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Abstract: The present study aimed to investigate the effect of transcranial alternating current stimu-
lation (tACS) on the primary motor cortex (M1) during action observation, and subsequent action
execution, on motor cortex excitability. The participants received tACS at 10 Hz or 20 Hz, or a
sham stimulation over the left M1 for 10 min while they observed a video displaying a repeated
button-tapping task using the right hand, and then performed an identical task with their right
hand. Motor-evoked potential (MEP) amplitudes were measured before (T0) and after the action
observation paired with tACS or a sham stimulation (T1), and after the performance of the action
(T2). The results showed that MEPs were significantly reduced at time point T1 (p = 0.042, Cohen’s
d =0.611) and T2 (p = 0.0003, Cohen’s d = 0.852) in the 20 Hz tACS condition, in contrast with the
sham stimulation. There was a significantly smaller MEP amplitude at time point T2 in the 20 Hz
tACS condition, as compared to the 10 Hz tACS condition (p = 0.01, Cohen’s d = 0.622), but the
MEP amplitude did not significantly change at time point T1 between the 20 Hz and 10 Hz tACS
conditions (p = 0.136, Cohen’s d = 0.536). There were no significant differences at time point T1 and
T2 between the 10 Hz tACS condition and the sham stimulation. We conclude that 20 Hz tACS
during action observation inhibited motor cortex excitability and subsequently inhibited execution-
related motor cortex excitability. The effects of tACS on task-related motor cortex excitability are
frequency-dependent.

Keywords: transcranial alternating current stimulation; motor cortex excitability; action observation;
action execution

1. Introduction

Functional neuroimaging studies provide evidence that the action-observation and
the execution-related cortical network includes the primary motor cortex (M1), the ventral
premotor cortex, the primary somatosensory cortex, and the inferior frontal gyrus [1,2].
Cortical activity in these networks is enhanced when individuals perform a movement or
observe an identical movement performed by another individual [3]. The alpha (8-13 Hz)
and beta (14-30 Hz) components of the mu rhythm desynchronize within these networks
when preparing, executing and controlling voluntary movements, as well as action obser-
vation [4,5]. Neuroscientific research further shows that alpha oscillations are associated
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with perception, memory, attention, and execution. The increased power of alpha oscilla-
tions reflects the inhibition of task-irrelevant brain areas, while the attenuation of alpha
oscillations indicates task-relevant neuronal processing [6-9]. Beta band oscillations are
considered “antikinematic”, since beta oscillations are prominent during tonic motor out-
put but desynchronize during voluntary movement preparation, execution, and motor
learning [7,10].

