decrease in the number of HRF with either
treatment, but a more marked decrease in the steroid group [42]. This biomarker provides
an interesting avenue to monitor inflammatory activity in diabetic eye disease.
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Th extraction of quantitative fluid features and the assessment of retinal multi-layer
segmentation has provided insights into disease prognosis and overall longitudinal disease
dynamics. A recent study confirmed quantitative improvement in ellipsoid zone integrity
subsequent to anti-VEGF therapy for DME [1]. This measurable improvement in ellipsoid
zone integrity correlated significantly with visual function recovery. Novel higher-order
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imaging biomarkers, such as the retinal fluid index (RFI), are continuing to be discovered,
which may help in the precise monitoring of treatment response [1,42]. Recent studies
have shown that RFI volatility in the early follow-up period is correlated significantly with
instability in long-term visual response to treatment [43].

2.1.2. Imaging Biomarkers and Disease Pathway Expression

Utilizing these techniques, various imaging biomarkers may be able to be linked to
the underlying pathways involved in disease pathogenesis. In a recent study assessing
quantitative imaging biomarkers and cytokine expression, the levels of multiple cytokines
(e.g., vascular endothelial growth factor (VEGF), monocyte chemotactic protein-1 (MCP-1),
and interleukin-6 (IL-6)) were linked with various imaging biomarkers, such as fluid
parameters and outer retinal integrity [15]. The identification of these critical components
of imaging phenotype and cytokine expression may help to identify eyes that may tolerate
longer intervals in-between treatments or eyes that may benefit from emerging therapeutics
with novel targets.

2.1.3. Predicting Future Treatment Need and Treatment Response Characteristics

Utilizing an attention-based convolutional neural network (CNN) model using pre-
treatment OCT scans that preserved and highlighted the global structures in OCT images
and enhanced local features from fluid/exudate-affected regions, Rasti et al. utilized
retinal thickness information for the prediction of the response to intravitreal anti-VEGF
treatment [44]. An additional DL algorithm developed by Prahs et al. distinguished retinal
OCT B-scans that required an intravitreal injection from those that did not [45].

Beyond evaluating for treatment need, additional studies have assessed specific reti-
nal compartment radiomics features that may predict therapeutic response. In a recent
study [18], the relevance of radiomics features extracted from different spatial compart-
ments of the retina on OCT scans to identify the patients with DME who tolerate an
extension in the intervals between treatment with anti-VEGF treatment were evaluated.
Texture-based radiomic features within the intraretinal fluid subcompartment were found
to be most associated with a response to anti-VEGF therapy and most strongly associated
in discriminating rebounders from the non-rebounders of anti-VEGF treatment following
treatment interval extension.

2.2. Vascular Biomarkers: Ultra-Widefield Fluorescein Angiography (UWFA)

Ultra-widefield fluorescein angiography (UWFA) can capture 200◦ field of view (FOV)
compared to conventional imaging with 30–60◦ FOV, enabling a more comprehensive
disease evaluation. [46,47] Visualization of specific vascular features that enhance assess-
ment of disease burden and optimize diagnostic accuracy make this modality an essential
tool for the evaluation of posterior segment disorders. Areas of nonperfusion, vascular
leakage, microaneurysm count, and neovascularization are among known clinically ap-
parent biomarkers that assist diagnosis, choice of treatment and assessment of treatment
response. Emerging image analysis methods provide the opportunity for manual and
automated quantification of known angiographic features and discovery of novel and more
complex features. The labor-intensive nature of manual feature assessment is a barrier to
more widespread use. Recently, methods and systems have been developed to provide
in-depth evaluation of leakage features, microaneurysm counts, ischemic burden and
vascular characteristics (Figure 3) [48,49]. Machine learning systems have provided the
ability to perform enhanced vascular segmentation, feature extraction, and more efficient
methods for evaluating imaging characteristics [50–52].
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2.2.1. Biomarkers for Disease Severity and Disease Burden

Various biomarkers are investigated for severity grading, progression, and treat-
ment response. Nonperfusion area, ischemic index, leakage, and microaneurysm counts
have been shown to correlate strongly with the clinical severity of DR and treatment
response [53]. Ehlers et al. demonstrated quantitative UWFA parameters, including pan-
retinal MA count, ischemia, and leakage index, that were strongly associated with DR
severity in 339 eyes [54]. Assessment of these disease burden metrics may help in predict-
ing the risk of progression or DR-related complications. The panretinal leakage index has
shown promise as a potential predictor of disease-related complications, such as vitreous
hemorrhage and DME [53,55]. Quantification of these features allows for the longitudinal
tracking of numerical changes that can be used to guide clinical decisions and assess
response to treatment.

The spatial distribution of DR lesions on ultra-widefield photography including
MA, cotton wool spots, intraretinal microvascular abnormalities, neovascularization, and
fibrovascular proliferation was investigated in a large study with 1406 eyes demonstrating a
predominantly central distribution in 63% of eyes [56]. Silva et al.’s study on nonperfusion
distribution reported higher DR severity in eyes with predominantly peripheral lesions [57].

2.2.2. Evaluating and Predicting Treatment Response Characteristics

In addition to the assessment of disease burden, quantitative feature characteriza-
tion can also be used to assess treatment response. In an automated UWFA approach,
intravitreal anti-VEGF therapy demonstrated significant and stark improvements in leak-
age index and total microaneurysm counts in DR [55,58]. Wykoff et al. reported that
the ischemic index increased by 34% in one year with quarterly aflibercept (p = 0.009)
and 10% in monthly aflibercept (p = 0.18) treatment [59]. In a prospective clinical trial,
the authors studied the change in the panretinal leakage index in eyes with DME with
aflibercept therapy to quantify therapeutic response. The authors noted a dramatic reduc-
tion in the leakage index (from 3.5% at baseline to 0.4% at 12 months) with aflibercept
therapy [58]. Utilizing quantitative UWFA in the RECOVERY study, which evaluated eyes
with severe PDR, quantitative UWFA demonstrated a dramatic reduction of 68% to 79% in
leakage index reduction at 1 year, with similar outcomes in both monthly and quarterly
dosing [55]. In a randomized controlled trial comparing leakage-index-guided treatment
and Diabetic Retinopathy Severity Scale (DRSS)-level-guided treatment with intravitreal
aflibercept for DR, the authors found that deteriorations in the leakage index preceded
those in the DRSS level, thereby providing a potentially higher sensitivity marker for the
need for retreatment [60].
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2.2.3. Imaging Biomarkers and Disease Pathway Expression

Another recent study assessed the correlation between UWFA imaging phenotype
and cytokine expression in eyes with DME from the IMAGINE study [16]. The au-
thors noted that an increased panretinal leakage index correlated strongly with VEGF,
angiopoietin-like 4, and interleukin-6 levels, while the panretinal ischemic index was posi-
tively correlated with the tissue inhibitor of metalloproteinases 1 (TIMP-1) and VEGF [16].
Further research is needed to understand the implications of these phenotype–cytokine
expression correlations in assessing response to treatment.

2.2.4. Radiomics Angiographic Biomarkers for DR Severity

In addition to clinically apparent biomarkers, Fan et al. demonstrated the branching
complexity of peripheral vessels and the distribution of nonperfusion areas correlated with
DR severity [61]. Fractal dimension (FD) depicts the complexity of vascular geometry, such
that higher values indicate dense, intricate, space-filling branching patterns [62]. Peripheral
retinal vessels of diabetic eyes have been demonstrated to have lower complexity in their
branching pattern (fractal dimension) compared to healthy controls. FD was shown to be
negatively associated with the nonperfusion area [63]. A significantly lower FD is noted
in the retinal vasculature in DR, especially in the far peripheral fields when compared to
normal eyes. Additionally, a decrease in panretinal FD was shown to be associated with an
increase in the global nonperfusion area [64]. In addition to FD, the skewness of retinal
vasculature density distribution has also been associated with DR severity [65].

