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Abstract: Ovarian cancer is one of the leading causes of death worldwide among the female popula-
tion. Early diagnosis is crucial for patient treatment. In this work, our main objective is to accurately
detect and classify ovarian cancer. To achieve this, two datasets are considered: CT scan images of
patients with cancer and those without, and biomarker (clinical parameters) data from all patients.
We propose an ensemble deep neural network model and an ensemble machine learning model for
the automatic binary classification of ovarian CT scan images and biomarker data. The proposed
model incorporates four convolutional neural network models: VGG16, ResNet 152, Inception V3,
and DenseNet 101, with transformers applied for feature extraction. These extracted features are
fed into our proposed ensemble multi-layer perceptron model for classification. Preprocessing and
CNN tuning techniques such as hyperparameter optimization, data augmentation, and fine-tuning
are utilized during model training. Our ensemble model outperforms single classifiers and machine
learning algorithms, achieving a mean accuracy of 98.96%, a precision of 97.44%, and an F1-score
of 98.7%. We compared these results with those obtained using features extracted by the UNet
model, followed by classification with our ensemble model. The transformer demonstrated supe-
rior performance in feature extraction over the UNet, with a mean Dice score and mean Jaccard
score of 0.98 and 0.97, respectively, and standard deviations of 0.04 and 0.06 for benign tumors and
0.99 and 0.98 with standard deviations of 0.01 for malignant tumors. For the biomarker data, the
combination of five machine learning models—KNN, logistic regression, SVM, decision tree, and
random forest—resulted in an improved accuracy of 92.8% compared to single classifiers.

Keywords: U-Net; transformers; multi-model ensemble; ovarian cancer; benign; malignant; computer-aided
diagnosis; LIME; SHAP

1. Introduction

One in every eight women worldwide is affected by ovarian cancer, as per the World
Ovarian Cancer Coalition. As per the reports, one in every eight women affected is the
current incident rate. Ovarian cancer remains a formidable adversary in oncology, posing
significant challenges to early detection and effective treatment; as one of the most gyneco-
logical malignancies, it often remains asymptomatic in its early stages, leading to diagnoses
in advanced, less treatable phases. The crucial role of early detection in improving ovarian
cancer prognosis cannot be overstated. Accurate and timely diagnosis is the cornerstone of
effective treatment strategies, ultimately influencing patient survival rates and quality of
life [1]. This cancer is diagnosed by detecting malignant cells in ovarian tissue. In the pur-
suit of more precise and reliable diagnostic tools, medical imaging, particularly computed
tomography (CT) scans, has emerged as a vital component due to its ability to provide
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detailed anatomical information and assist in tumor characterization. However, accurately
interpreting CT images for ovarian cancer diagnosis remains complex and challenging,
often reliant on the expertise of radiologists, introducing inherent subjectivity and potential
variability in results [2].

Advancements in medical image processing and computational techniques, including
computer-aided mechanisms, are used to achieve improved results compared to manual
radiologist findings [3]. In the deep learning domain, this typically involves extracting
features using a convolutional neural network (CNN) and classifying them using a fully
connected network. Deep learning is widely applied in medical imaging, as prior expertise
in the related field is not required.

In medical image processing, convolutional neural networks (CNNs) have been ex-
tensively used and have achieved significant results in tasks like image classification and
segmentation [4]. CNNs are designed to capture spatial relationships such as image classi-
fication, segmentation, and object detection. However, transformers have recently gained
popularity in medical image analysis, showing promising results in various tasks. Trans-
formers’ main advantage over CNNs is their ability to handle long-range dependencies and
relationships between pixels in an image. In a medical image, features in different regions
can be related and significantly impact diagnosis or treatment. Transformers, with their
self-attention mechanism, can effectively capture these relationships and dependencies,
leading to improved performance in tasks like lesion classification or segmentation. This
self-attention mechanism allows for parallel processing, making transformers faster than
CNNs and UNet. Another advantage of transformers is their ability to be trained on
large datasets, enabling them to learn more complex representations of medical images.
However, transformers lack performance when the size of the dataset is limited. This is
particularly crucial in medical imaging, where large datasets are often not available [5].