The brain is a complex adaptive system that could be flexibly adaptive to the chang-
ing environment. Structural, functional and effective connectivity are three interrelated
forms of connectivity that are involved in the brain network, forming the basic concept of
neuroplasticity [11]. Non-invasive brain stimulation techniques may induce neuroplastic
changes in brain areas [11]. Transcranial electrical stimulation is suitable for the modulation
the activity of the respective brain networks and the alteration of task-related physiological
processes, as well as task performance. Transcranial alternating current stimulation (tACS)
involves the application of weak non-invasive oscillating currents over the cortex to alter
neural excitability [12]. Frequency-specific entrainment of endogenous brain oscillations
and the modulation of spike-timing-dependent plasticity (STDP) has been proposed to be
the physiological and working mechanism of tACS [11,13]. A study by Antal and Paulus
(2012) showed that neuroplastic changes are the mechanism of tACS after-effects [14].
Furthermore, tACS modulates functional connectivity that, theoretically, might be applied
to change emergent properties of network function [11]. Several studies in non-human
primates have demonstrated that tACS entrains activity on a single-neuron level in a
frequency-specific way and affects neural spike timing in a dose-dependent manner [15,16].
Weak sinusoidal voltages were shown to elicit spiking activity, and alternating current
stimulation at the frequency of endogenous oscillations mainly affects spike timing. The
effect of tACS may be explained via the synaptic plasticity modulated by STDP [13]. Hu-
man studies with simultaneous electroencephalographic and magnetoencephalographic
recordings also show entrainment of brain oscillations by tACS [17,18]. The behavioral
effects of tACS have thus been related to the neural entrainment of ongoing oscillatory
brain activity to the respective stimulation frequency [9]. Transcranial alternating current
stimulation modulates intrinsic brain oscillations via interference with endogenous cortical
rhythms when the stimulation frequency matches the natural rhythm of the stimulated
brain region [9]. Transcranial alternating current stimulation applied at 15 Hz and 20 Hz
with an intensity of 1 mA, delivered over M1 for 10 or 20 min decreased motor cortex
excitability [13,19,20] and slowed down voluntary movement [13] in some studies. One
possible mechanism of action is that beta oscillations are linked to the balance between
GABAergic and glutamatergic input [21]. The enhancement of GABAergic activity is associ-
ated with higher resting beta power and beta desynchronization during movement-related
processes [12,22]. Other studies, however, suggest that 20 Hz tACS over M1 for 15 min with
1.5-2 mA of stimulation intensity increases motor cortex excitability [23,24]. Wischnewski
et al. (2019) reported that a 2 mA stimulation protocol increased motor-evoked potential
(MEP) amplitudes under placebo stimulation, but this effect was blocked under the N-
methyl-D-aspartate receptor (NMDAR) antagonist dextromethorphan. This dependency
of the excitability-enhancing effect on glutamatergic receptor activity is in line with the
mechanism of STDP [23]. The discrepancies between study results may be attributed to the
different current intensities of tACS applied in the respective experiments. In the studies of
Wischnewski et al. (2019) and Gallasch et al. (2018), the current intensities were 2 mA and
1.5 mA, respectively [23,24], while in studies that reported an inhibitory effect in motor
cortex excitability, 1 mA was used as the intervention intensity [19,20]. This mechanistic
explanation is in line with observations showing that high current intensity induces excita-
tory effects, while low current density induces inhibitory effects [25]. The diverse activation
thresholds of different pyramidal cell sub-populations might contribute to the inverse effect
of different current intensities [25]. By contrast, 10 Hz tACS continuously delivered over
M1 for a duration of 2 to 10 min did not induce changes in motor cortex excitability [19,26].
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This might be explained by the fact that alpha oscillations mainly be located in the primary
somatosensory cortex and are more associated with sensory processes [27].

In this study, we contrasted the effect of tACS at an intensity of 1 mA and sham
stimulation over M1 on motor cortex activity during action observation and subsequent
action execution. Since the desynchronization of beta oscillations in motor cortical regions
are associated with voluntary movement, we expected that 20 Hz tACS over M1 for 10 min
during action observation would synchronize local cortical oscillatory activity and/or
induce excitability-diminishing plasticity, thus reducing motor cortical excitability, and
that this effect would remain during subsequent action execution. Alpha oscillations
predominantly reflect visuospatial-related parameters during action observation [28] and
are located in the primary somatosensory cortex during motor tasks [29]; therefore, we
hypothesized that tACS at 10 Hz would not influence motor cortex excitability during the
observation or subsequent performance of actions.

2. Materials and Methods
2.1. Participants

Twenty-eight healthy adults (mean age, 24.29 + 3.30 years; 10 females) gave written
informed consent to participate in this study. The participants were randomly assigned to
tACS at 10 Hz and 20 Hz and/or a sham stimulation and participated in the experimental
conditions described below. Fifteen participants performed only one condition, six subjects
participated in two conditions, and seven participants performed in three conditions. Each
stimulation condition was performed by 16 participants. To prevent carryover effects,
all the experimental conditions were separated by at least 7 days (10.40 + 6.87 days).
Three participants were separated by 21, 27, and 28 days between two experimental
conditions, respectively, because of personal reasons. None of the participants were
pregnant, had metal implants, a history of orthopedic disorders, central nervous system
disease, neurological or psychiatric disease, or other medical diseases. All participants had
normal or corrected-to-normal vision. According to the Oldfield’s Edinburgh Handedness
Inventory [30], only right-handed participants were recruited. The study was approved by
the ethics committee of the University of Rostock and conformed to the standards of the
Declaration of Helsinki.