2.2.5. Angiographic Biomarkers for DME Presence

Quantitative UWFA has also been explored in DME pathogenesis. The leakage index
and MA count in the posterior pole have been associated with the presence and severity of
DME [53]. The nonperfusion distribution pattern in DR was observed in DME, being more
extensive in mid-periphery ischemia compared to the posterior pole and far periphery.
Fang et al. classified ischemic areas and investigated nonperfusion with and without
leakage in DME eyes [66]. Nonperfusion areas with leakage were found more extensively
in the posterior retina compared to nonperfusion without leakage, which is predominantly
in the mid-periphery [66]. A nonperfusion area with leakage positively correlated whereas
nonperfusion without leakage negatively correlated with DME severity.

2.2.6. Evaluating and Predicting Therapeutic Response: From Quantitative UWFA
to Radiomics

Quantitative UWFA biomarkers have been explored as assessment tools for therapeutic
response in eyes with DME treated with aflibercept in the PERMEATE study [58]. Aflibercept
injections resulted in a 78% decrease in the leakage index of eyes with DME. Similar to the
outcome in eyes with DR, the nonperfusion area is increased despite anti-VEGF therapy [58].

Beyond characterizing the longitudinal quantitative UWFA feature alterations in re-
sponse to therapy, radiomics features have been utilized to predict treatment response
and durability. Prasanna et al. developed novel radiomic CIBs that characterized differ-
ent morphological properties of leakage nodes and vascular tortuosity on UWFA, which
were linked to the durability of anti-VEGF treatment [17]. The distribution of leakage
nodes in eyes that did not tolerate treatment extension was found to be more disordered
than eyes that tolerated an extension in the intervals between treatment. Vessel tortuosity
was increased and more complex in eyes that experienced clinical worsening following
treatment extension. In a supportive assessment of radiomics features for predicting
treatment response characteristics, Moosavi et al. identified that the proximity of leak-
age foci to the vessels has a higher variance in eyes who have more durable treatment
response, whereas increased local vascular tortuosity was linked to reduction in tolerance
of treatment extension [67].
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2.3. Vascular Biomarkers: OCTA

OCTA uses non-invasive OCT technology to obtain vascular structural information
by assessing decorrelation in the OCT signal due to vascular flow. As a result of the
depth resolution of OCTA, different chorioretinal vascular plexuses, such as the nerve
fiber layer plexus (NFLP), ganglion cell layer plexus (GCLP), intermediate capillary plexus
(ICP) and deep capillary plexus (DCP), have been studied using this technology. NFLP
and GCLP form the superficial vascular complex while ICP and DCP form the deep
vascular complex [68].

Biomarkers for Disease Severity and Burden: From Quantitative Features to Radiomics

An increased foveal avascular zone (FAZ) size is noted in patients with DR compared
to normal [69–71]. Recent OCTA studies have provided evidence for a correlation between
FAZ size and visual acuity, such that an increase in FAZ size is associated with decreased
visual acuity [72–74]. In addition to FAZ area, the shape of the FAZ has been shown to
change in various DR grades [75].

Vessel density, as calculated from OCTA, has been shown to be inversely correlated
with DR grade in multiple trials [70,76,77]. In a study characterizing the association
between visual acuity and vessel density in DR, vessel density was reduced in eyes with
decreased visual acuity [78].

Vessel diameter index (VDI) is a representation of vessel diameter obtained by calculat-
ing a ratio of the total area of the scan occupied by blood vessels and the total skeletonized
length of blood vessels in the scan. In a recent study, the VDI obtained using OCTA has
been shown to positively correlate with the severity of DR and blood glucose levels [79–81].

Similar to UWFA, retinal vessel tortuosity in OCTA is another important metric that
holds high potential for the evaluation of DR. Vascular tortuosity on OCTA positively
correlates with the severity of DR in superficial and deep retinal vascular plexuses in
moderate to severe DR [75]. In a recent study, vessel tortuosity demonstrated a positive
correlation with DR severity in NPDR, but decreased significantly in PDR [75]. Recently,
three-dimensional volume-rendering biomarkers such as vessel sphericity and cylindricity
were used to assess blood vessel shape, demonstrating potential differences between
normal eyes and eyes with DR [82]. Geometric features, such as vessel branching angle
and vessel-width-based features have also been noted to be significantly different between
normal eyes and eyes with DR [83].

3. Age-Related Macular Degeneration (AMD): Neovascular and Non-Neovascular AMD
3.1. Structural Biomarkers: Optical Coherence Tomography (OCT)
3.1.1. Features for Predicting Progression in AMD

Non-neovascular (i.e., dry) age-related macular degeneration has been extensively
evaluated for numerous imaging biomarkers such as intraretinal hyper-reflective foci (HRF),
complex drusenoid lesions (DL, i.e., heterogeneous reflectivity), subretinal drusenoid
deposits (SDDs), and drusen burden. SD-OCT has been used to qualitatively describe
these biomarkers and has confirmed that each of these features confers a greater risk
of disease progress [84,85]. In a recent study, quantitative EZ integrity measures, EZ
mapping, and sub-RPE compartment quantification were shown to be important predictors
of progression to geographic atrophy in nonexudative AMD patients [86]. Specifically,
the reduced EZ integrity and increased sub-RPE compartment thickness was identified
in eyes that progressed to subfoveal geographic atrophy. These quantitative biomarkers
were more strongly associated with progression than qualitative features, such as HRF and
SDD. Utilizing a ML classifier, a high-performance system was developed for predicting
progression to subfoveal GA based on multiple quantitative outer retinal features [87,88].

Automated drusen volume quantification has been enabled by multi-layer segmenta-
tion platforms that provide isolation of the sub-RPE compartment. One study demonstrated
that an increase in the drusen volume was associated with a significant increase in the risk
of developing geographic atrophy or conversion to neovascular AMD [89]. ML-enhanced
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systems for advanced segmentation and feature extraction are creating new opportuni-
ties for automated disease characterization and longitudinal monitoring of therapeutic
response in AMD. Multiple studies have demonstrated volumetric fluid characteriza-
tion, compartment-specific OCT feature evaluation (such as ellipsoid zone integrity), and
volumetric quantification of subretinal fibrosis as well as subretinal hyperreflective mate-
rial [6,90,91]. In a recent study utilizing deep learning for the extraction of quantitative
features in AMD patients, the authors noted that an increase in drusen volume, SRF, IRF,
serous pigment epithelium detachment, HRF and subretinal hyperreflective material was
associated with worse visual acuity [7].

3.1.2. Deep Learning and Radiomics Biomarkers in AMD

DL-based analysis systems have been explored to detect the presence of disease.
Multiple other studies have shown the effectiveness of DL models in classifying normal
versus AMD eyes from OCT images [92,93]. Automated SD-OCT image analysis using DL
techniques are currently widely used for predicting disease progression in AMD. Predicting
conversion from early or intermediate non-neovascular AMD to neovascular AMD using
quantitative imaging features (e.g., drusen shape, drusen volume) in SD-OCT images has
been previously explored [94,95]. Banerjee et al. proposed a hybrid sequential model
integrating hand-crafted size-based and shape-based radiomics features (related to the
relationship of image intensity between voxels), demographic and visual acuity data, and
DL with a recursive neural network (RNN) model in the same platform to predict the
probability of future neovascular conversion [22].