The main contributions of this research work are summarized below:

• Implemented transformer models for semantic segmentation in ovarian tumor de-
tection and compared the results with the UNet model. Transformer models outper-
formed the UNet in the segmentation.

• Conducted a thorough evaluation of segmentation models, comparing the transformer-
based approach with the widely recognized UNet model. This assessment involved
the application of metrics such as the Dice score and the Jaccard score.

• Developed a four-stage deep learning ensemble (comprising VGG16, ResNet 152,
Inception V3, and DenseNet 101) and a five-stage machine learning ensemble for
classifying ovarian tumors.

• Established the superiority of the ensemble models by demonstrating enhanced classi-
fication accuracy in ovarian tumor detection compared to individual classifiers.

• Implemented explainable AI methodologies, including SHAP and LIME, to enhance
the interpretability of the model’s predictions. This approach ensures a transparent
understanding of the key features influencing classification outcomes.

This research paper is organized as follows: Section 2 provides an overview of related
work in the fields of ovarian tumor classification, deep neural networks (DNNs), ensemble
methods, UNet, and Transformers. Section 3 details our proposed methodology, including
the architecture of the ensemble DNN and the integration of segmentation techniques.
Section 4 presents the experimental setup, results, and performance evaluation. In Section 5,
we discuss the implications of our findings. We conclude by highlighting the potential of
our approach to revolutionize ovarian tumor diagnosis in Section 6. Section 7 provides
the discussion.

2. Related Work

Maithra et al. [6] investigated the effect of scale on transfer learning, finding that
larger transformer models develop significantly stronger intermediate representations
through larger pretraining datasets. Additionally, they analyzed the internal representation
structure of transformer models and CNNs in image classification benchmarks, noting
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substantial differences between the two architectures, such as transformers having more
uniform representations across all layers. Alexey et al. [7] present a large-scale study
comparing transformer and CNN models by their performance in image classification
tasks. The authors demonstrate that transformer models can achieve excellent performance
on numerous benchmark datasets and are computationally efficient and easier to train
than CNNs. Han et al. [8] compare the performance of transformer and CNN models in
generative tasks, such as image synthesis. They show that transformer models can generate
high-quality images and outperform CNNs in both quality and sample diversity. The
proposed Self-Attention Generative Adversarial Network (SAGAN) provided an inception
score of 52.52 and reduced the inception distance from 27.62 to 18.65.

Gao et al. [9] propose a model combining CNNs and transformers to efficiently extract
low-level features of images and establish long-range dependencies between modalities.
Their research asserts that transformers significantly contribute to multi-modal image anal-
ysis compared to CNNs, achieving an improvement of 10.1% in average accuracy compared
to the state-of-the-art CNN models. Kelei et al. [10] found that CNNs neglect long-term
dependencies within images, such as the nonlocal correlation of objects. In contrast, trans-
former models overcome such hurdles by formulating image classification as a sequence
prediction task for image patch sequences, thereby capturing long-term dependencies
within the input image. Fahad et al. [11], in their comprehensive review of transformers
in medical image analysis (detection, classification, segmentation, reconstruction, etc.),
indicate that transformers, compared to pure CNNs, provide a clearer, localized picture
of attention in most medical images and mention the rapid growth of transformers in this
field. The proposed method achieved a sensitivity of 91.5% and 82.2% sensitivity.

Emebob et al. [12] experimented with transformers and CNNs using ImageNet pre-
trained weights, typically the most popular method to improve deep learning model
performance. Their results suggest that transformers benefit more from transfer learning,
resulting in better-trained models for image analysis. Chang et al. [13] proposed combining
transformers and CNNs to overcome the lack of long-range dependencies inherent in
CNNs. This combination yields better outcomes with electroencephalogram (EEG) results
compared to earlier proposed CNN and DCNN-based models. Hu et al. [14] propose
a transformer-based model for medical image segmentation. Their work highlights the
advantages of transformers in designing a Swin-Unet, a transformer approach to the seg-
mentation model. After testing multiple U-net-based models and the transformer-based
model, they summarize the strength of transformer-based models in image segmentation.
The proposed UNETR method obtained the Dice score of 0.964 on the CT spleen and
0.789 on the whole tumor of the brain. Ali et al. [15] proposed a model that includes
encoders to learn sequence images of the input volume and successfully captures the global
multiscale information, demonstrating the model’s ability to capture global contextual
representation at multiple scales. The experimental results show that TransClaw U-Net
is better than the other network models for segmentation. Yao et al. [16] demonstrate the
ability of a transformer-based model to extract the global context, a crucial factor in medical
examination. Their study explores the strength of transformers in medical image analysis,
particularly in detailed segmentation performance.

