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Abstract: Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide. 

Imaging plays a critical role in HCC screening and diagnosis. Initial screening of patients at 

risk for HCC is performed with ultrasound. Confirmation of HCC can then be obtained by 

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), due to the relatively 

high specificity of both techniques. This article will focus on reviewing MRI techniques for 

imaging HCC, felt by many to be the exam of choice for HCC diagnosis. MRI relies heavily 

upon the use of gadolinium-based contrast agents and while primarily extracellular 

gadolinium-based contrast agents are used, there is an emerging role of hepatobiliary 

contrast agents in HCC imaging. The use of other non-contrast enhanced MRI techniques 

for assessing HCC will also be discussed and these MRI strategies will be reviewed in the 

context of the pathophysiology of HCC to help understand the MR imaging appearance  

of HCC. 
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1. Introduction 

Hepatocellular carcinoma (HCC) is the 6th most common cancer worldwide leading to the 3rd most 

likely cause of cancer related deaths [1,2]. The poor prognosis related to HCC development is illustrated 

by the fact that in most countries the mortality rate mirrors the incidence rate [3]. This malignancy is 

associated with chronic disease and cirrhosis in >90% of cases [3]. In Asia and Africa, hepatitis B virus 
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is the most common cause for the chronically diseased liver while, in the West and Japan, it is the 

hepatitis C virus [4]. This difference in liver disease may lead to different results in HCC imaging, 

discussed later in this article. Other etiologies, such as alcohol abuse, hemochromatosis, and primary 

biliary cirrhosis, also contribute to chronically diseased liver and HCC. There is also rising concern 

about the present problem of obesity leading to non-alcoholic steatohepatitis and, subsequently, to 

cirrhosis with HCC development [5]. 

Imaging plays a critical role in HCC screening and diagnosis. Ultrasound is now the first and only 

screening exam for HCC in this patient population with the previously used serum alpha-fetoprotein 

now removed [6]. If a mass is questioned in screening ultrasound, a subsequent follow up imaging study 

is obtained. Presently, both contrast enhanced multidetector CT (MDCT) and MRI are options for further 

characterizing suspicious lesions detected by ultrasound [7]. Recently, strong advocates in the scientific 

community suggest that MRI, obtained with up-to-date techniques and in expert hands, is the exam of 

choice for HCC diagnosis [8–10]. Unlike most malignancies, which typically require biopsy for 

diagnosis, HCC can be diagnosed based on CT or MRI characteristics alone due to the relatively high 

specificity of these modalities [11]. Although the imaging diagnosis of HCC using MDCT/MRI is not 

without some concerns [12,13], the complications, complexities, ambiguity of diagnosis, and cost of 

biopsy confirmation are considered too great [7,14]. Once the imaging diagnosis is made, therapy is 

chosen based on extent of disease, liver function, and patient age and comorbidities. Thus, imaging for 

the presence and extent of HCC in chronically diseased liver is crucial for patient-management options, 

which include liver transplantation or various locoregional or systemic therapies. 

This article will review the critical role of intravenous gadolinium contrast in MRI performed for 

HCC detection and quantification of disease extent. It is important that the specifics of contrast enhanced 

MRI series acquisition be understood for the greatest appreciation of the remainder of this article. 

Multiple post-contrast imaging series are obtained to provide a reflection of the vascularity/neovascularity 

of tissue and allow improved specificity and sensitivity in the diagnosis of HCC. A typical MRI protocol 

includes a 3D T1-weighed fat saturated sequence before administering intravenous contrast and at three 

points in time following contrast administration. The first of three post-contrast phases is the “late arterial 

phase”. Timing of the late arterial phase (typically between 25 and 30 s post contrast injection) is critical 

for detection of HCC with intravascular contrast present in the hepatic artery and the portal vein, but no 

contrast in the hepatic veins. Next is the “portal venous” phase (typically 65 to 70 s post contrast 

injection), in which there is dense contrast enhancement in the portal vein, but the hepatic veins also 

contain contrast. Finally, the third “delayed” or “equilibrium” phase is obtained typically 3 min from start 

of injection. 