3.2. Vascular Biomarkers: OCTA

In neovascular AMD, CNV is a major cause of vision loss due to photoreceptor damage
that results from exudation processes [96,97]. Although FA has traditionally been the gold
standard to characterize and identify CNV lesions, OCT has now become the benchmark
evaluation for the presence of CNV and exudation. OCTA is also emerging as a promising
technology for the high-level visualization of neovascular membranes in neovascular AMD
and for evaluating the choriocapillaris in non-neovascular AMD [98–100].

3.2.1. Quantitative Biomarkers of CNV Features

In one study aimed at characterizing CNV using quantitative biomarkers on OCTA,
the CNV area and flow index using outer retinal choriocapillaris OCTA slabs for assess-
ment of CNV characterization [101]. The study identified a higher flow in larger CNVs
and those that were type II [101]. In a recent study, the quantification of CNV and other
vascular characteristics was evaluated to assess treatment response to anti-VEGF therapy
in neovascular AMD patients [102]. Eyes requiring more frequent dosing of anti-VEGF
agents had lower CNV vessel density compared to groups with longer duration intervals
between doses [102]. Further, the CNV area was noted to be higher in eyes with fovea in-
volvement and core vessel presence. Absence of these findings may therefore be suggestive
of inactive CNV.

3.2.2. Choriocapillaris Biomarkers in Non-Neovascular AMD

In non-neovascular AMD, OCTA has been explored to study many aspects of the dis-
ease process such as drusen, reticular pseudodrusen, and geographic atrophy, in addition
to exploring its utility for the monitoring of disease progression [100]. Choriocapillaris
flow depletion in eyes with drusen has been shown on OCTA [103,104]. Reduced flow may
result in relative hypoxia of outer retinal layers and disease progression. In a recent study,
quantitative assessment of choriocapillaris flow deficits demonstrated reduced flow in eyes
with drusen with hyporeflective cores compared with eyes with drusen without hyporeflec-
tive cores, suggesting that the presence of hyporeflective cores may indeed indicate a more
advanced disease process in intermediate AMD [105]. OCTA has been used to characterize
geographic atrophy (GA) as well, particularly choriocapillaris flow deficits [106]. Focal
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perfusion loss (FPL) on OCTA has been used to evaluate choriocapillaris flow features in
AMD, which has been identified to be higher in AMD eyes compared to controls [107].

4. Conclusions

Quantitative imaging biomarkers derived from multiple imaging modalities may
provide a critical platform for the future in providing objective and trackable metrics that
enable precision medicine in ophthalmic care through the comprehensive characterization
of the “imaging phenotype”, Figure 4.
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Figure 4. Developing the “Imaging Phenotype”. A potential multi-factorial approach for inte-
grative imaging biomarker characterization utilizing multiple advanced feature interrogation and
extraction methods.

OCT imaging biomarkers provide valuable structural information of retinal layers,
such as retinal compartment thickness, layer integrity maps, fluid volume, and the fluid
index. UWFA and OCTA imaging biomarkers provide key information regarding the
retinal and choroidal vasculature, such as measures of vessel density, ischemic area, flow
voids, leakage area, leakage index, ischemic index, and the CNV area. Radiomics is an
emerging field in ophthalmology and is having an increasingly high impact on personalized
medicine. As the field matures in the future, a combination of different novel DL networks
and advanced radiomic methods may be of high value for a more complete decision support
system (Figure 4). The implementation of deep learning, advanced feature interrogation
methods, and radiomics characterization provides an exciting opportunity for enhanced
understanding of and new insights into retinal disease. The field of computational imaging
biomarker discovery and exploration in AMD and diabetic eye disease is emerging as a
major opportunity for personalized care and precision medicine.
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5. Schmidt-Erfurth, U.; Klimscha, S.; Waldstein, S.M.; Bogunović, H. A view of the current and future role of optical coherence
tomography in the management of age-related macular degeneration. Eye 2016, 31, 26–44. [CrossRef] [PubMed]

6. Ehlers, J.P.; Clark, J.; Uchida, A.; Figueiredo, N.; Babiuch, A.; Talcott, K.E.; Lunasco, L.; Le, T.K.; Meng, X.; Hu, M.; et al.
Longitudinal Higher-Order OCT Assessment of Quantitative Fluid Dynamics and the Total Retinal Fluid Index in Neovascular
AMD. Transl. Vis. Sci. Technol. 2021, 10, 29. [CrossRef] [PubMed]

7. Moraes, G.; Fu, D.J.; Wilson, M.; Khalid, H.; Wagner, S.K.; Korot, E.; Ferraz, D.; Faes, L.; Kelly, C.J.; Spitz, T.; et al. Quantitative Analysis
of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning. Ophthalmology 2021, 128, 693–705. [CrossRef]

8. Ehlers, J.P.; Khan, M.; Petkovsek, D.; Stiegel, L.; Kaiser, P.; Singh, R.P.; Reese, J.L.; Srivastava, S.K. Outcomes of Intraoperative
OCT–Assisted Epiretinal Membrane Surgery from the PIONEER Study. Ophthalmol. Retin. 2018, 2, 263–267. [CrossRef]

9. Reznicek, L.; Kolb, J.P.; Klein, T.; Mohler, K.J.; Wieser, W.; Huber, R.; Kernt, M.; Märtz, J.; Neubauer, A.S. Wide-Field Megahertz
OCT Imaging of Patients with Diabetic Retinopathy. J. Diabetes Res. 2015, 2015, 1–5. [CrossRef]

10. De Pretto, L.R.; Moult, E.M.; Alibhai, A.Y.; Carrasco-Zevallos, O.M.; Chen, S.; Lee, B.K.; Witkin, A.J.; Baumal, C.R.; Reichel, E.;
de Freitas, A.Z.; et al. Controlling for artifacts in widefield optical coherence tomography angiography measurements of
non-perfusion area. Sci. Rep. 2019, 9, 1–15. [CrossRef] [PubMed]

11. de Carlo, T.E.; Bonini Filho, M.A.; Baumal, C.R.; Reichel, E.; Rogers, A.; Witkin, A.J.; Duker, J.S.; Waheed, N.K. Evaluation of
preretinal neovascularization in proliferative diabetic retinopathy using optical coherence tomography angiography. Ophthalmic
Surg. Lasers Imaging Retin. 2016, 47, 115–119. [CrossRef] [PubMed]

12. Sawada, O.; Ichiyama, Y.; Obata, S.; Ito, Y.; Kakinoki, M.; Sawada, T.; Saishin, Y.; Ohji, M. Comparison between wide-angle OCT
angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in
eyes with diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2018, 256, 1275–1280. [CrossRef] [PubMed]

13. Kaines, A.; Tsui, I.; Sarraf, D.; Schwartz, S. The Use of Ultra Wide Field Fluorescein Angiography in Evaluation and Management
of Uveitis. Semin. Ophthalmol. 2009, 24, 19–24. [CrossRef]

14. Couturier, A.; Rey, P.-A.; Erginay, A.; Lavia, C.; Bonnin, S.; Dupas, B.; Gaudric, A.; Tadayoni, R. Widefield OCT-Angiography
and Fluorescein Angiography Assessments of Nonperfusion in Diabetic Retinopathy and Edema Treated with Anti–Vascular
Endothelial Growth Factor. Ophthalmology 2019, 126, 1685–1694. [CrossRef]

15. Abraham, J.R.; Wykoff, C.C.; Arepalli, S.; Lunasco, L.; Hannah, J.Y.; Hu, M.; Reese, J.; Krovastava, S.K.; Brown, D.M.; Ehlers, J.P.
Aqueous cytokine expression and higher order OCT biomarkers: Assessment of the Anatomic-Biologic bridge in the IMAGINE
DME study. Am. J. Ophthalmol. 2021, 222, 328–339. [CrossRef]

16. Abraham, J.R.; Wykoff, C.C.; Arepalli, S.; Lunasco, L.; Hannah, J.Y.; Martin, A.; Mugnaini, C.; Hu, M.; Reese, J.; Strivastava, S.K.; et al.
Exploring the angiographic-biologic phenotype in the IMAGINE study: Quantitative UWFA and cytokine expression. Br. J. Ophthalmol.
2021. Available online: https://pubmed.ncbi.nlm.nih.gov/34099465/ (accessed on 31 July 2021).