Christos et al. [17], in their paper “Is it time to replace CNNs with transformers
for medical images?”, discuss several reasons for transformers’ ability to match the effi-
ciency of CNN models in medical image analysis. They also highlight the role of transfer
learning in yielding better results and mention dataset size as a key factor in measur-
ing the performance of transformer-based models. Rene et al. [18] highlight the strength
of transformers in semantic segmentation, considering various parameters that can en-
hance the ability of a transformer in the segmentation process. Zhang et al. [19] show
that low-level spatial details in medical image segmentation can be efficiently captured
with a combination of transformers and other neural networks. Their extensive experi-
ments reflect the ability of transformers in both 2D and 3D image processing. A study
by Guoping et al. [20] demonstrates how a U-Net-based encoding block can increase ef-



Diagnostics 2024, 14, 543 4 of 19

ficiency and reduce complexity in a transformer’s computation. They propose a viable
technique for medical image segmentation, primarily using transformer features on various
benchmarks such as ACDC and Synapse. Often, models require large datasets for better
training. The proposed transformer-based UNet provided an accuracy of 78.53% with
a segmentation speed of 85 frames per second. The proposed model outperformed the
CNN model. Jeya Maria Jose et al. [21] propose a local-global training strategy (LoGo) that
operates on whole images and patches to learn global and local features, overcoming the
shortcomings of training with small datasets.

Miranda et al. [22] discuss various U-Net-based models for medical image segmen-
tation, outlining their shortcomings and highlighting the role of transformers in efficient
segmentation. Feiniu et al. [23] list the advantages of using transformers in medical image
segmentation, emphasizing their significance in the domain of medical imaging analysis.
Zhuangzhuang et al. [24] propose a method to reduce the computational complexity of
transformers and compare the results with other state-of-the-art models, showing signifi-
cant complexity reduction while maintaining stable performance with popular databases.
Hongyu et al. [25] compare a CNN and transformer-based hybrid model, demonstrating
better feature extraction compared to pure CNN or U-Net models. Their experiments yield
significant results, surpassing U-Net-based models on similar datasets. Shen et al. [26]
propose combining a transformer with the U-Net model for improved accuracy, also dis-
cussing the shortcomings of U-Net in feature extraction and the robustness of transformers
in image analysis.

3. Methodology
3.1. Segmentation
3.1.1. Segmentation Using Transformer Model

Semantic segmentation has a wide range of applications in computer vision and pri-
marily involves assigning each image pixel to a class or category label. Fully convolutional
networks have been predominantly used for semantic segmentation tasks. However, in
recent years, transformers that rely on the self-attention mechanism have proven to be
more efficient in segmentation tasks.

The transformer follows an encoder–decoder architecture. Introduced in the paper
‘Attention Is All You Need’, [27] transformers are described as a Seq2Seq (sequence-to-
sequence) architecture. The encoder maps the input sequence to a higher dimensional
space, which is then fed to the decoder to produce the output sequence. In the context of
semantic segmentation, the transformer maps a sequence of patch embeddings to pixel-
level class annotations. Figure 1 illustrates the architecture of the transformer model for
segmentation. The details of the transformer model are as follows: the model used is Seg-L,
the backbone architecture used is ViT-L with 24 layers, 1024 token size, and having 16 heads
with the total parameters 307 M. The recently introduced vision transformer demonstrates
an architecture that is free of convolutions, purely processing images as a sequence of patch
tokens. Using the encoder–decoder transformer architecture, we have segmented input
images of benign and malignant tumors. The performance on benign images is better than
that on malignant images due to the clear, well-defined boundaries of benign tumors in
comparison to malignant tumors. Malignant tumors, often lacking well-defined boundaries
and shapes, are segmented with lower accuracy.

3.1.2. Segmentation Using U-Net Model

U-net is one of the popular semantic image segmentation models introduced by
Ronneberger et al. [28]. The model comprises a U-shaped architecture that applies a
downsampling (encoding) and upsampling (decoding). The architecture of the U-net is
displayed in Figure 2.