Chronic liver disease results in the development of regenerative nodules; proliferating hepatic cells 

cordoned off by variously thickened strands of fibrous tissue. A very small fraction of these nodules may 

dedifferentiate into premalignant and eventually malignant lesions [15,16]. In the typical pathway, a 

regenerative nodule progresses first to a dysplastic nodule (low grade then possibly high grade), then to 

a well-differentiated HCC, and finally to a moderately/poorly differentiated HCC. As dedifferentiation 

progresses, there is neoangiogenesis that replaces the normal hepatic parenchymal portal venous inflow 

with recruited, abnormal, arterial vessels [17]. This neoangiogenesis results in a fairly predictable 

decrease in portal vein inflow and increase in hepatic artery inflow. The worse the tumor grade, the 

greater the neovascular development typically becomes [18,19]. The presence of this neoplastic arterial 
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system is unusual in the dysplastic nodule and is extremely rare in the regenerative nodule [20]. Coupled 

with this is the tendency for the well-differentiated HCC to be smaller in diameter than the more 

aggressive tumors; the well differentiated tumors usually being ≤2 cm in diameter [21]. Therefore, as a 

rule, larger tumors (>2 cm) are more likely to be of higher tumor grade and more likely to demonstrate 

tumor neovascularity and increased arterial flow. Additionally, in hepatocarcinogenesis, the 

dedifferentiating cells themselves undergo changes that imaging will be able to take advantage of in 

categorizing. There is worsening of cellular atypia changes with increasing nuclear-to-cytoplasmic ratio 

within each cell, thickening of the cellular plate, and increase in the abnormal hepatocyte density. When 

this is combined with the associated loss of the extracellular space, the diffusivity of water molecules 

decreases [15,22]. This local anatomy will lead to decrease in water mobility and can result in abnormal 

Diffuse Weighted Imaging (DWI) characteristics. 

Thus, arterial enhancement on dynamic imaging, as well as increased signal visualized on DWI, will 

help differentiate the collection of cells in these different stages. Regenerative nodules and  

low-grade dysplastic nodules will not have either of these imaging findings. However, high grade 

dysplastic nodules, which can be histologically difficult to separate out from a well-differentiated  

HCC [23], may occasionally show arterial enhancement and increased signal intensity on DWI 

sequences [24,25]. 

However not all tumors demonstrate the typical pattern of neovascularity and some HCCs, including 

the poorer grades, will only be visualized in the post arterial phases, i.e., the portal venous or delayed 

phase [21,26,27]. Blood flow in HCCs typically passes through the lesion and into the venous outflow 

more rapidly than normal hepatic parenchyma, leading to a characteristic “washout” appearance of relative 

hypoenhancement of the tumor relative to the liver on these phases 88% of the time. Further, 97% of 

moderately/poorly differentiated tumors are appreciated in this phase [21]. 

The characteristic enhancement of the regenerative nodule to HCC progression has allowed for the 

development of specific criteria in HCC diagnosis. “Hyperenhancement” of the tumor in the late arterial 

phase is very important for the diagnosis of HCC [28–30]. This “hyperenhancement” is defined as 

unequivocal increased enhancement of the lesion relative to the surrounding liver. However, other 

etiologies can have hyperenhancement in the arterial phase, such as nontumoral “vascular blush” 

associated with altered vascular flow or shunting, cholangiocarcinoma, which can also be seen in 

chronically diseased liver, and multiple other liver lesions, such adenomas or the common hepatic 

hemangioma or focal nodular hyperplasia. In addition, dysplastic nodules, which have not yet progressed 

to HCC, can rarely demonstrate hyperenhancement. Therefore, the addition of hypointensity, or 

“washout”, on the portal venous phase and/or equilibrium phase is used to separate out these other causes 

from the true HCC hyperenhancement. The combination of arterial hyperenhancement followed by 

washout in the portal venous and/or delayed phase has a sensitivity of 64%–89%; specificity of 96%; and 

positive predictive value of 93% for the diagnosis of HCC [29,31,32]. At present, both the American 

Association for the Study of Liver Diseases (AASLD) and the United Network for Organ Sharing 

(UNOS) systems use the dimension of a nodule >1 cm having arterial hyperenhancement followed by 

washout to qualify for the diagnosis of HCC [6,33]. There is also the potential development of an 

enhancing rim surrounding the HCC on delayed imaging called a capsule or pseudocapsule [34]. This 

finding adds to the strength of diagnosis for HCC. The presence of this capsule is critical in allowing the 

diagnosis of HCC to an otherwise suspicious nodule ≥1 cm and <2 cm in diameter according to the 
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Organ Procurement and Transplantation Network (OPTN) Classification [27]. This pattern of arterial 

enhancement, followed by “washout” and pseudocapsule formation is demonstrated in Figure 1. 