17. Prasanna, P.; Bobba, V.; Figueiredo, N.; Sevgi, D.D.; Lu, C.; Braman, N.; Alilou, M.; Sharma, S.; Srivastava, S.K.;
Madabhushi, A.; et al. Radiomics-based assessment of ultra-widefield leakage patterns and vessel network architecture
in the PERMEATE study: Insights into treatment durability. Br. J. Ophthalmol. 2020, 105, 1155. [CrossRef] [PubMed]

18. Kar, S.S.; Sevgi, D.D.; Dong, V.; Srivastava, S.K.; Madabhushi, A.; Ehlers, J.P. Multi-Compartment Spatially-Derived Radiomics
From Optical Coherence Tomography Predict Anti-VEGF Treatment Durability in Macular Edema Secondary to Retinal Vascular
Disease: Preliminary Findings. IEEE J. Transl. Eng. Health Med. 2021, 9, 1–13. [CrossRef]

19. Sil, K.S.; Sevji, D.D.; Dong, V.; Srivastava, S.K.; Madabhushi, A.; Ehlers, J.P. Multi-Compartment OCT-derived Radiomics Features
to predict Anti-VEGF Treatment Durability for Diabetic Macular Edema. Investig. Ophthalmol. Vis. Sci. 2021, 62, 3.

20. Akkus, Z.; Galimzianova, A.; Hoogi, A.; Rubin, D.L.; Erickson, B.J. Deep Learning for Brain MRI Segmentation: State of the Art
and Future Directions. J. Digit. Imaging 2017, 30, 449–459. [CrossRef]

http://doi.org/10.1016/j.oret.2019.06.010
http://www.ncbi.nlm.nih.gov/pubmed/31473172
http://doi.org/10.1007/s00592-017-1010-1
http://www.ncbi.nlm.nih.gov/pubmed/28577137
http://doi.org/10.1016/S2214-109X(17)30293-0
http://doi.org/10.1038/s41598-019-49740-7
http://www.ncbi.nlm.nih.gov/pubmed/31537854
http://doi.org/10.1038/eye.2016.227
http://www.ncbi.nlm.nih.gov/pubmed/27886184
http://doi.org/10.1167/tvst.10.3.29
http://www.ncbi.nlm.nih.gov/pubmed/34003963
http://doi.org/10.1016/j.ophtha.2020.09.025
http://doi.org/10.1016/j.oret.2017.05.006
http://doi.org/10.1155/2015/305084
http://doi.org/10.1038/s41598-019-43958-1
http://www.ncbi.nlm.nih.gov/pubmed/31235795
http://doi.org/10.3928/23258160-20160126-03
http://www.ncbi.nlm.nih.gov/pubmed/26878443
http://doi.org/10.1007/s00417-018-3992-y
http://www.ncbi.nlm.nih.gov/pubmed/29713816
http://doi.org/10.1080/08820530802520095
http://doi.org/10.1016/j.ophtha.2019.06.022
http://doi.org/10.1016/j.ajo.2020.08.047
https://pubmed.ncbi.nlm.nih.gov/34099465/
http://doi.org/10.1136/bjophthalmol-2020-317182
http://www.ncbi.nlm.nih.gov/pubmed/32816791
http://doi.org/10.1109/jtehm.2021.3096378
http://doi.org/10.1007/s10278-017-9983-4


J. Pers. Med. 2021, 11, 1161 12 of 15

21. Sumathipala, Y.; Lay, N.S.; Turkbey, B. Prostate cancer detection from multi-institution multiparametric MRIs using deep
convolutional neural networks. J. Med. Imaging 2018, 5, 044507. [CrossRef] [PubMed]

22. Banerjee, I.; De Sisternes, L.; Hallak, J.A.; Leng, T.; Osborne, A.; Rosenfeld, P.J.; Gregori, G.; Durbin, M.; Rubin, D. Prediction
of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging
bi-omarkers. Sci. Rep. 2020, 10, 1–16. [CrossRef] [PubMed]

23. Lundervold, A.; Lundervold, A. An overview of deep learning in medical imaging focusing on MRI. Z. Med. Phys. 2019, 29,
102–127. [CrossRef] [PubMed]

24. Dong, V.; Sevgi, D.D.; Kar, S.S.; Srivastava, S.K.; Ehlers, J.P.; Madabhushi, A. Evaluating the utility of deep learning using
ultra-widefield fluorescein angiography for predicting need for anti-VEGF therapy in diabetic eye disease. Investig. Ophthalmol.
Visual Sci. 2021, 62, 2114.

25. Rizzo, S.; Botta, F.; Raimondi, S.; Origgi, D.; Fanciullo, C.; Morganti, A.G.; Bellomi, M. Radiomics: The facts and the challenges of
image analysis. Eur. Radiol. Exp. 2018, 2, 36. [CrossRef]

26. Wu, G.; Chen, Y.; Wang, Y.; Yu, J.; Lv, X.; Ju, X.; Shi, Z.; Chen, L.; Chen, Z. Sparse Representation-Based Radiomics for the
Diagnosis of Brain Tumors. IEEE Trans. Med. Imaging 2018, 37, 893–905. [CrossRef] [PubMed]

27. Parekh, V.S.; Jacobs, M.A. Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning
and multiparametric MRI. NPJ Breast Cancer 2017, 3, 1–9. [CrossRef]

28. Penzias, G.; Singanamalli, A.; Elliott, R.; Gollamudi, J.; Shih, N.; Feldman, M.; Stricker, P.; Delprado, W.; Tiwari, S.; Böhm, M.; et al.
Identifying the morphologic basis for radiomic features in distinguishing different Gleason grades of prostate cancer on MRI:
Preliminary findings. PLoS ONE 2018, 13, e0200730. [CrossRef]

29. Vujosevic, S.; Midena, E. Retinal Layers Changes in Human Preclinical and Early Clinical Diabetic Retinopathy Support Early
Retinal Neuronal and Müller Cells Alterations. J. Diabetes Res. 2013, 2013, 1–8. [CrossRef]

30. Shi, R.; Guo, Z.; Wang, F.; Lin, R.; Zhao, L. Alterations in retinal nerve fiber layer thickness in early stages of diabetic reti-nopathy
and potential risk factors. Curr. Eye Res. 2018, 43, 244–253. [CrossRef]

31. Deák, G.G.; Schmidt-Erfurth, U.; Jampol, L.M. Correlation of Central Retinal Thickness and Visual Acuity in Diabetic Macular
Edema. JAMA Ophthalmol. 2018, 136, 1215–1216. [CrossRef]

32. Joltikov, K.; Sesi, C.A.; De Castro, V.M.; Davila, J.R.; Anand, R.; Khan, S.M.; Farbman, N.; Jackson, G.R.; Johnson, C.A.; Gardner,
T.W. Disorganization of Retinal Inner Layers (DRIL) and Neuroretinal Dysfunction in Early Diabetic Retinopathy. Investig.
Opthalmol. Vis. Sci. 2018, 59, 5481–5486. [CrossRef] [PubMed]