2.2. Transcranial Magnetic Stimulation

Single-pulse bi-phasic transcranial magnetic stimulation (TMS) over the left M1 was
performed using a D-B80 coil connected to a MagPro R100 magnetic stimulator (Medtronic,
Skovlunde, Denmark) to monitor motor cortex excitability. The TMS coil was held tan-
gentially to the scalp with the handle pointing backward and laterally angled at about 45°
away from the midline. The heads of the participants were stabilized by a chin-forehead
support to minimize head movement. The “hot spot” was defined as the optimal cortical
representation of the right first dorsal interosseous (FDI) muscle, where the coil was moved
in 0.5 cm steps at a moderately suprathreshold stimulation intensity to identify the coil
position that consistently elicited the largest MEPs. The site was marked with a soft pen,
and the handle was fixed by a mechanical arm (Manfrotto, Feltre, Italy) to ensure the
correct position of the coil throughout the experiment. The TMS pulse was delivered at an
intensity that evoked MEP amplitudes of approximately 1 mV (SI1mV) peak-to-peak at
baseline. Twenty MEPs per time point were obtained with the respective TMS intensity
throughout the experiment, and the interval between the TMS pulses was 4 s, with a jitter
of £0.5s.

Surface electromyography (EMG) was recorded from the right FDI muscle via Ag-
AgC(l electrodes in a belly-tendon montage (Hellige Baby-Electrodes; GE Medical Systems,
Milwaukee, WI, USA). A ground electrode was positioned over the right lateral biceps
brachii muscle. The signals were amplified with an amplification rate of 1000 (Biovision,
Wehrheim, Germany), and filtered with a 5 Hz digital second-order Butterworth high-pass
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filter. All the EMG signals were collected by DAQ-Card 6024, and were processed by
DIAdem software (National Instruments, Austin, TX, USA).

2.3. tACS

In this single-blind study, tACS was delivered for a duration of 10 min with 5 s
of ramp-up and ramp-down by a battery-driven electrical stimulator (BrainSTIM, EMS,
Bologna, Italy) through a pair of surface saline-soaked sponge electrodes (5 x 5 cm?). The
target electrode was centered over the left M1 representational site of the right FDI muscle,
which was identified by TMS. The return electrode was positioned over the contralateral
supraorbital region. Transcranial alternating current stimulation was applied at 10 Hz and
20 Hz, respectively, with a current intensity of 1 mA (peak-to-peak), with no direct current
offset. For the sham stimulation, the current was turned on for 30 s, with 5 s of fade-in and
fade-out, and then turned off.

2.4. Action Observation and Execution

Participants kept their hands in a relaxed position and were seated comfortably in
front of a computer screen (24 inches), located at 80 cm eye distance. Participants were
instructed to watch a video displaying a right hand pressing buttons that were mapped
horizontally in a box. The video lasted for 10 min and was composed of 20 short clips.
Twenty-second-long clips were displayed at natural speed, and 40 s long clips displayed at
half of natural speed were presented 10 times. A 20 s long clip was always followed by a
40 s long clip. In the video, four black spots were shown on the screen (from left to right 1,
2,3, and 4, respectively). While the black spot turned into a red spot every 3 s in an orderly
sequence (1, 3, 3, 1, and 4, respectively), a human right hand reached the box and pressed
the appropriate button with the index finger (the other fingers shrank). The hand returned
to the resting position immediately after pressing the button. Since attention affects motor
cortical plasticity [31], the participants were asked to concentrate on the button-pressing
task displayed on the screen and count the number of buttons pressed in the 10 min long
video. At the end of the video, the participants verbally reported the counted amount of
button presses.

After the action observation, the participants were asked to perform the same task
that was displayed in the video. The participants were seated in front of a table with a
24-inch computer screen and a custom-made box with four red buttons (from left to right
1, 2, 3, and 4, respectively). Each of the red buttons corresponded to the black spots on
the screen. In the beginning, the participants put their right hand at a 20 cm distance from
the button box. The left hand was kept in a relaxed position throughout the experiment.
The participants were asked to pay attention to the screen. When the black spots turned
into red spots in a modeled response sequence (1, 3, 3, 1, and 4, respectively) every 3 s, the
participants had to reach for the box and press the corresponding button with the index
finger of their right hand immediately, and then move the right hand quickly back to its
original position. The action execution task lasted for 160 s and the response sequence was
repeated eight times.

