## **Supplementary Material**

## Supplementary Figures



**Figure S1.** Summary of large *DMD* gene deletions. Shown are all large **(a)** out-of-frame, **(b)** inframe, and **(c)** other deletion patterns with their respective distributions in Duchenne and Becker muscular dystrophy (DMD, BMD) patients in our study population.



**Figure S2.** Summary of large *DMD* gene duplications. Shown are all large (a) out-of-frame and (b) in-frame duplication patterns with their respective distributions in Duchenne and Becker muscular dystrophy (DMD, BMD) patients in our study population.

## Supplementary Tables

| In-frame              | K19     | ABD1    | LBD1    | LBD2    | PAR-1b  | ABD2    | Synemin | nNOS    |
|-----------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| deletion <sup>2</sup> | (2-8)   | (2-8)   | (10-16) | (17-50) | (26-30) | (32-45) | (32-40) | (42-45) |
| 2-7                   | partial | partial |         |         |         |         |         |         |
| 3-4                   | partial | partial |         |         |         |         |         |         |
| 3-13                  | partial | partial | partial |         |         |         |         |         |
| 3-29                  | partial | partial | lacking | partial | partial |         |         |         |
| 3-37                  | partial | partial | lacking | partial | lacking | partial | partial |         |
| 3-42                  | partial | partial | lacking | partial | lacking | partial | lacking | partial |
| 3-44                  | partial | partial | lacking | partial | lacking | partial | lacking | partial |
| 3-47                  | partial | partial | lacking | partial | lacking | lacking | lacking | lacking |
| 5-9                   | partial | partial |         |         |         |         |         |         |
| 5-13                  | partial | partial | partial |         |         |         |         |         |
| 5-18                  | partial | partial | lacking | partial |         |         |         |         |
| 6-13                  | partial | partial | partial |         |         |         |         |         |
| 6-14                  | partial | partial | partial |         |         |         |         |         |
| 8-19                  | partial | partial | lacking | partial |         |         |         |         |
| 10-23                 |         |         | lacking | partial |         |         |         |         |
| 10-24                 |         |         | lacking | partial |         |         |         |         |
| 10-25                 |         |         | lacking | partial |         |         |         |         |
| 13-44                 |         |         | partial | partial | lacking | partial | lacking | partial |
| 13-47                 |         |         | partial | partial | lacking | lacking | lacking | lacking |
| 13-53                 |         |         | partial | lacking | lacking | lacking | lacking | lacking |
| 19-51                 |         |         |         | partial | lacking | lacking | lacking | lacking |
| 43-47                 |         |         |         | partial |         | partial |         | partial |
| 45-47                 |         |         |         | partial |         | partial |         | partial |
| 45-48                 |         |         |         | partial |         | partial |         | partial |
| 45-49                 |         |         |         | partial |         | partial |         | partial |
| 45-51                 |         |         |         | partial |         | partial |         | partial |
| 45-53                 |         |         |         | partial |         | partial |         | partial |
| 45-55                 |         |         |         | partial |         | partial |         | partial |
| 47                    |         |         |         | partial |         |         |         |         |
| 47-48                 |         |         |         | partial |         |         |         |         |
| 48                    |         |         |         | partial |         |         |         |         |
| 48-49                 |         |         |         | partial |         |         |         |         |
| 48-51                 |         |         |         | partial |         |         |         |         |
| 49-51                 |         |         |         | partial |         |         |         |         |
| 50-51                 |         |         |         | partial |         |         |         |         |
| 51-52                 |         |         |         |         |         |         |         |         |

**Table S1.** In-frame deletions and their effects on dystrophin protein-binding domains<sup>1</sup>.

<sup>1</sup> Information on domains from the eDystrophin database (<u>http://edystrophin.genouest.org/</u>), empty cells indicate that the domain is not affected by the mutation; exons, in parentheses, assigned to domains using information from the Leiden Muscular Dystrophy page (<u>https://www.dmd.nl/</u>), <sup>2</sup> Cell color indicates which patients the in-frame deletion has been observed in: white, Becker muscular dystrophy; black, Duchenne muscular dystrophy; gray, both patients