33. Sun, J.K.; Lin, M.M.; Lammer, J.; Prager, S.; Sarangi, R.; Silva, P.S.; Aiello, L.P. Disorganization of the Retinal Inner Layers as
a Predictor of Visual Acuity in Eyes With Center-Involved Diabetic Macular Edema. JAMA Ophthalmol. 2014, 132, 1309–1316.
[CrossRef]

34. Nicholson, L.; Ramu, J.; Triantafyllopoulou, I.; Patrao, N.V.; Comyn, O.; Hykin, P.; Sivaprasad, S. Diagnostic accuracy of
disorganization of the retinal inner layers in detecting macular capillary non-perfusion in diabetic retinopathy. Clin. Exp.
Ophthalmol. 2015, 43, 735–741. [CrossRef]

35. Eliwa, T.F.; Hussein, M.A.; Zaki, M.A.; Raslan, O.A. Outer retinal layer thickness as good visual predictor in patients with diabetic
macular edema. Retina 2018, 38, 805–811. [CrossRef] [PubMed]

36. Bolz, M.; Schmidt-Erfurth, U.; Deak, G.; Mylonas, G.; Kriechbaum, K.; Scholda, C. Optical Coherence Tomographic Hyperreflective
Foci: A Morphologic Sign of Lipid Extravasation in Diabetic Macular Edema. Ophthalmology 2009, 116, 914–920. [CrossRef]
[PubMed]

37. Vujosevic, S.; Bini, S.; Midena, G.; Berton, M.; Pilotto, E.; Midena, E. Hyperreflective Intraretinal Spots in Diabetics without
and with Nonproliferative Diabetic Retinopathy: AnIn VivoStudy Using Spectral Domain OCT. J. Diabetes Res. 2013, 2013, 1–5.
[CrossRef]

38. Lee, H.; Jang, H.; A Choi, Y.; Kim, H.C.; Chung, H. Association Between Soluble CD14 in the Aqueous Humor and Hyperreflective
Foci on Optical Coherence Tomography in Patients With Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2018, 59, 715–721.
[CrossRef]

39. De Benedetto, U.; Sacconi, R.; Pierro, L.; Lattanzio, R.; Bandello, F. Optical coherence tomographic hyperreflective foci in early
stages of diabetic retinopathy. Retina 2015, 35, 449–453. [CrossRef] [PubMed]

40. Okuwobi, I.P.; Ji, Z.; Fan, W.; Yuan, S.; Bekalo, L.; Chen, Q. Automated Quantification of Hyperreflective Foci in SD-OCT With
Diabetic Retinopathy. IEEE J. Biomed. Health Inform. 2019, 24, 1125–1136. [CrossRef] [PubMed]

41. Rübsam, A.; Wernecke, L.; Rau, S.; Pohlmann, D.; Müller, B.; Zeitz, O.; Joussen, A.M. Behavior of SD-OCT Detectable Hyperreflec-
tive Foci in Diabetic Macular Edema Patients after Therapy with Anti-VEGF Agents and Dexamethasone Implants. J. Diabetes Res.
2021, 2021, 8820216. [CrossRef] [PubMed]

42. Roberts, P.K.; Vogl, W.D.; Gerendas, B.S.; Glassman, A.R.; Bogunovic, H.; Jampol, L.M.; Schmidt-Erfurth, U.M. Quantification of
fluid resolution and visual acuity gain in patients with diabetic macular edema using deep learning: A post hoc analysis of a
randomized clinical trial. JAMA Ophthalmol. 2020, 138, 945–953. [CrossRef] [PubMed]

43. Ehlers, J.P.; Uchida, A.; Sevgi, D.D.; Hu, M.; Reed, K.; Berliner, A.; Vitti, R.; Chu, K.; Srivastava, S.K. Retinal Fluid Volatility
Associated with Interval Tolerance and Visual Outcomes in Diabetic Macular Edema in the VISTA Phase III Trial. Am. J.
Ophthalmol. 2021, 224, 217–227. [CrossRef]

http://doi.org/10.1117/1.JMI.5.4.044507
http://www.ncbi.nlm.nih.gov/pubmed/30840728
http://doi.org/10.1038/s41598-020-72359-y
http://www.ncbi.nlm.nih.gov/pubmed/32963300
http://doi.org/10.1016/j.zemedi.2018.11.002
http://www.ncbi.nlm.nih.gov/pubmed/30553609
http://doi.org/10.1186/s41747-018-0068-z
http://doi.org/10.1109/TMI.2017.2776967
http://www.ncbi.nlm.nih.gov/pubmed/29610069
http://doi.org/10.1038/s41523-017-0045-3
http://doi.org/10.1371/journal.pone.0200730
http://doi.org/10.1155/2013/905058
http://doi.org/10.1080/02713683.2017.1387669
http://doi.org/10.1001/jamaophthalmol.2018.3848
http://doi.org/10.1167/iovs.18-24955
http://www.ncbi.nlm.nih.gov/pubmed/30452602
http://doi.org/10.1001/jamaophthalmol.2014.2350
http://doi.org/10.1111/ceo.12557
http://doi.org/10.1097/IAE.0000000000001599
http://www.ncbi.nlm.nih.gov/pubmed/28333881
http://doi.org/10.1016/j.ophtha.2008.12.039
http://www.ncbi.nlm.nih.gov/pubmed/19410950
http://doi.org/10.1155/2013/491835
http://doi.org/10.1167/iovs.17-23042
http://doi.org/10.1097/IAE.0000000000000336
http://www.ncbi.nlm.nih.gov/pubmed/25170862
http://doi.org/10.1109/JBHI.2019.2929842
http://www.ncbi.nlm.nih.gov/pubmed/31329137
http://doi.org/10.1155/2021/8820216
http://www.ncbi.nlm.nih.gov/pubmed/33937416
http://doi.org/10.1001/jamaophthalmol.2020.2457
http://www.ncbi.nlm.nih.gov/pubmed/32722799
http://doi.org/10.1016/j.ajo.2020.11.010


J. Pers. Med. 2021, 11, 1161 13 of 15

44. Rasti, R.; Allingham, M.J.; Mettu, P.S.; Kavusi, S.; Govind, K.; Cousins, S.W.; Farsiu, S. Deep learning-based single-shot pre-diction
of differential effects of anti-VEGF treatment in patients with diabetic macular edema. Biomed. Opt. Express 2020, 11, 1139–1152.
[CrossRef] [PubMed]

45. Prahs, P.; Radeck, V.; Mayer, C.; Cvetkov, Y.; Cvetkova, N.; Helbig, H.; Märker, D. OCT-based deep learning algorithm for the
evaluation of treatment indication with anti-vascular endothelial growth factor medications. Graefe’s Arch. Clin. Exp. Ophthalmol.
2018, 256, 91–98. [CrossRef]

46. Manivannan, A.; Plskova, J.; Farrow, A.; Mckay, S.; Sharp, P.F.; Forrester, J.V. Ultra-Wide-Field Fluorescein Angiography of the
Ocular Fundus. Am. J. Ophthalmol. 2005, 140, 525–527. [CrossRef] [PubMed]

47. Falavarjani, K.G.; Wang, K.; Khadamy, J.; Sadda, S.R. Ultra-wide-field imaging in diabetic retinopathy; an overview. J. Curr.
Ophthalmol. 2016, 28, 57–60. [CrossRef] [PubMed]

48. Rabbani, H.; Allingham, M.J.; Mettu, P.S.; Cousins, S.W.; Farsiu, S. Fully Automatic Segmentation of Fluorescein Leakage in
Subjects With Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2015, 56, 1482–1492. [CrossRef]

49. Ehlers, J.P.; Wang, K.; Vasanji, A.; Hu, M.; Srivastava, S.K. Automated quantitative characterisation of retinal vascular leakage
and microaneurysms in ultra-widefield fluorescein angiography. Br. J. Ophthalmol. 2017, 101, 696–699. [CrossRef] [PubMed]

50. O’Connell, M.; Sevgi, D.D.; Srivastava, S.K.; Whitney, J.; Hach, J.M.; Atwood, R.; Springer, Q.; Williams, J.; Vasanji, A.;
Reese, J.; et al. Longitudinal precision of vasculature parameter assessment on ultra-widefield fluorescein angiography using a
deep-learning model for vascular segmentation in eyes without vascular pathology. Investig. Ophthalmol. Vis. Sci. 2020, 61, 2010.