(A) (B) 

(C) 

Figure 1. Typical contrast enhancement for MRI diagnosis of HCC. (A) On a late arterial 

phase image, a 2.3 cm HCC (arrow) demonstrates unequivocal arterial enhancement relative 

to the surrounding liver; (B) On the portal venous phase of the same exam, the hepatocellular 

carcinoma (arrow) has decreased in enhancement relative to the earlier arterial phase while 

the hepatic parenchyma has increased in signal intensity; (C) A coronal image obtained in 

the equilibrium phase demonstrates the hepatocellular carcinoma (arrow) as being of lower 

signal intensity than the adjacent cirrhotic parenchyma (“washout”). Additionally present is 

the delayed capsule or so-called pseudo-capsule, which helps further solidify the imaging 

diagnosis of hepatocellular carcinoma. 

While the presence of enhancement and washout is critical for HCC diagnosis, clinical assessment of 

changes in enhancement are often complicated by underlying heterogeneous signal in chronically 

diseased livers, which may be due to the presence of nodules, hepatic steatosis and/or hemosiderosis. 

Some hepatic nodules may be of increased signal intensity in precontrast T1-weighted imaging, due to 

the presence of fat, copper, mucus, or proteins [35]. In this circumstance, the impression of contrast 

enhancement may be uncertain unless careful comparison between the precontrast and late arterial phase 

contrast images is performed. Generating subtracted imaging series (subtraction of each post-contrast 

imaging series from the pre-contrast series) can help assessment of these cases by subtracting out  

pre-contrast signal “heterogeneity” and yielding an imaging series which better demonstrates true 

enhancement (Figure 2). However, subtracted imaging series require a reproducible breath-holding 

technique for satisfactory series co-registration, and can be degraded by motion artifacts [36]. 



Diagnostics 2015, 5 387 

 

 

(A) (B) 

(C) 

Figure 2. Importance of image subtraction in display of enhancement. (A) A T1 

hyperintense hepatic nodule (arrow) is present on the pre-contrast image; (B) A late arterial 

phase gadolinium enhanced T1 gradient echo image demonstrates a bright nodule (arrow) 

suspicious for arterial enhancement; (C) On the subtraction image, the true, mild, 

enhancement of the nodule (arrow) is apparent. 

Beyond diagnosis, imaging provides insight into the prognosis of management of a patient’s tumor 

load, as well as defining whether there is malignant venous involvement or not. One major use of MR 

imaging is evaluating patients for liver transplant candidacy, which, under current OPTN guidelines, 

requires that tumor burden be within threshold criteria. The Milan criteria is the most commonly used 

gauge for defining the amount of tumor burden for this purpose. For a patient to be within the Milan 

criteria, and thus remain a candidate for liver transplant, there must be imaging proof of the absence of 

vascular invasion and metastatic disease, and presence of (1) three or less HCC lesions, all ≤3 cm in 

diameter; or (2) one HCC ≤5 cm in diameter [37]. 

MRI is critical in evaluating for the presence of venous tumor thrombus, which is more frequently 

portal venous but also occasionally hepatic venous. The presence of tumor thrombus typically excludes 

transplant and drastically changes treatment. While diagnosing tumor thrombus can be complex and 

numerous factors may be helpful in differentiating tumor thrombus from bland thrombus, a major criteria 

used for determining thrombus is the presence of arterial phase enhancement, which is expected to  

be identified in malignant thrombus but not bland thrombus [38,39]. The presence of arterial 

enhancement indicating malignant thrombus is often most easily distinguished on subtracted  

post-contrast series [36,38,39]. 

2. Gadolinium Contrast Agent Selection 
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As discussed above, an intravenous contrast agent is a critical component for HCC imaging.  