| Outcome                       | Mutation location <sup>1</sup> /<br>isoform affected <sup>2</sup> | Odds ratio<br>(95% CI)   | Other odds ratios (95% CI)                   | AUC    |  |
|-------------------------------|-------------------------------------------------------------------|--------------------------|----------------------------------------------|--------|--|
| Wheelchair use                | А                                                                 | ns                       | 1.757*** (1.55,2.05) Age; ns BMI/Steroids    | 0.9330 |  |
| (permanent +<br>intermittent) | В                                                                 | 6.136*<br>(1.44,33.99)   | 1.794*** (1.57,2.11) Age; ns BMI/Steroids    | 0.9408 |  |
|                               | С                                                                 | ns                       | 1.774*** (1.56,2.08) Age; ns BMI/Steroids    | 0.9398 |  |
|                               | D                                                                 | 0.0281**<br>(0.001,0.30) | 1.829*** (1.59,2.17) Age; ns BMI/Steroids    | 0.9382 |  |
|                               | Dp260                                                             | ns                       | 1.758*** (1.55,2.06) Age; ns BMI/Steroids    | 0.9317 |  |
|                               | Dp140                                                             | ns                       | 1.757*** (1.54,2.05) Age; ns BMI/Steroids    | 0.9322 |  |
|                               | Dp116                                                             | 0.0910**<br>(0.02,0.42)  | 1.831*** (1.59,2.18) Age; ns BMI/Steroids    | 0.9398 |  |
|                               | Dp71                                                              | 0.0211**<br>(0.001,0.18) | 1.851*** (1.60,2.21) Age; ns BMI/Steroids    | 0.9431 |  |
|                               | Dp40                                                              | ns                       | 1.774*** (1.56,2.08) Age; ns BMI/Steroids    | 0.9398 |  |
| Cardiomyopathy                | А                                                                 | ns                       | 1.314*** (1.20,1.46) Age; ns BMI/Steroids    | 0.8364 |  |
|                               | В                                                                 | ns                       | ns 1.328*** (1.21,1.48) Age; ns BMI/Steroids |        |  |
|                               | С                                                                 | not possible             |                                              |        |  |
|                               | D                                                                 | not possible             |                                              |        |  |
|                               | Dp260                                                             | ns                       | 1.310*** (1.20,1.45) Age; ns BMI/Steroids    | 0.8367 |  |
|                               | Dp140                                                             | 0.3662*<br>(0.14,0.92)   | 1.316*** (1.20,1.46) Age; ns BMI/Steroids    | 0.8516 |  |
|                               | Dp116                                                             | not possible             |                                              |        |  |
|                               | Dp71 not possible                                                 |                          |                                              |        |  |
|                               | Dp40                                                              | not possible             |                                              |        |  |

Table S2. Multiple logistic regression analysis for wheelchair use and cardiomyopathy status.

<sup>1</sup> Letters indicate which protein domain is affected by the mutation: A, actin-binding domain (exons 2-8, N=40); B, rod domain (exons 8-61, N=304); C, cysteine-rich domain (exons 63-69, N=15); D, C-terminal domain (exons 70-79, N=10), <sup>2</sup> Dp260 (exons 30-79, N=250), Dp140 (exons 45-79, N=203), Dp116 (exons 56-79, N=28), Dp71 (exons 63-79, N=20), Dp40 (exons 63-69, N=14). \**p*<0.05, \*\**p*<0.005, \*\*\**p*<0.0005; (N=342 DMD patients); ns, not significant; BMI, body mass index; CI, confidence interval; AUC, area under the receiver operating curve

## Table S3. Multiple linear regression analysis for left ventricle ejection fraction (LVEF) and forced vital capacity (FVC)