51. Sevgi, D.D.; Hach, J.; Srivastava, S.K.; Wykoff, C.; O’connell, M.; Whitney, J.; Reese, J.; Ehlers, J.P. Automated quality optimized
phase selection in ultra-widefield angiography using retinal vessel segmentation with deep neural networks. Investig. Ophthalmol.
Vis. Sci. 2020, 61, PB00125.

52. Sevgi, D.D.; Scott, A.W.; Martin, A.; Mugnaini, C.; Patel, S.; Linz, M.O.; Nti, A.; Reese, J.; Ehlers, J.P. Longitudinal assessment
of quantitative ultra-widefield ischaemic and vascular parameters in sickle cell retinopathy. Br. J. Ophthalmol. 2020. [CrossRef]
[PubMed]

53. Jiang, A.C.; Srivastava, S.K.; Hu, M.; Figueiredo, N.; Babiuch, A.; Boss, J.D.; Reese, J.L.; Ehlers, J.P. Quantitative Ultra-Widefield
Angiographic Features and Associations with Diabetic Macular Edema. Ophthalmol. Retin. 2020, 4, 49–56. [CrossRef] [PubMed]

54. Ehlers, J.P.; Jiang, A.C.; Boss, J.D.; Hu, M.; Figueiredo, N.; Babiuch, A.; Talcott, K.; Sharma, S.; Hach, J.; Le, T.K.; et al. Quantitative
Ultra-Widefield Angiography and Diabetic Retinopathy Severity. Ophthalmology 2019, 126, 1527–1532. [CrossRef]

55. Babiuch, A.S.; Wykoff, C.C.; Srivastava, S.K.; Talcott, K.; Zhou, B.; Hach, J.; Hu, M.; Reese, J.L.; Ehlers, J.P. Retinal Leakage Index
Dynamics On Ultra-Widefield Fluorescein Angiography In Eyes Treated With Intravitreal Aflibercept For Proliferative Diabetic
Retinopathy In The Recovery Study. Retina 2020, 40, 2175–2183. [CrossRef] [PubMed]

56. Verma, A.; Indian Retina Research Associates (IRRA); Alagorie, A.R.; Ramasamy, K.; van Hemert, J.; Yadav, N.; Pappuru, R.R.;
Tufail, A.; Nittala, M.G.; Sadda, S.R.; et al. Distribution of peripheral lesions identified by mydriatic ultra-wide field fundus
imaging in diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258, 725–733. [CrossRef]

57. Silva, P.S.; Cruz, A.J.D.; Ledesma, M.G.; van Hemert, J.; Radwan, A.; Cavallerano, J.; Aiello, L.M.; Sun, J.K. Diabetic Retinopathy
Severity and Peripheral Lesions Are Associated with Nonperfusion on Ultrawide Field Angiography. Ophthalmology 2015, 122,
2465–2472. [CrossRef]

58. Figueiredo, N.; Srivastava, S.K.; Singh, R.P.; Babiuch, A.; Sharma, S.; Rachitskaya, A.; Talcott, K.; Reese, J.; Hu, M.; Ehlers, J.P.
Longitudinal Panretinal Leakage and Ischemic Indices in Retinal Vascular Disease after Aflibercept Therapy. Ophthalmol. Retin.
2020, 4, 154–163. [CrossRef]

59. Wykoff, C.C.; Nittala, M.G.; Zhou, B.; Fan, W.; Velaga, S.B.; Lampen, S.I.; Rusakevich, A.; Ehlers, J.P.; Babiuch, A.;
Brown, D.M.; et al. Intravitreal Aflibercept for Retinal Nonperfusion in Proliferative Diabetic Retinopathy. Ophthalmol. Retin.
2019, 3, 1076–1086. [CrossRef]

60. Yu, H.J.; Ehlers, J.P.; Sevgi, D.D.; Hach, J.; O’Connell, M.; Reese, J.L.; Srivastava, S.K.; Wykoff, C.C. Real-Time Photographic- and
Fluorescein Angiographic-Guided Management of Diabetic Retinopathy: Randomized PRIME Trial Outcomes. Am. J. Ophthalmol.
2021, 226, 126–136. [CrossRef] [PubMed]

61. Fan, W.; Nittala, M.G.; Velaga, S.B.; Hirano, T.; Wykoff, C.C.; Ip, M.; Lampen, S.I.; van Hemert, J.; Fleming, A.; Verhoek, M.; et al.
Distribution of Nonperfusion and Neovascularization on Ultrawide-Field Fluorescein Angiography in Proliferative Diabetic
Retinopathy (RECOVERY Study): Report 1. Am. J. Ophthalmol. 2019, 206, 154–160. [CrossRef] [PubMed]

62. Mainster, M.A. The fractal properties of retinal vessels: Embryological and clinical implications. Eye 1990, 4, 235–241. [CrossRef]
[PubMed]

63. Fan, W.; Uji, A.; Wang, K.; Falavarjani, K.G.; Wykoff, C.C.; Brown, D.M.; Van Hemert, J.; Sagong, M.; Sadda, S.R.; Ip, M. Severity
Of Diabetic Macular Edema Correlates With Retinal Vascular Bed Area On Ultra-Wide Field Fluorescein Angiography: DAVE
Study. Retina 2020, 40, 1029–1037. [CrossRef]

64. Fan, W.; Nittala, M.G.; Fleming, A.; Robertson, G.; Uji, A.; Wykoff, C.C.; Brown, D.M.; van Hemert, J.; Ip, M.; Wang, K.; et al.
Relationship Between Retinal Fractal Dimension and Nonperfusion in Diabetic Retinopathy on Ultrawide-Field Fluorescein
Angiography. Am. J. Ophthalmol. 2020, 209, 99–106. [CrossRef] [PubMed]

