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Abstract: Cancer stem cells (CSCs) contribute to chemoresistance and tumor relapse. By using the
distinct metabolic phenotype of CSC, we designed novel PET parameters for CSC metabolism and
investigated their clinical values. Patients with breast cancer who underwent 18F-FDG PET/CT before
neoadjuvant chemotherapy (NAC) were retrospectively included. We developed a method to measure
CSC metabolism using standardized uptake value histogram data. The predictive value of novel CSC
metabolic parameters for pathologic complete response (pCR) was assessed with multivariable logistic
regression. The association between the CSC parameter and disease-free survival (DFS) was also
determined. We identified 82 patients with HER2-positive/triple-negative subtypes and 38 patients
with luminal tumors. After multivariable analysis, only metabolic tumor volume for CSC (MTVcsc)
among metabolic parameters remained the independent predictor of pCR (OR, 0.12; p = 0.022).
MTVcsc successfully predicted pathologic tumor response to NAC in HER2-positive/triple-negative
subtypes (accuracy, 74%) but not in the luminal subtype (accuracy, 29%). MTVcsc was also predictive
of DFS, with a 3-year DFS of 90% in the lower MTVcsc group (<1.75 cm3) versus 72% in the higher
group (>1.75 cm3). A novel data-driven PET parameter for CSC metabolism provides early prediction
of pCR after NAC and DFS in HER2-positive and triple-negative subtypes.

Keywords: cancer stem cell metabolism; breast cancer; neoadjuvant chemotherapy; FDG PET/CT

1. Introduction

Cancer cells within a tumor are heterogeneous with respect to metabolic phenotypes as well
as genotypes. Historically, the clonal evolution model has explained that the tumor dynamics were
derived from the serial accumulation of different driver mutations. However, the cancer stem cell
(CSC) theory has also been providing a strong biologic basis for tumor heterogeneity even regardless
of genetic backgrounds [1,2]. The CSCs, located at the apex of the tumor hierarchy, retain stemness
features of self-renewal and differentiation potential. This minor subpopulation of cancer cells has
now established a role in treatment failure [3]. In contrast to bulky differentiated cancer cells, CSCs can
survive chemotherapy and radiotherapy; hence, these treatment-resistant cancer cells are responsible
for tumor relapse as they are also implicated in the tumorigenesis [4].
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Through oncogenic progression, tumors increase the complexity in cellular organization and
gradually obtain the stem cell-like features, as cancer cells adapt to and interact with continuously
changing tumor microenvironments [5]. Advanced tumors are thus comprised of cancer cells with
varying levels of differentiation, consequently leading to cancer cell subsets exerting differential
biological traits [5]. Recently, radiomics has been used to measure the intratumoral heterogeneity
using texture analysis [6,7], but it has a major drawback. The results are not consistent across the
studies [6,8]. The lack of reproducibility in radiomics modeling is primarily attributable to the radiomic
features that cannot fully represent the true tumor characteristics. Therefore, new imaging parameters
representative of central concepts within tumor biology urgently need to be developed.

The acquisition of a stem cell state in cancer cells is accompanied by metabolic reprogramming,
resulting in a distinct metabolic phenotype of CSCs [9]. Normal stem cells are constitutively dependent
on anaerobic glycolysis while differentiated cells preferentially rely on mitochondrial metabolism [10].
Likewise, proliferative CSCs enhance the glycolytic and shunt pathways to meet their metabolic
requirements for energy, redox homeostasis, and building blocks, whereas differentiated cancer cells,
which cannot divide any further, mainly depend on the mitochondrial oxidative phosphorylation [9,11].
Proliferative CSCs accordingly spend much more glucose than differentiated cancer cells do.

It was previously reported that poorly differentiated aggressive breast cancers showed upregulated
expression of embryonic stem cell identity that is associated with Nanog, Oct4, Sox2, and c-Myc
activation [12]. Similarly, another study found that high-grade breast cancers were enriched with
a gene expression signature of mammary stem cells, while low-grade tumors had low stem cell
content [13]. Recently, it was demonstrated that poorly differentiated tumors had significantly higher
FDG uptake than well-differentiated tumors in various types of cancers [14]. The gene expression
profiles of tumors with high versus low FDG uptake also revealed that embryonic stem-cell-related
pathways were strongly associated with tumor glycolysis, a process termed “the Warburg effect” [14].
All these, collectively, suggest that enhanced glycolysis is the hallmark of CSC metabolism, which can
be measured by 18F-FDG PET/CT scan.