The contrast agent almost universally used is a gadolinium chelate complex. There are other contrast 

agents available but which are not in common clinical use, such as superparamagnetic iron oxide 

(ferumoxides, Feridex®, Bayer HealthCare, Berlin, Germany; ferucarbotran, Resovist®, Bayer 

HealthCare), and a manganese-based agent, MnDPDP (no longer available in the U.S.). 

The element gadolinium is a potent paramagnetic ion able to cause a decrease in both T1 and T2 

relaxation times, thereby altering signal intensity on MR imaging sequences. At concentrations seen in the 

intravascular and tissue interstitial compartments, the gadolinium contrast agent will affect T1 relaxation, 

leading to an increased signal intensity, “enhancing”, structure on T1 weighted sequences. It is this 

increased signal intensity or “enhancement”, which is critical in HCC imaging. However, when highly 

concentrated, such as in the urinary tract, gadolinium-induced effects on the T2 relaxation time can 

predominate, and can cause loss of signal intensity on both T1 and T2 weighted imaging sequences. 

The gadolinium-based contrast agents (GBCA) commonly used clinically for hepatic imaging can be 

divided into two categories: Extracellular and hepatobiliary. Extracellular gadolinium-based contrast 

agents (for example, gadopentetate dimeglumine (Gd-DTPA), Magnevist®, Bayer HealthCare), in 

widespread use today, are small molecules that course from the vascular space into the interstitial 

compartment. Approximately 95% of this extravascular gadolinium agent is excreted via glomerular 

filtrate in an unchanged state. This extracellular gadolinium contrast agent has four different biochemical 

structures: Macrocyclic and linear, both available in ionic or non-ionic forms. The details concerning 

the advantages and disadvantages of each contrast category is beyond the scope of this article, but in 

general there is little clinical difference [40]. With normal renal function, this extravascular agent has a 

half-life of approximately 1.5 h [41] with greater than 95% excretion in 24 h [42]. The standard dose is 

0.1 mmol/kg typically injected intravenously at a rate of 2 mL/s followed by a normal saline “flush” of 

20 to 50 mL. 

The second category is the “hepatobiliary” gadolinium contrast agent. These agents have both an 

interstitial distribution and, importantly for hepatic imaging, they also have hepatocyte uptake with 

subsequent biliary excretion. Temporally, the first agent available was gadobenate dimeglumine 

(MultiHance, Gd-BOPTA, Bracco Diagnostics, Princeton, NJ, USA), approved for use in the United 

States in 2004. Approximately 95% of this agent is excreted by the kidney, but 3% to 5% is taken up by 

the normal hepatocytes and excreted into the biliary tract [43]. Because of the relatively small amount 

of hepatic uptake, imaging in the “hepatobiliary phase” (HBP), where the liver parenchyma is of 

increased signal intensity, is from 45 to 120 min post contrast injection. In practice, most institutions image 

this second phase at 1 to 2 h. The dosing and injection rate is similar to that of the extracellular agents, 

although, on certain occasions, a half dose of 0.05 mmol/kg can be used. 

In 2008, a second hepatobiliary agent, gadoxetic acid (U.S.: Eovist; Europe: Primovist,  

Gd-EOB-DTPA, Bayer Healthcare Pharmaceuticals, Wayne, NJ, USA) was approved for use in  

the U.S. This agent has approximately 50:50 excretion between renal (glomerular filtration) and 

hepatocyte uptake/biliary excretion. Gadoxetic acid can therefore be used for the early dynamic imaging 

phase in the liver, as above, followed by a 20 min T1-weighted imaging phase where the liver is brighter 

and nonhepatocyte containing masses will be variably dark. This hepatobiliary agent was initially 

approved by the FDA for a dose of 0.025 mmol/kg. However, some studies suggest better results with 

0.05 mmol per kilogram, which is now a very common practice pattern [43]. Note that even with this 
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“double dose” of gadoxetic acid, the patient will receive half the gadolinium dose compared with the 

standard dose of the other GBCAs. 