2.5. Experimental Design and Procedures

Before the experiment, neurological examinations were performed to exclude patients
with neurological diseases, and the Edinburgh Handedness Inventory was used to include
only right-handed participants. The participants were informed about the experimental
procedures upon arrival at the laboratory and signed an informed consent form. The
participants were seated in a chair with their heads stabilized by a chin-forehead support.
The TMS coil was positioned over the left M1, and the optimal position of the magnetic coil
for activating the right resting FDI muscle was determined, as described above. Twenty
MEPs were obtained with the respective TMS intensity for the determination of baseline
motor cortex excitability (T0). The participants were then seated comfortably in front of a
computer screen and watched the video displaying the button-pressing task for 10 min.
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During the action observation, the participants received 10 Hz tACS, 20 Hz tACS or sham
a stimulation over the aforementioned “hot spot”. After the end of the action observation
combined with the tACS or sham stimulation, 20 MEPs were again obtained via TMS with
baseline intensity (T1). Afterwards, the participants performed the action execution task,
and motor cortex excitability was again monitored via 20 MEPs elicited by TMS (T2). For
an overview of the time course of the experiment, see Figure 1.

S||M|| 10 Hz tACS, 20 Hz tACS | (M Action
E or Sham condition E .
I P ||during action observation| | P G

TO T1

Figure 1. Timeline of the experimental design. Either tACS at 10 Hz and 20 Hz or a sham stimulation
was applied over the left M1 during the action observation, followed by the action execution.
Twenty motor-evoked potentials (MEPs) per time point (before, and after the action observation, and
after the action execution) were obtained via a single-pulse TMS with an intensity that elicited MEP
amplitudes of about 1 mV (SIImV) at baseline.

2.6. Statistical Analysis

SPSS (version 22.0; IBM, Armonk, NY, USA) and Prism (Version 8; GraphPad Software,
San Diego, CA, USA) were used to perform the statistical analyses. In case of spontaneous
muscle activity in the time window of 300 ms prior to TMS with an amplitude above 50 1V,
the respective MEPs were discarded. The average peak-to-peak amplitudes of the 20 MEPs
for each block were calculated individually and normalized to baseline. The differences in
baseline MEP amplitudes between the experimental conditions were analyzed by one-way
analysis of variance (ANOVA). The preliminary analyses of SIImV showed heterogeneity
of variance (one-way ANOVA) that could not be improved using standard transformations
(base 10, natural logarithm). Therefore, the differences in SIImV between the experimental
conditions were analyzed by using the Kruskal-Wallis test.

The intervention-related alterations of MEP amplitudes were analyzed by using
multi-level modeling analysis. The MEP amplitudes normalized by baseline served as
the dependent variable. The fixed effects in this model included time (three time points:
T0, T1, and T2), group (three stimulation conditions: 10 Hz tACS, 20 Hz tACS and sham
stimulation), and the time by group interaction. The subject-level intercept was included
in the model as a random effect. The Restricted Maximum Likelihood method was used to
minimize underestimated variance. Different candidate models were compared and the fit
of each model was evaluated by using Restricted Log Likelihood, Akaike’s Information
Criterion (AIC), and Schwarz’s Bayesian Criterion (BIC). Fisher’s LSD post-hoc tests were
performed to determine changes between the conditions. Cohen'’s d was applied to calculate
the effect sizes. The Shapiro-Wilk test was performed to explore the normal distribution of
the data. The significance threshold was set to p < 0.05 for all the statistical tests.

3. Results

All the participants tolerated tACS well. The stimulation conditions did not differ
significantly with respect to baseline SIImV and MEP amplitudes (all values of p > 0.422).