Because 18F-FDG PET/CT visualizes the Warburg effect, selective CSC metabolism can be
measured with standardized uptake value (SUV) histogram-based analysis within tumor voxels.
Herein, we developed a new method to quantify the intratumoral heterogeneity by using the distinctive
glucose metabolism between proliferative CSCs and differentiated cancer cells. We investigated the
prognostic values of the novel PET parameters for CSC metabolism in breast cancer patients who
received neoadjuvant chemotherapy (NAC). We hypothesized that the lower value of CSC metabolism
would predict chemosensitivity as well as better clinical outcome.

2. Materials and Methods

2.1. Patients and Study Design

Patients with clinical anatomic stage II or III breast cancer from 2 centers were consecutively
evaluated in this retrospective study between February 2012 and August 2019. We identified 127 eligible
patients who underwent pretreatment 18F-FDG PET/CT and were treated with NAC. Patients received
various NAC regimens: doxorubicin and docetaxel, doxorubicin and cyclophosphamide, or doxorubicin
and cyclophosphamide followed by taxane. For the HER2-positive subtype, anti-HER2 agents were
additionally applied in the neoadjuvant or adjuvant setting. Neoadjuvant HER2-targeted therapy
regimens included trastuzumab only and pertuzumab combined with trastuzumab. Our institutional
review boards approved this study (KHNMC 2020-01-017 and KHUH 2020-05-069), and informed
consent was waived due to its retrospective nature. Clinicopathologic features and follow-up data
were collected from the electronic medical records and pathology reports.
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2.2. Histopathologic Analysis

Tumor histology and the molecular subtypes were determined by pretreatment core
biopsies. Histologic grading was performed using the modified Scarff-Bloom-Richardson system.
Estrogen receptor (ER) and progesterone receptor (PR) status were considered positive if at least 10% of
tumor cells showed ER and PR expression. Low ER-positive tumors (1% ≤ ER < 10%) were considered
negative because of their clinical behavior like ER-negative tumors [15]. HER2 overexpression
was considered positive if tumor staining showed a 3+ pattern. If tumor staining was equivocal
(2+ pattern), FISH was further used to confirm HER2 amplification. Ki-67 expression was considered
high if there was positivity in ≥30% of the tumor cells. Tumor response to NAC was classified as
pathologic complete response (pCR) when there was no residual invasive cancer in the breast and
lymph nodes (LNs), although residual carcinoma in situ was allowed. The luminal subtype denotes
ER-positive/HER2-negative tumors regardless of the Ki-67 index, while the HER2-positive subtype
includes ER-positive/HER2-positive and ER-negative/HER-positive tumors.

2.3. 18F-FDG PET/CT Procedures

Before NAC initiation, all patients underwent baseline 18F-FDG PET/CT. Patients were required
to fast at least 6 h before intravenous administration of 3.7 MBq/kg of 18F-FDG. Sixty minutes after the
injection, a whole-body PET scan was performed by using a PET/CT scanner (Gemini TF; Philips Medical
Systems, Cleveland, OH, USA). PET image reconstruction was done by CT-based attenuation correction
with a voxel size of 4 × 4 × 4 mm. The two centers used the same PET/CT scanner with the same
protocol. Conventional metabolic parameters including maximum SUV (SUVmax), metabolic tumor
volume (MTV), and total lesion glycolysis (TLG) were measured. MTV and TLG were measured with a
threshold of SUV 2.5. Volumetric parameters with a threshold of 40% of SUVmax were also measured:
MTV40% and TLG40%.