The use of hepatobiliary agents for the diagnosis of HCC is in transition. Some major HCC imaging 

guidelines do not mention this class of GBCA [14,32,44], while other societies or organizations include 

their use [45,46]. Many authors and consensus panels are suggesting various uses for the hepatobiliary 

agents for HCC workup [47,48]. The HBP can be used for increasing the sensitivity of HCC detection 

of small lesions, help suggest the diagnosis of HCC in lesions without washout, help diagnosis of HCC 

in lesions without arterial hyperenhancement, and differentiate arterial pseudolesions from HCC  

(Figures 3–5) [10,48]. However, while hepatobiliary phase imaging has been helpful to increase sensitivity, 

it has not yet been incorporated into OPTN and AASLD guidelines as a way to establish the definitive 

diagnosis of HCC. It remains unclear whether hepatobiliary phase contrast hypoenhancement will be able 

to be incorporated in a way that is as specific as conventional extracellular contrast criteria for  

HCC diagnosis. 

Issues related to the uptake of the hepatobiliary contrast agent in some HCCs, the lack of delayed 

phase “pseudo-capsule”, which is available in the extracellular agents, and respiratory motion during the 

arterial phase of dynamic imaging are all potential problems at present [47]. Additionally, with 

worsening of cirrhosis, the ability of HCC detection decreases, probably because of poorer contrast 

uptake leading to lower contrast enhancement [10,47]. It has also been variably reported that between 

9% and 20% of typical HCCs can take up the hepatobiliary agent and become iso- or hyperintense on 

the hepatobiliary phase, which creates obvious problems with HCC detection [43,49–51]. However, 

some authors suggest that this hepatobiliary agent uptake in HCCs present in the West may be less of a 

problem [52]. 
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(A) (B) 

(C) 

Figure 3. The importance of gadoxetic acid for visualization of small and/or ill-defined 

HCC. (A) A subtle area of vague enhancement (arrow) is seen in the late arterial phase 

sequence in this patient with end-stage liver disease; (B) This area (arrow) on the portal 

venous phase remains ill-defined and could easily be missed; (C) The 20-min hepatobiliary 

phase of this gadoxetic acid contrast enhanced exam demonstrates a well-defined area of low 

signal intensity. This image allows critical review of the corresponding area on the earlier 

sequences to now appreciate the minimal hyperenhancement in the arterial phase and the 

very subtle washout of the portal venous phase to suggest a diagnosis of HCC. 

 
(A) 

Figure 4. Cont. 
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(B) 

Figure 4. Gadoxetic acid contrast distinguising benign arterial hyperenhancement of 

cirrhosis versus HCC. (A) On the subtracted late arterial phase Gadoxetic acid enhanced 

study there are 2 areas of hyperenhancement (black and white arrows); (B) The hepatobiliary 

phase from the same exam the shows the low signal area of the HCC (black arrow) but  

the normal hepatic uptake and therefore normal signal intensity in hepatic segment IV (white 

arrow), consistent with benign vascular shunting. Subsequent exams (not shown) 

demonstrated the loss of the segment IV arterial contrast enhancement with the continued 

presence of normal hepatic uptake in this area. 

 

Figure 5. Uptake of gadoxetic acid in a hepatocellular carcinoma. This coronal image was 

obtained 15 min after intravenous injection of Gadoxetic acid. (Note that this exam was 

obtained by a combination contrast technique. This was obtained by first injecting an 

extracellular gadolinium agent and imaging through the equilibrium phase. This was 

followed by Gadoxetic acid injection with subsequent hepatobiliary imaging at 15 min.) 

There are two HCC’s present on this image. The lesion at the dome (black arrow) 

demonstrates a well circumscribed, hypointense area compatible with the mass without 

normally functioning hepatocytes. This mass had arterial hyperenhancement and delayed 

phase washout. These findings are all compatible with hepatocellular carcinoma. The lesion 

in segment 5–6 (white arrow) is also a hepatocellular carcinoma (same patient as in Figure 

1 but it demonstrates uptake of the hepatobiliary agent. 
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3. Other MRI Sequences for HCC and in Relation to GBCA 

The standard, contrast-enhanced, hepatic MRI exam has other sequences that can be helpful in HCC 

diagnosis: T2 weighted imaging, diffusion weighted imaging, and T1 weighted chemical shift “in and 

out of phase” imaging. The information obtained from these sequences can be important in support of 

the diagnosis of HCC, but is not used in the major criteria for HCC diagnosis, which is obtained through 

the contrast-enhanced criteria cited above. 