The multi-level modeling approach showed a significant main effect of group
(F47.056 = 5.387, p = 0.008), but not of time (Fysg193 = 1.364, p = 0.264), and no signifi-
cant interaction between time and group (Fus5737 = 1.774, p = 0.147). The post-hoc tests
showed that the MEP amplitudes were significantly smaller at time point T1 (after the ac-
tion observation) for the 20 Hz tACS condition (p = 0.042, Cohen’s d = 0.611) in comparison
with the sham stimulation, but did not significantly change between the 20 Hz and 10 Hz
tACS conditions (p = 0.136, Cohen’s d = 0.536). The results further revealed a significantly
smaller MEP amplitude at time point T2 (after the action execution) in the 20 Hz tACS
condition, as compared to the sham stimulation (p = 0.0003, Cohen’s d = 0.852), and the
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10 Hz tACS condition (p = 0.01, Cohen’s d = 0.622). No significant differences at time points
T1 and T2 were observed between the 10 Hz tACS and the sham stimulation conditions
(Figure 2). Representative examples of the EMG data traces and MEPs for a participant are
shown in Figure 3.

© 10 HztACS
1.41 A 20 Hz tACS
% Sham stimulation

1.21

1.04

0.84

0.6

MEP amplitude normalized by baseline

T0 T T2

Figure 2. Impact of tACS on motor cortex excitability. Either tACS at 10 Hz and 20 Hz or a
sham stimulation was applied over the left M1 during the action observation, followed by the
action execution. Motor-evoked potentials (MEPs) were recorded before the action observation (T0),
immediately after the action observation (T1), and after the action execution (T2). Each intervention
condition included 16 participants. Error bars represent the standard error of means. MEP amplitudes
significantly decreased following 20 Hz tACS at time T1 and T2, in contrast with the sham stimulation.
MEPs were significantly reduced in the 20 Hz tACS condition at time T2 in comparison with the
10 Hz tACS condition but did not significantly change at time point T1 between the 20 Hz and
10 Hz tACS conditions. There were no significant differences at time point T1 and T2 between the
10 Hz tACS condition and the sham stimulation. * denotes significant differences between groups
(*p <0.05).
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Figure 3. Raw electromyographic data traces from a representative individual showing motor-evoked
potentials (MEPs). MEPs evoked by TMS over the left motor cortex in the 20 Hz tACS (A), 10 Hz
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tACS (B) or sham stimulation (C) conditions. Either tACS at 20 Hz and 10 Hz or a sham stimulation
was applied over the left M1 during the action observation, followed by the action execution. MEPs
were recorded before the action observation (T0), immediately after the action observation (T1), and
after the action execution (T2).

4. Discussion

The main results of this study were that MEP amplitudes significantly decreased
following 20 Hz tACS over M1 during the action observation and after the subsequent
action execution. In contrast, no significant change of MEP amplitudes was observed in
the 10 Hz tACS condition in comparison with the sham stimulation.

Motor cortex excitability was not altered by the action observation, and execution,
under sham stimulation. This outcome is in accordance with the results of other studies,
which have shown that action observation alone does not modulate motor cortex excitability
immediately [32-34]. Similarly, action observation followed by action execution did not
enhance MEP amplitudes under sham stimulation conditions in a previous study by our
group, in which the same task was applied [1]. The missing effect of alpha tACS on motor
cortex excitability is in accordance with previous studies, in which alpha tACS (10 Hz)
applied over the left M1 did not modulate cortical excitability [26,35,36]. One reason for
these missing effects might be that MEPs measured by TMS over M1 mainly reflect changes
of cortical excitability (facilitation and inhibition) related to motor pathways [37], whereas
alpha oscillations originate mainly in postcentral regions and are more closely related
to sensory processes [27]. In the present study, the participants were asked to perform
action observation and execution that may have been more closely related to voluntary
movement. Some studies, however, indicated that tACS at alpha frequency improved
motor skill learning and consolidation [26,38]. It has been reported that alpha tACS over
left M1 improved the consolidation of general motor skills and sequence-specific skills in
elderly people, whereas it impaired sequence-specific skill consolidation in a serial reaction
time task in young adults [38]. The effect of alpha tACS on motor process might therefore
be age- and task-dependent.