2.4. Novel PET Parameters for CSC Metabolism

To measure the novel parameters for CSC metabolism, a volume of interest encompassing the
breast tumor or axillary metastatic LN was defined based on a fixed SUV threshold of 2.5. Patients with
FDG non-avid tumors (SUVmax < 2.5) were excluded from the analysis. The SUV histogram data of
the tumor voxels were extracted using LIFEx software (Ver. 5.10) [16]. The SUV of each voxel was
grouped into 3 clusters by K-means clustering (K = 3) using R (Ver. 3.6.0). Because proliferative CSCs
are more glycolytic than differentiated cancer cells, the volumetric parameters for the most glycolytic
cluster were measured: MTV for CSC (MTVcsc) and TLG for CSC (TLGcsc). The least glycolytic
cluster represents the metabolism of differentiated cancer cells, and the cluster with intermediate
uptake indicates a mixed population of CSCs and differentiated cancer cells because we considered
that there are voxels with the two phenotypes due to the limited spatial resolution of the PET image
(4 × 4 × 4 mm). The CSC proportion of tumors was calculated by dividing MTVcsc by MTV. This whole
process is depicted in Figures 1 and 2.
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Figure 2. Representative cases of a patient with pCR and a patient with the residual tumor. (A) A patient
with the triple negative subtype (cT2N1) achieved pCR after receiving AC + T #8. (B) A patient with
the triple negative subtype (cT2N1) failed to achieve pCR after receiving AC + T #8. pCR: pathologic
complete response; AC + T: doxorubicin and cyclophosphamide followed by paclitaxel; MTVcsc:
metabolic tumor volume for cancer stem cell; TLGcsc: total lesion glycolysis for cancer stem cell.

2.5. Statistical Analysis

Multivariable logistic regression analysis was performed to evaluate the predictive values of
clinicopathologic and metabolic parameters for pCR. Pathologic tumor response to NAC was predicted
using the novel CSC parameter, and the prediction accuracy according to molecular subtypes was
compared using the Pearson’s chi-square test. Disease-free survival (DFS) was calculated from the
date of surgery to the date of tumor recurrence or the last follow-up date. Survival curves were plotted
using the Kaplan-Meier method, and the association between the novel CSC parameter and DFS was
examined by using the log rank test. All statistical analyses were conducted using SPSS Statistics
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(version 21, IBM Corporation, Armonk, NY, USA) for Windows. p values less than 0.05 were considered
statistically significant.

3. Results

3.1. Patient Characteristics

Among 127 eligible patients, 120 were included in the analysis (Figure 3). Patient and tumor
characteristics are summarized in Table 1. pCR was achieved in 16 HER2-positive and six triple
negative (TN) subtypes among 82 HER2-positive and TN subtypes. pCR was achieved in 16 patients
out of 57 who received the anthracycline and taxane-based regimen. Six patients of 18 who were
treated with the taxane-based regimen attained pCR, while none of the seven patients who received
the anthracycline-based regimen achieved pCR. The pCR rate between the various NAC regimens
was not significantly different (Fisher’s exact test; p = 0.279). Among 57 patients with HER2
overexpression/amplification, 31 patients received neoadjuvant anti-HER2 therapy. Twenty-two
patients of them were treated with dual HER2 inhibition (trastuzumab + pertuzumab), and the
remaining nine patients were treated with trastuzumab only. Of the 22 HER2-positive patients who
were treated with dual HER2 inhibition, 10 patients achieved pCR. Of the 35 HER2-positive patients
who were not treated with dual HER2 inhibition, only six patients achieved pCR (Pearson’s chi-square
test; p = 0.021). Adjuvant endocrine therapy was applied to all ER-positive tumors. During follow-up,
16 patients experienced tumor relapse.
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Table 1. Patient and tumor characteristics.

Characteristics N = 120

Age (years), median (range) 49 (25–72)
Histology

IDC 115 (96%)
ILC/other 5 (4%)

Clinical T stage
T1-2 79 (66%)
T3-4 41 (34%)
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Table 1. Cont.

Characteristics N = 120

Clinical anatomic stage
IIA-IIIA 97 (81%)
IIIB-IIIC 23 (19%)
ER status
Positive 65 (54%)

Negative 55 (46%)
Molecular subtype

Luminal (HER2-negative) 38 (32%)
HER2-positive 57 (47%)
Triple negative 25 (21%)
NAC regimen

Anthracycline and taxane based 92 (77%)
Anthracycline based 10 (8%)

Taxane based 18 (15%)
Anti-HER2 therapy in 57 HER2-positive patients

Neoadjuvant 31 (55%)
Adjuvant only 19 (33%)

None 7 (12%)
NAC response

pCR (ypT0/is ypN0) 22 (18%)
Residual tumor 98 (82%)

Surgery
Breast-conserving surgery 66 (55%)

Mastectomy 54 (45%)
Recurrence

Yes 16 (13%)
No 104 (87%)

Values are n (%) unless otherwise specified. IDC: invasive ductal carcinoma; ILC: invasive lobular carcinoma;
ER: estrogen receptor; NAC: neoadjuvant chemotherapy; pCR: pathologic complete response.