65. Sevgi, D.D.; Srivastava, S.K.; Whitney, J.; O’Connell, M.; Kar, S.S.; Hu, M.; Reese, J.; Madabhushi, A.; Ehlers, J.P. Characterization
of Ultra-Widefield Angiographic Vascular Features in Diabetic Retinopathy with Automated Severity Classification. Ophthalmol.
Sci. 2021, 1, 100049. [CrossRef]

http://doi.org/10.1364/BOE.379150
http://www.ncbi.nlm.nih.gov/pubmed/32133239
http://doi.org/10.1007/s00417-017-3839-y
http://doi.org/10.1016/j.ajo.2005.02.055
http://www.ncbi.nlm.nih.gov/pubmed/16139004
http://doi.org/10.1016/j.joco.2016.04.001
http://www.ncbi.nlm.nih.gov/pubmed/27331147
http://doi.org/10.1167/iovs.14-15457
http://doi.org/10.1136/bjophthalmol-2016-310047
http://www.ncbi.nlm.nih.gov/pubmed/28432113
http://doi.org/10.1136/bjophthalmol-2020-317241
http://www.ncbi.nlm.nih.gov/pubmed/33130554
http://doi.org/10.1016/j.oret.2019.08.008
http://www.ncbi.nlm.nih.gov/pubmed/31690541
http://doi.org/10.1016/j.ophtha.2019.05.034
http://doi.org/10.1097/IAE.0000000000002727
http://www.ncbi.nlm.nih.gov/pubmed/31917731
http://doi.org/10.1007/s00417-020-04607-w
http://doi.org/10.1016/j.ophtha.2015.07.034
http://doi.org/10.1016/j.oret.2019.09.001
http://doi.org/10.1016/j.oret.2019.07.011
http://doi.org/10.1016/j.ajo.2021.01.024
http://www.ncbi.nlm.nih.gov/pubmed/33529593
http://doi.org/10.1016/j.ajo.2019.04.023
http://www.ncbi.nlm.nih.gov/pubmed/31078541
http://doi.org/10.1038/eye.1990.33
http://www.ncbi.nlm.nih.gov/pubmed/2323476
http://doi.org/10.1097/IAE.0000000000002579
http://doi.org/10.1016/j.ajo.2019.08.015
http://www.ncbi.nlm.nih.gov/pubmed/31472160
http://doi.org/10.1016/j.xops.2021.100049


J. Pers. Med. 2021, 11, 1161 14 of 15

66. Fang, M.; Fan, W.; Shi, Y.; Ip, M.S.; Wykoff, C.C.; Wang, K.; Falavarjani, K.G.; Brown, D.M.; van Hemert, J.; Sadda, S.R.
Classification of Regions of Nonperfusion on Ultra-widefield Fluorescein Angiography in Patients with Diabetic Macular Edema.
Am. J. Ophthalmol. 2019, 206, 74–81. [CrossRef] [PubMed]

67. Moosavi, A.; Figueiredo, N.; Prasanna, P.; Srivastava, S.K.; Sharma, S.; Madabhushi, A.; Ehlers, J.P. Imaging Features of Vessels
and Leakage Patterns Predict Extended Interval Aflibercept Dosing Using Ultra-Widefield Angiography in Retinal Vascular
Disease: Findings From the PERMEATE Study. IEEE Trans. Biomed. Eng. 2021, 68, 1777–1786. [CrossRef]

68. Hormel, T.T.; Jia, Y.; Jian, Y.; Hwang, T.S.; Bailey, S.T.; Pennesi, M.E.; Wilson, D.J.; Morrison, J.C.; Huang, D. Plexus-specific retinal
vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography. Prog. Retin. Eye
Res. 2021, 80, 100878. [CrossRef]

69. Shahlaee, A.; Pefkianaki, M.; Hsu, J.; Ho, A.C. Measurement of Foveal Avascular Zone Dimensions and its Reliability in Healthy
Eyes Using Optical Coherence Tomography Angiography. Am. J. Ophthalmol. 2016, 161, 50–55.e1. [CrossRef] [PubMed]

70. Barraso, M.; Alé-Chilet, A.; Hernández, T.; Oliva, C.; Vinagre, I.; Ortega, E.; Figueras-Roca, M.; Sala-Puigdollers, A.; Esquinas, C.;
Esmatjes, E.; et al. Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 1: Diabetic Retinopathy.
Transl. Vis. Sci. Technol. 2020, 9, 34. [CrossRef] [PubMed]

71. Salz, D.A.; De Carlo, T.E.; Adhi, M.; Moult, E.M.; Choi, W.; Baumal, C.R.; Witkin, A.J.; Duker, J.S.; Fujimoto, J.G.; Waheed,
N.K. Select Features of Diabetic Retinopathy on Swept-Source Optical Coherence Tomographic Angiography Compared with
Fluorescein Angiography and Normal Eyes. JAMA Ophthalmol. 2016, 134, 644–650. [CrossRef]

72. Freiberg, F.J.; Pfau, M.; Wons, J.; Wirth, M.A.; Becker, M.D.; Michels, S. Optical coherence tomography angiography of the foveal
avascular zone in diabetic retinopathy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2016, 254, 1051–1058. [CrossRef]

73. Balaratnasingam, C.; Inoue, M.; Ahn, S.; McCann, J.; Dhrami-Gavazi, E.; Yannuzzi, L.A.; Freund, K.B. Visual Acuity Is Correlated
with the Area of the Foveal Avascular Zone in Diabetic Retinopathy and Retinal Vein Occlusion. Ophthalmology 2016, 123,
2352–2367. [CrossRef] [PubMed]

74. Samara, W.A.; Shahlaee, A.; Adam, M.; Khan, M.A.; Chiang, A.; Maguire, J.I.; Hsu, J.; Ho, A.C. Quantification of Diabetic Macular
Ischemia Using Optical Coherence Tomography Angiography and Its Relationship with Visual Acuity. Ophthalmology 2017, 124,
235–244. [CrossRef]

75. Lee, H.; Lee, M.; Chung, H.; Kim, H.C. Quantification Of Retinal Vessel Tortuosity In Diabetic Retinopathy Using Optical
Coherence Tomography Angiography. Retina 2018, 38, 976–985. [CrossRef] [PubMed]

76. Zarranz-Ventura, J.; Barraso, M.; Alé-Chilet, A.; Hernandez, T.; Oliva, C.; Gascón, J.; Sala-Puigdollers, A.; Figueras-Roca, M.;
Vinagre, I.; Ortega, E.; et al. Evaluation of microvascular changes in the perifoveal vascular network using optical coherence
tomography angiography (OCTA) in type I diabetes mellitus: A large scale prospective trial. BMC Med. Imaging 2019, 19, 1–6.
[CrossRef] [PubMed]

77. Chu, Z.; Lin, J.; Gao, C.; Xin, C.; Zhang, Q.; Chen, C.-L.; Roisman, L.; Gregori, G.; Rosenfeld, P.J.; Wang, R. Quantitative assessment
of the retinal microvasculature using optical coherence tomography angiography. J. Biomed. Opt. 2016, 21, 066008. [CrossRef]

78. Dupas, B.; Minvielle, W.; Bonnin, S.; Couturier, A.; Erginay, A.; Massin, P.; Gaudric, A.; Tadayoni, R. Association Between Vessel
Density and Visual Acuity in Patients with Diabetic Retinopathy and Poorly Controlled Type 1 Diabetes. JAMA Ophthalmol. 2018,
136, 721–728. [CrossRef]

79. Nguyen, T.T.; Wang, J.J.; Sharrett, A.R.; Islam, F.A.; Klein, R.; Klein, B.E.; Cotch, M.F.; Wong, T.Y. Relationship of Retinal Vascular
Caliber with Diabetes and Retinopathy: The Multi-Ethnic Study of Atherosclerosis (MESA). Diabetes Care 2007, 31, 544–549.
[CrossRef]

80. Tsai, A.S.; Wong, T.Y.; Lavanya, R.; Zhang, R.; Hamzah, H.; Tai, E.S.; Cheung, C. Differential association of retinal arteriolar and
venular caliber with diabetes and retinopathy. Diabetes Res. Clin. Pr. 2011, 94, 291–298. [CrossRef] [PubMed]

81. Tang, F.Y.; Ng, D.S.; Lam, A.; Luk, F.; Wong, R.; Chan, C.; Mohamed, S.; Fong, A.; Lok, J.; Tso, T.; et al. Determinants of
Quantitative Optical Coherence Tomography Angiography Metrics in Patients with Diabetes. Sci. Rep. 2017, 7, 1–10. [CrossRef]
[PubMed]