<sup>1</sup> Letters indicate which protein domain is affected by the mutation: A, actin-binding domain (exons 2-8, N=40); B, rod domain (exons 8-61, N=304); C, cysteine-rich domain (exons 63-69, N=15); D, C-terminal domain (exons 70-79, N=10), <sup>2</sup> Dp260 (exons 30-79, N=250), Dp140 (exons 45-79, N=203), Dp116 (exons 56-

| Outcome | Mutation location <sup>1</sup> /<br>isoform affected <sup>2</sup> | β<br>(95% CI)             | Other Estimates (95% CI)                                                                                 | R <sup>2</sup> |
|---------|-------------------------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------|----------------|
| LVEF    | А                                                                 | ns                        | -1.000*** (-1.26,-0.74) Age; ns BMI; 4.226* (0.94,7.52)<br>Steroids; -4.105** (-6.94,-1.27) Cardiac meds | 0.3699         |
|         | В                                                                 | ns                        | -1.011*** (-1.27,-0.75) Age; ns BMI; 4.023* (0.71,7.33)<br>Steroids; -3.922** (-6.79,-1.06) Cardiac meds | 0.3612         |
|         | С                                                                 | ns                        | -1.006*** (-1.26,-0.75) Age; ns BMI; 4.211* (0.90,7.53)<br>Steroids; -4.213** (-7.09,-1.33) Cardiac meds | 0.3630         |
|         | D                                                                 | ns                        | -1.014*** (1.27,-0.76) Age; ns BMI; 4.108* (0.78,7.43)<br>Steroids; -4.023** (-6.88,-1.17) Cardiac meds  | 0.3601         |
|         | Dp260                                                             | ns                        | -1.021*** (-1.28,-0.76) Age; ns BMI; 4.250* (0.94-7.56)<br>Steroids; -4.133** (-6.98,-1.28) Cardiac meds | 0.3655         |
|         | Dp140                                                             | ns                        | -1.009*** (-1.27,-0.75) Age; ns BMI; 4.039* (0.74-7.34)<br>Steroids; -4.109** (-6.96,-1.26) Cardiac meds | 0.3634         |
|         | Dp116                                                             | ns                        | -1.010*** (-1.27,-0.75) Age; ns BMI; 4.258* (0.93,7.59)<br>Steroids; -4.205** (-7.09,-1.32) Cardiac meds | 0.3626         |
|         | Dp71                                                              | ns                        | -1.010*** (-1.27,-0.75) Age; ns BMI; 4.263* (0.94,7.58)<br>Steroids; -4.179** (-7.04,-1.32) Cardiac meds | 0.3638         |
|         | Dp40                                                              | ns                        | -1.008*** (-1.27,-0.75) Age; ns BMI; 4.207* (0.89,7.52)<br>Steroids; -4.192** (-7.07,-1.32) Cardiac meds | 0.3422         |
| FVC     | А                                                                 | ns                        | -3.514*** (-4.12,-2.91) Age; ns BMI;<br>14.77** (4.05,25.49) Steroids                                    | 0.4253         |
|         | В                                                                 | ns                        | -3.513*** (-4.12,-2.91) Age; ns BMI;<br>14.78** (4.07,25.49) Steroids                                    | 0.4265         |
|         | С                                                                 | ns                        | -3.548*** (-4.15,-2.95) Age; ns BMI;<br>15.40** (4.77,26.04) Steroids                                    | 0.4365         |
|         | D                                                                 | -19.24*<br>(-36.56,-1.91) | -3.559*** (-4.16,-2.96) Age; ns BMI;<br>15.28** (4.68,25.88) Steroids                                    | 0.4391         |
|         | Dp260                                                             | ns                        | -3.508*** (-4.12,-2.90) Age; ns BMI;<br>14.50** (3.73,25.27) Steroids                                    | 0.4253         |
|         | Dp140                                                             | ns                        | -3.523*** (-4.12,-2.92) Age; ns BMI;<br>15.04** (4.40,25.69) Steroids                                    | 0.4335         |
|         | Dp116                                                             | ns                        | -3.521*** (-4.12,-2.92) Age; ns BMI;<br>15.35** (4.66,26.05) Steroids                                    | 0.4312         |
|         | Dp71                                                              | ns                        | -3.538*** (-4.14,-2.93) Age; ns BMI;<br>15.31** (4.64,25.98) Steroids                                    | 0.4326         |
|         | Dp40                                                              | ns                        | -3.552*** (-4.15,-2.95) Age; ns BMI;<br>15.31** (4.66.25.96) Steroids                                    | 0.4607         |

79, N=28), Dp71 (exons 63-79, N=20), Dp40 (exons 63-69, N=14). \**p*<0.05, \*\**p*<0.005, \*\*\**p*<0.0005; (N=342 DMD patients); ns, not significant; BMI, body mass index; CI, confidence interval