3.2. Association between the Achievement of pCR and Clinicopathologic/Metabolic Parameters in
HER2-Positive and TN Subtypes

The MTVcsc was measured in both breast tumors and LN metastases. The highest MTVcsc was
measured in primary tumors in most cases (Table S1). Because none of 38 patients with the luminal
subtype achieved pCR, the further analysis did not include this subtype. In HER2-positive and TN
subtypes, the predictive values of several clinicopathologic and metabolic parameters for pCR were
assessed in the logistic regression model (Table 2). In univariable analysis, the lower T stage, MTVcsc,
TLGcsc, MTV, TLG, MTV40%, and TLG40% were significantly associated with pCR. Although the ER
status showed marginal significance, it was included in the multivariable analysis since it is a known
established predictor of pCR. In multivariable analysis, MTVcsc (OR of 0.12 per 1 cm3 increase in
MTVcsc; p = 0.022) and ER negativity remained the independent predictors of pCR.

Table 2. Univariable and multivariable logistic regression analysis of predictive factors for pCR in
HER2-positive and triple negative (TN) subtypes.

Parameters
HER2-Positive/TN Univariable Analysis Multivariable Analysis

pCR
(N = 22)

Residual
Tumor (N = 60) OR 95% CI p Value OR 95% CI p Value

T stage
1–2 20 (38%) 33 (62%) 8.18 1.75–38.16 0.007
3–4 2 (7%) 27 (93%) 1.00
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Table 2. Cont.

Parameters
HER2-Positive/TN Univariable Analysis Multivariable Analysis

pCR
(N = 22)

Residual
Tumor (N = 60) OR 95% CI p Value OR 95% CI p Value

Clinical anatomic stage
IIA-IIIA 20 (30%) 46 (70%) 3.04 0.63–14.66 0.165
IIIB-IIIC 2 (12%) 14 (88%) 1.00

Histologic grade
1-2 8 (21%) 30 (79%) 1.00
3 11 (28%) 28 (72%) 1.47 0.52–4.19 0.468

Missing 3 2
Ki-67

Low, <30% 8 (24%) 25 (76%) 1.00
High, ≥30% 9 (20%) 35 (80%) 0.80 0.27–2.37 0.692

Missing 5 0
ER status
Positive 4 (15%) 23 (85%) 1.00 1.00

Negative 18 (33%) 37 (67%) 2.80 0.84–9.31 0.093 8.37 1.75–40.1 0.008
Metabolic parameters a

MTVcsc (cm3)
0.9

(0.3–1.7)
2.8

(0.1–38.0) 0.37 0.19–0.72 0.003 0.12 0.02–0.74 0.022

TLGcsc 5.0
(1.4–38.5)

19.5
(0.2–593.4) 0.92 0.86–0.98 0.010

CSC proportion (%) 15.9
(6.1–31.8)

21.5
(5.6–39.1) 0.94 0.87–1.00 0.068

SUVmax 6.3
(3.3–28.7)

8.2
(3.4–23.7) 0.93 0.82–1.06 0.271

MTV (cm3)
4.6

(1.7–13.8)
13.3

(1.2–170.7) 0.85 0.76–0.95 0.005

TLG 17.1
(4.7–111.3)

57.6
(3.3–1386.9) 0.98 0.96–0.99 0.011

MTV40% (cm3)
3.6

(1.7–13.8)
9.1

(1.2–90.3) 0.78 0.65–0.93 0.005

TLG40% 16.0
(4.7–66.3)

47.0
(3.3–1006.1) 0.96 0.94–0.99 0.008

a Continuous variables, values are median (range). Bold values are statistically significant. TN: triple negative;
OR: odds ratio; CI: confidence interval; MTVcsc: metabolic tumor volume for cancer stem cell; TLGcsc: total lesion
glycolysis for cancer stem cell.