In comparison with those who received the sham stimulation, the participants who
received beta tACS (20 Hz) showed diminished MEP amplitudes after action observation,
and subsequent action execution. This result is in line with a previous study by Cap-
pon et al. (2016) indicating that 10 min of 20 Hz tACS applied during a motor task resulted
in decreased MEP amplitudes [19]. In further accordance, Feurra et al. (2013) showed
that beta tACS decreased MEP amplitudes during motor imagery [39]. It is suggested that
the efficacy of tACS on cortical activity depends on the state of the stimulated cortical
area [40]. A 20 Hz tACS might have led to reduced desynchronization of local cortical
oscillatory activity and thus diminished task-related activity. Similarly, Zaghi et al. (2010)
reported an inhibitory effect of 15 Hz tACS applied for a duration of 20 min on motor cortex
excitability [20]. The underlying mechanism might be that 20 Hz tACS at an intensity of
1 mA during action observation and subsequent action execution induces GABAergic ac-
tivity augmentation, which contributes to the suppression of motor cortex excitability [12].
Another study by Wischnewski et al. (2019) indicated that N-methyl-D-aspartate receptor
(NMDAR) mediated synaptic plasticity after applying 20 Hz tACS at an intensity of 2 mA
in a resting state [23]. State-dependent influences and different intensity stimulations in
tACS interventions may induce different levels of motor cortex excitability. The assumed
entrainment of brain oscillations and reduction of cortical excitability following the inter-
vention with beta tACS over the motor cortex may also modulate motor behavior and
performance, although this was not explored in the present study, which might be used as
a therapeutic tool for neurological disorders in clinical practice. The delivery of tACS at
beta frequency over the primary motor cortex after motor skill acquisition facilitates consol-
idation and improves motor memory retention [41]. Beta tACS decreases the amplitude of
repetitive finger-tapping and slows down voluntary movements in healthy subjects [42,43].
A presumed inhibitory effect of beta tACS on unwanted movements would suggest that
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it may suppress excessive or unintended outputs of the motor system, for instance, in
tics or dyskinesias [10]. Accordingly, a case study demonstrated that 15 Hz tACS over
the sensorimotor cortex reduced dystonic symptoms in a patient with idiopathic cervical
dystonia [44].

A combined tACS-TMS approach was used to investigate the online effect of tACS
over the M1. In the research of Pozdniakov et al. (2021), increased motor cortex excitability
was detected during ongoing 20 Hz tACS stimulation in a resting state with no offline
effects in both 10 Hz and 20 Hz tACS conditions [45]. It could be inferred that the effect
of tACS was modulated by the time course of the stimulation’s administration (online
vs. offline). Feurra et al. (2019) indicated a greater excitatory online effect of beta-tACS
at rest than during action observation [46]. In the study of Cappon et al. (2016), an in-
hibitory offline effect on motor cortex excitability was observed when delivering 20 Hz
tACS during a masked prime task [19]. This state-dependent effect has been found in other
forms of non-invasive brain stimulation techniques. It has been reported that voluntary
muscle contraction after transcranial direct current stimulation (tDCS) reduced or even
tended to reverse the respective modulation effect of anodal or cathodal tDCS on motor
cortex excitability [47]. In one of our previous studies, transcranial random noise stimu-
lation (tRNS) applied during mirror-matched action observation increased motor cortex
excitability, while no effect was found when tRNS was combined with action observation
of mirror-reversed video, perceptual sequence video, or a landscape picture [1]. Combined
brain stimulation and different motor tasks may induce variable neuroplastic alterations
that should be used with caution in practical applications.

5. Limitations

This study has several limitations that should be mentioned. Motor performance was
not tested in the present study, thus we cannot draw conclusions about tACS-induced
behavioral changes, or about respective connections with the observed physiological effects.
Moreover, we did not obtain data about tACS effects on brain oscillatory activity, and thus
the underlying neurophysiological processes remain incompletely explored. Another
limitation was that we did not include a group on which we performed a tACS intervention
alone, so we were not able to compare the effect of tACS alone with the interaction between
tACS and action observation on motor cortex excitability. A further limitation was that we
studied the effects of tACS in healthy adults. If, and to what extent, the current findings
apply to patients with neurological or motor disorders remains to be investigated in
future studies.

6. Conclusions

Transcranial alternating current stimulation at 20 Hz but not 10 Hz during action
observation inhibited motor cortex excitability, and this effect remained after subsequent
action execution. The influence of tACS on task-related motor cortex excitability is thus
frequency-dependent. The current findings can help to develop therapeutic applications
in patients with neurological or psychiatric diseases involving pathologically enhanced
motor behavior-related cortical excitability.
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