82. Maloca, P.M.; IOB Study Group; Spaide, R.F.; De Carvalho, E.R.; Studer, H.P.; Hasler, P.W.; Scholl, H.P.N.; Heeren, T.; Schotten-
hamml, J.; Balaskas, K.; et al. Novel biomarker of sphericity and cylindricity indices in volume-rendering optical coherence
tomography angiography in normal and diabetic eyes: A preliminary study. Graefe’s Arch. Clin. Exp. Ophthalmol. 2020, 258,
711–723. [CrossRef]

83. Le, D.; Alam, M.; Miao, B.A.; Lim, J.I.; Yao, X. Fully automated geometric feature analysis in optical coherence tomography
angiography for objective classification of diabetic retinopathy. Biomed. Opt. Express 2019, 10, 2493–2503. [CrossRef] [PubMed]

84. Nassisi, M.; Lei, J.; Abdelfattah, N.; Karamat, A.; Balasubramanian, S.; Fan, W.; Uji, A.; Marion, K.M.; Baker, K.; Huang, X.; et al.
OCT Risk Factors for Development of Late Age-Related Macular Degeneration in the Fellow Eyes of Patients Enrolled in the
HARBOR Study. Ophthalmology 2019, 126, 1667–1674. [CrossRef] [PubMed]

85. Toth, C.A.; Tai, V.; Chiu, S.J.; Winter, K.; Sevilla, M.B.; Daniel, E.; Grunwald, J.E.; Jaffe, G.J.; Martin, D.F.; Ying, G.-S.; et al. Linking
OCT, Angiographic, and Photographic Lesion Components in Neovascular Age-Related Macular Degeneration. Ophthalmol.
Retin. 2017, 2, 481–493. [CrossRef] [PubMed]

86. Lunasco, L.; Abraham, J.R.; Sarici, K.; Sevgi, D.D.; Hanumanthu, A.; Cetin, H.; Hu, M.; Srivastava, S.; Reese, J.; Ehlers, J.P.
Comparative Assessment of Long-Term Longitudinal Multi-Layer Retinal Dynamics in Non-neovascular Age-Related Macular

http://doi.org/10.1016/j.ajo.2019.03.030
http://www.ncbi.nlm.nih.gov/pubmed/30959003
http://doi.org/10.1109/TBME.2020.3018464
http://doi.org/10.1016/j.preteyeres.2020.100878
http://doi.org/10.1016/j.ajo.2015.09.026
http://www.ncbi.nlm.nih.gov/pubmed/26423672
http://doi.org/10.1167/tvst.9.10.34
http://www.ncbi.nlm.nih.gov/pubmed/33062397
http://doi.org/10.1001/jamaophthalmol.2016.0600
http://doi.org/10.1007/s00417-015-3148-2
http://doi.org/10.1016/j.ophtha.2016.07.008
http://www.ncbi.nlm.nih.gov/pubmed/27523615
http://doi.org/10.1016/j.ophtha.2016.10.008
http://doi.org/10.1097/IAE.0000000000001618
http://www.ncbi.nlm.nih.gov/pubmed/28333883
http://doi.org/10.1186/s12880-019-0391-8
http://www.ncbi.nlm.nih.gov/pubmed/31752726
http://doi.org/10.1117/1.JBO.21.6.066008
http://doi.org/10.1001/jamaophthalmol.2018.1319
http://doi.org/10.2337/dc07-1528
http://doi.org/10.1016/j.diabres.2011.07.032
http://www.ncbi.nlm.nih.gov/pubmed/21864932
http://doi.org/10.1038/s41598-017-02767-0
http://www.ncbi.nlm.nih.gov/pubmed/28566760
http://doi.org/10.1007/s00417-019-04582-x
http://doi.org/10.1364/BOE.10.002493
http://www.ncbi.nlm.nih.gov/pubmed/31149381
http://doi.org/10.1016/j.ophtha.2019.05.016
http://www.ncbi.nlm.nih.gov/pubmed/31281056
http://doi.org/10.1016/j.oret.2017.09.016
http://www.ncbi.nlm.nih.gov/pubmed/31047330


J. Pers. Med. 2021, 11, 1161 15 of 15

Degeneration in Eyes Progressing to Subfoveal Geographic Atrophy and Eyes without Progression. Investig. Ophthalmol. Vis. Sci.
2021, 62, 2548.

87. Hanumanthu, A.; Sarici, K.; Abraham, J.R.; Whitney, J.; Lunasco, L.; Sevgi, D.D.; Cetin, H.; Srivastava, S.K.; Reese, J.; Ehlers,
J.P. Utilizing Higher-Order Quantitative SD-OCT Biomarkers in a Machine Learning Prediction Model for the Development of
Subfoveal Geographic Atrophy in Age-Related Macular Degeneration. Investig. Ophthalmol. Vis. Sci. 2021, 62, 98.

88. Lunasco, L.; Abraham, J.R.; Sarici, K.; Sevgi, D.D.; Hanumanthu, A.; Cetin, H.; Hu, M.; Srivastava, S.K.; Reese, J.; Ehlers, J.P.
Risk Classification for Progression to Subfoveal Geographic Atrophy in Dry Age-Related Macular Degeneration Using Machine
Learning-Enabled Outer Retinal Feature Extraction. OSLI Retin. 2021, in press.

89. Abdelfattah, N.; Zhang, H.; Boyer, D.S.; Rosenfeld, P.J.; Feuer, W.J.; Gregori, G.; Sadda, S.R. Drusen Volume as a Predictor of
Disease Progression in Patients with Late Age-Related Macular Degeneration in the Fellow Eye. Investig. Opthalmol. Vis. Sci. 2016,
57, 1839–1846. [CrossRef]

90. Ehlers, J.P.; Zahid, R.; Kaiser, P.K.; Heier, J.S.; Brown, D.M.; Meng, X.; Reese, J.; Le, T.K.; Lunasco, L.; Hu, M.; et al. Longitudinal
Assessment of Ellipsoid Zone Integrity, Subretinal Hyperreflective Material, and Subretinal Pigment Epithelium Disease in
Neovascular Age-Related Macular Degeneration. Ophthalmol. Retin. 2021. [CrossRef]

91. Waldstein, S.; Philip, A.-M.; Leitner, R.; Simader, C.; Langs, G.; Gerendas, B.S.; Schmidt-Erfurth, U. Correlation of 3-Dimensionally
Quantified Intraretinal and Subretinal Fluid with Visual Acuity in Neovascular Age-Related Macular Degeneration. JAMA
Ophthalmol. 2016, 134, 182–190. [CrossRef] [PubMed]

92. De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Askham, H.; Glorot, X.; O’Donoghue, B.;
Visentin, D.; et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350.
[CrossRef]

93. Lee, C.S.; Baughman, D.M.; Lee, A.Y. Deep Learning Is Effective for Classifying Normal versus Age-Related Macular Degeneration
OCT Images. Ophthalmol. Retin. 2017, 1, 322–327. [CrossRef] [PubMed]

94. De Sisternes, L.; Simon, N.; Tibshirani, R.; Leng, T.; Rubin, D.L. Quantitative SD-OCT Imaging Biomarkers as Indicators of
Age-Related Macular Degeneration Progression. Investig. Opthalmology Vis. Sci. 2014, 55, 7093–7103. [CrossRef] [PubMed]

95. Schmidt-Erfurth, U.; Waldstein, S.M.; Klimscha, S.; Sadeghipour, A.; Hu, X.; Gerendas, B.S.; Osborne, A.; Bogunović, H. Prediction
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