3.3. Prediction of the Pathologic Response with MTVcsc

Using the highest MTVcsc in the pCR group as a cutoff (<1.75 cm3), MTVcsc provided the
opportunity to predict the pathologic tumor response to NAC with an accuracy of 74% (61/82) in
HER2-positive and TN subtypes (Table 3). A more detailed analysis is provided in Table S2. In the
luminal subtype, however, it showed a significantly lower accuracy of 29% (11/38) (Pearson’s chi-square
test; p < 0.001). The data on prediction accuracy with MTVcsc in 82 HER2-positive and TN subtypes
were further stratified according to the NAC regimens (Table 4), which revealed that the accuracy
was similar across different NAC regimens. In the 57 HER2-positive tumors, however, the prediction
accuracy was significantly higher in those who were treated with anti-HER2 NAC than those who
were not (Pearson’s chi-square test; p < 0.007).

Table 3. Prediction of tumor response to NAC using MTVcsc in HER2-positive/TN vs. luminal subtypes.

HER2-Positive/TN (N = 82) Luminal (N = 38)

pCR (N = 22) Residual
Tumor (N = 60) pCR (N = 0) Residual

Tumor (N = 38)

MTVcsc < 1.75 cm3 22 21 0 27
MTVcsc > 1.75 cm3 0 39 0 11

Prediction accuracy 74% (61/82) 29% (11/38)
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Table 4. Prediction of tumor response to NAC using MTVcsc in HER2-positive and TN subtypes with
various NAC regimens.

Anthracycline and Taxane
Based (N = 57)

Taxane
Based (N = 18)

Anthracycline
Based (N = 7)

pCR
(N = 16)

Residual
Tumor (N = 41)

pCR
(N = 6)

Residual
Tumor (N = 12)

pCR
(N = 0)

Residual
Tumor (N = 7)

MTVcsc < 1.75 cm3 16 14 6 5 0 2
MTVcsc > 1.75 cm3 0 27 0 7 0 5

Prediction accuracy 75% (43/57) 72% (13/18) 71% (5/7)

with Anti-HER2
NAC (N = 31)

without Anti-HER2
NAC (N = 26)

pCR
(N = 12)

Residual
Tumor (N = 19)

pCR
(N = 4)

Residual
Tumor (N = 22)

MTVcsc < 1.75 cm3 12 5 4 13
MTVcsc > 1.75 cm3 0 14 0 9

Prediction accuracy 84% (26/31) 50% (13/26)

3.4. The Relation between MTVcsc and DFS in HER2-Positive and TN Subtypes

During a mean follow-up of 28.6 months (2.8–89.9 months), tumor recurrence in HER2-positive
and TN subtypes was developed in 12 patients. All the 12 relapses occurred in the residual tumor
group. With the same cutoff defined above, 3-year DFS was compared between the lower MTVcsc
(<1.75 cm3) and the higher MTVcsc (>1.75 cm3) groups (Figure 4). Three-year DFS was significantly
higher (p = 0.031) in the lower MTVcsc group (90%; 95% CI, 78–100%) than the higher MTVcsc group
(72%; 95% CI, 56–89%).
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4. Discussion

In the present study, we designed the novel metabolic parameter for proliferative CSC,
and this is the first attempt to selectively measure the CSC metabolism from 18F-FDG PET/CT.
Previously, the prognosis for breast cancer was predicted using CSC markers such as ALDH1 and
CD44+/CD24− [17,18]. While insightful, their clinical implication is hampered by variable expression
and non-specific natures [18,19]. Furthermore, the immunohistochemical staining of biopsy specimens
cannot characterize the whole tumor because tumors exhibit spatial heterogeneity. These limitations
underscore the role of 18F-FDG PET/CT as a non-invasive whole-body in-vivo imaging, depicting the
tumor as a whole.