In the 1990s up to the mid-2000s, T2 weighted imaging was considered to be very helpful for HCC 

visualization in cirrhotic liver, but it has now fallen out of favor [53,54]. Unfortunately, accuracy of T2 

is limited as not all HCC display the typical increased signal intensity on T2 weighted sequences  

(for example Figure 6) and not all increased signal intensity mass lesions are HCC. As the dynamic 

contrast imaging sequences using T1 weighted gradient echoes has become much more robust, the  

T2 imaging sequence has lost importance. However, lesions that contain iron are often seen as 

hypointense relative to liver on T2 weighted sequences. This can be useful if present, because in HCC 

the tumor cells lose the ability to concentrate iron, therefore T2 hypointensity essentially excludes the 

diagnosis of HCC [55]. 

(A) 

(B) 

Figure 6. The potential unreliable display of HCC on T2W imaging. (A) A late arterial phase 

contrast enhanced image nicely demonstrates the large HCC (arrow) by moderate contrast 

enhancement; (B) However a technically excellent fat saturated T2W image very poorly 

demonstrates any textural difference in this area. At most there is slightly lower signal 

intensity in this area and a subtle loss of the normal hepatic texture. 
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Diffusion weighted imaging (DWI) is another, more recent, advancement of MRI HCC detection. 

This MRI technique uses the difference in water molecule movement to help detect and characterize 

liver masses. The contrast in this sequence stems from water movement in the microenvironment. When 

the water molecules are not allowed to diffuse freely, two symmetric gradients with opposite direction 

applied during a T2 echo planar spin echo sequence will result in increased signal intensity. Malignancies 

typically do not allow free water movement and therefore result in restriction and thus hyperintensity. 

The DWI sequence uses different strengths of bipolar gradients, i.e., different b-values, to create 

different imaging characteristics in the same local environment. Using the sequence of DWI alone, high 

b-value (600–1000) imaging demonstrates a moderate sensitivity, approximately 70%, but also a high 

specificity for HCC detection [22,56,57]. The high specificity associated with high b-value DWI is very 

helpful in distinguishing HCC from arterially enhancing pseudolesions and other benign cirrhotic  

lesions [22]. Rarely, however, a benign cirrhotic nodule may demonstrate DWI hyperintensity, thought 

possibly to be related to edematous change or infarct [22,58,59]. It should be noted however that with a 

worsening of cirrhotic background changes, there is a decrease in the ability of DWI to define an  

HCC [60]. 

At present, DWI is typically used in conjunction with contrast enhancement. Here, it is shown to 

improve detection rates, especially related to small lesions (<2 cm). One study increased detection rate 

of small HCC’s from 60% to 85% [61], while another study increased the HCC detection sensitivity 

from 85% to 98% when used with contrast enhanced MRI using an extracellular contrast agent [62]. 

Finally, DWI can be of help with gadoxetic acid studies as well. When combined with DWI hyperintensity, 

the likelihood of HCC diagnosis is increased when a nodule may only show arterial hyperenhancement 

alone or hypointensity on the hepatobiliary phase alone [63]. 

A final ancillary finding that can be displayed using T1 weighted “in and out of phase” chemical shift 

imaging is the presence of intralesional fat. This imaging sequence utilizes resonance frequency 

differences between water and fat to acquire a set of images when fat and water are in phase  

(or additive) and a second set of images when fat and water or out of phase (which results in signal 

cancellation) to demonstrate the presence of microscopic intravoxel fat. Fatty metamorphosis associated 

with HCC is found in up to 17% of HCCs, and therefore can be helpful in discriminating between HCC 

and other lesions that do not contain fat [46,64,65]. 

4. Conclusions 

In summary, current MRI techniques and criteria for diagnosing hepatocellular carcinoma have 

evolved to rely most heavily upon the use of gadolinium-based contrast agents. Current established 

criteria for diagnosing HCC are based primarily on the extracellular properties of contrast agents, 

however there is an emerging role of hepatobiliary contrast agents in HCC imaging. Ancillary sequences, 

such as DWI, T2 weighted imaging, and T1 weighted chemical shift imaging, play a supportive role in 

the diagnosis of HCC but are not major diagnostic criteria. Subtracted post-contrast imaging series can 

be helpful for more accurately assessing hepatic lesion enhancement characteristics and also for 

assessing vascular involvement. 
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