Since tumor-initiating cells were first identified in solid tumors in the early 2000s [20],
mounting evidence suggests that tumor proliferation is driven by the metabolic reprogramming
of CSCs that are a molecularly distinct subpopulation within a tumor [3,4,9]. The metabolic demand for
proliferative CSCs is high because tumor proliferation requires the synthesis of major macromolecules,
and glucose is the major nutrient for the anabolic growth supporting glycolysis, the pentose phosphate
pathway, and the TCA cycle [21]. Therefore, the glucose requirement for proliferative CSCs is much
higher than differentiated cancer cells that are least likely to divide any further [3,22]. Indeed, poorly
differentiated tumors exhibited significantly higher SUVmax than well-differentiated tumors on
18F-FDG PET/CT across several types of cancers [14], and poorly differentiated or high-grade breast
cancers were enriched for cancer stemness than well-differentiated or low-grade breast cancers [12,13].

CSCs possess intrinsic chemoresistance mediated by several pathways, some of which are
induced by hypoxia-inducible factors (HIFs) [23,24]. Cancer cells are coping with the hypoxic tumor
microenvironment where HIFs are stabilized, which in turn diverts metabolic pathways in favor of
glycolysis [25,26]. HIFs facilitate the metabolic switch to enhanced glycolysis by inhibiting pyruvate
from entering mitochondria [25,26]. Additionally, hypoxia plays a crucial role in promoting a CSC
phenotype by increasing the expression of c-Myc, Oct4, Wnt, and Notch, which confer cancer stemness in
an HIFs-dependent manner [24,27]. Therefore, the hypoxia signaling pathway is central to upregulated
glycolysis in CSCs [26,28].

All these findings led us to build a new method to distinguish the CSC metabolism of tumors by
exploiting histogram data from 18F-FDG PET/CT. Because proliferative CSCs are more glycolytic than
their differentiated progeny, which makes up the bulk of the tumor [11,26,28–30], cancer cells with
varying degrees of differentiation within a tumor exhibit different levels of glycolysis, which should
be reflected in an SUV histogram. Previously, a similar approach was applied to breast cancer to
analyze intratumoral heterogeneity, in which the cluster with the highest FDG uptake correlated with
the highly aggressive phenotype while the cluster with lower FDG uptake corresponded to the less
aggressive area [31]. The results of this study demonstrate that MTVcsc from a single pretreatment
18F-FDG PET/CT can predict whether the breast cancer patient would respond to NAC and experience
a relapse after completion of treatment, especially in HER2-positive and TN subtypes.

NAC is currently the standard treatment for large or locally advanced breast cancer. With this
approach, it offers opportunities for downsizing the tumor and breast conservation. Moreover, patients
with pCR have survival benefits compared with patients who have residual tumors after NAC [32].
However, a recent meta-analysis that compared the clinical outcomes between neoadjuvant and adjuvant
chemotherapies revealed that NAC did not show a survival advantage over an adjuvant setting [33].
Rather, NAC was associated with higher local recurrence after breast-conserving surgery [33]. Hence,
it is critical to predict early who would be more likely to attain pCR. ER negativity is an established
predictor of pCR, but approximately half of ER-negative tumors still cannot achieve pCR to NAC.
Predicting pCR with 18F-FDG PET/CT in breast cancer has been intensively studied, and, currently,
the most powerful predictor from this modality is using the change in tumor SUVmax after 1 or
2 cycles of NAC in HER2-positive and TN tumors [34–37]. This strategy reported a prediction accuracy
of 75–80% [34–36], which is comparable to the present study. It was implemented to decide to add
bevacizumab to predicted non-responders in a clinical trial and was found to be helpful in NAC
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optimization [38]. Nevertheless, this approach requires at least two PET/CT scans to be done, which is
both time and cost consuming. In this regard, the present study outperforms the previous reports
by presenting promising results about the prediction of pCR as well as prognosis at initial staging.
Additionally, clinical trials of selectively not performing breast surgery in patients who achieve
pCR are ongoing, as concerns about no benefit over surgery are being raised in such patients [39].
Consequently, a good surrogate biomarker of patient selection for optimal neoadjuvant chemotherapy
is indeed needed.

The lower MTVcsc was also predictive of better survival in HER2-positive and TN subtypes.
Patients with the lower MTVcsc experienced fewer tumor relapses with significantly higher DFS than
patients with the higher MTVcsc. Besides, none of the patients with the higher MTVcsc achieved
pCR after NAC. Although residual tumors were all removed by surgery, residual tumor cells might
have entered circulation before surgery because chemotherapeutic stress can induce epithelial to
mesenchymal transition that confers tumor cells with invasive motility [40]. Notably, it was reported
that residual breast cancers surviving standard treatments were enriched for CSCs with a mesenchymal
phenotype [41,42]. Consequently, therapy-resistant cancer cells that remain after NAC are likely to
spread to distant organs and regrow afterward. Tumors with the higher MTVcsc that hardly achieve
pCR are thus more likely to experience tumor recurrence.

Intriguingly, the prediction accuracy of treatment response using MTVcsc varied according to the
molecular subtypes (Table 3 and Table S2). In contrast to HER2-positive and TN subtypes, the lower
MTVcsc could not successfully predict the pathologic response to NAC in luminal tumors, which is
probably the reflection of the intrinsic difference between these molecular subtypes. In ER-positive
breast cancer where late recurrence is prominent, disseminated cancer cells remain dormant during the
latent period, and this metastatic dormancy is attributable to quiescent CSCs [43]. Breast CSCs display
two distinct phenotypes, in which epithelial-like CSCs are proliferative, whereas mesenchymal-like
CSCs are quiescent [44,45]. The metabolic demand for quiescent CSCs is even lower than differentiated
cancer cells because these cells are in a dormant state [45,46]. In stark contrast, proliferative CSCs
increase their metabolic demand by upregulating both glycolysis and oxidative phosphorylation [46].
Although luminal tumors had lower MTVcsc in more than half of the cases, they could not achieve
pCR in most cases. This is possibly contributed to their propensity to be in a quiescent CSC state
since tumor dormancy was demonstrated to be associated with luminal differentiation of breast
cancer [47,48]. The CSC plasticity between the two phenotypes imposes a therapeutic challenge,
with each state exhibiting drug resistance by a separate mechanism [45]. The quiescent CSCs harbor
inherent chemoresistance because most cytotoxic agents mainly target rapidly dividing cancer cells.
Dynamic tumor repopulation during chemotherapy revealed characteristic responses of the two CSC
phenotypes [49]. While proliferative CSCs showed a modest sensitivity to chemotherapeutic insults,
quiescent CSCs went through a phenotypic transition to the proliferative state in response to mitogens
released from nearby chemosensitive cancer cells [49,50]. In this context, it is postulated that luminal
subtypes might prefer CSCs in a quiescent state, which exhibits a less glycolytic feature, and MTVcsc
represents the glucose metabolism of proliferative CSCs.

This study has some limitations. Firstly, due to retrospective design, the treatment used in
NAC was diverse across patients. Different NAC regimens can have an impact on the efficacy of
pCR. Especially in the HER2-positive subtype, dual inhibition of HER2 by combining trastuzumab
with pertuzumab significantly improves the pCR rate. Due to the limited number of patients with
HER2-positive and TN subtypes, respective analysis in these subtypes could not be performed as well.
The higher cutoff value of MTVcsc in predicting pCR is expected in the HER2-positive subtype than
the TN subtype because HER2 signaling is an effective regulator for CSC maintenance, as evidenced by
a decrease in CSC proportion resulted from HER2 blockade [44,51]. Thus, a separate analysis in each
subtype on a large scale will provide further insights into CSC properties associated with molecular
subtypes. In addition, although the novel method to measure CSC metabolism was based on the
established tumor biology, the approach is rather speculative in that it is still lacking in direct evidence
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for CSC identification. Further studies investigating the correlation between MTVcsc and the cancer
stemness index [52] are needed to strengthen our results. Lastly, we excluded FDG non-avid tumors
from the analysis. The analysis was not applicable in the tumors with SUVmax < 2.5 because they
could not be defined on PET images. Six FDG non-avid tumors were excluded, and they were all
ER-positive tumors.

5. Conclusions

In conclusion, the novel data-driven PET parameter for CSC metabolism in the proliferative
phenotype was successfully designed based on biologic features central to tumor heterogeneity.
The MTVcsc can be a biomarker in early predicting pCR to NAC and DFS in HER2-positive and TN
subtypes. Given the prognostic value of achieving pCR, treatment optimization could be initially
guided because MTVcsc might determine who would benefit from NAC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2075-4426/10/3/132/s1,
Table S1: MTVcsc measurement in target lesions, Table S2: Prediction of tumor response to NAC using MTVcsc
according to the molecular subtypes.
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