The model identifies the objects present in the image through the encoding stages,
also known as the contracting network. Each time the image passes through a layer of
encoding, the number of pixels is reduced by half. This reduction is a crucial step in
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semantic segmentation, the process of assigning a class to each pixel in the image. The
decoder, also referred to as the expansion network, processes the feature map received
from the lower layers to produce a segmentation mask. The skip connections, which
are key to the U-Net’s efficiency, combine the feature map generated at each stage of
encoding with the corresponding stages of decoding. These connections, indicated by the
grey arrows in Figure 2, create a segmentation map from the contextual features learned
throughout the encoding cycles. They also help the model maintain minimal changes in the
image’s intensity. The encoder and decoder, together, implement the tasks of classification
and localization, respectively. The bottleneck layer of the architecture consists of two
convolutional layers followed by a ReLU activation layer. This layer is responsible for
generating the final feature map that feeds into the first layer of the decoder. 
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Figure 2. U-Net model architecture for segmentation of benign and malignant tumors.
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3.2. Classification Using Deep Learning for CT Scan Images
3.2.1. Proposed Network Architecture

The use of computed tomography (CT) scanned images for detecting ovarian cancer
using deep learning is not widespread. This study is one of the few that utilizes ensemble
deep learning to achieve its objective. An ensemble deep learning model, built as a
combination of multiple CNN models, aims to achieve better accuracy. The number of
layers and the extent of learning enable the model to effectively extract the required features
from the input image. Figure 3 illustrates the approach of the proposed task, which is
divided mainly into these steps: data collection, preprocessing and dataset preparation,
feature extraction, segmentation, and classification.

Diagnostics 2024, 14, x FOR PEER REVIEW  3  of  11 
 

 

 

Figure 3. Block diagram. 

   

Figure 3. Block diagram.

In the first step, CT scan images of several patients are collected with their consent.
Preprocessing involves removing sensitive or irrelevant information from the images. Data
augmentation is also performed to increase the dataset size. The proposed four-path
ensemble architecture is then fed with this data as input, meaning the four CNN models
involved receive this data and perform feature extraction separately. The reason why the
segmentation was performed 1st and then classification was that the raw images contained
a large amount of information, including irrelevant details, not the lesion of interest.
Therefore, segmentation was applied 1st so that the model could focus only on the lesion of
interest, thus reducing the complexity of the classification model. Instead of considering
every pixel for classification, features such as shape can be extracted from the segmentation
model, thus providing more discriminative information for classification. This benefits the
feature extraction for the classification. Since the segmented region is given to the classifier,
the classification model can be tailored to the characteristics of those regions, leading to
improved accuracy—computational efficiency as we are processing only the segmented
images rather than the entire image. The resulting vectors are combined to form a multiview
feature vector, which is then sent to a multi-layer perceptron architecture for classifying
the cases into two categories: benign and malignant. Evaluation metrics such as accuracy,
precision, recall, and F-score are used to assess the proposed model’s performance.

3.2.2. Feature Extraction Using Transfer Learning

Feature extraction plays a crucial role in the classification of histopathological images
using deep learning due to their high visual complexity. This aspect directly impacts
the performance of the CNN model in use. Privacy concerns related to medical data
limit the size of the dataset that can be acquired. To enhance performance, alongside
data augmentation, transfer learning proves to be a beneficial method for better feature
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extraction. Models trained to extract general features from one dataset can be effectively
applied in different scenarios involving other objects of interest.

3.2.3. Four-Path Ensemble Architecture for Ovarian Cancer Classification

The proposed system is a four-path ensemble architecture for ovarian cancer detection,
utilizing four popular deep-learning classifiers: VGG16, ResNet 152, Inception V3, and
DenseNet 101. These models were selected for their high accuracy from a pool of commonly
used CNN models, including VGG16, VGG19, ResNet 152, Inception ResNet V1, Inception
ResNet V2, EfficientNet B1, and DenseNet 101. Figure 4 illustrates the architecture of the
proposed system and the detailed implementation algorithm is given in Algorithm 1. The
input data undergoes preprocessing such as intensity normalization, image resizing, image
enhancement using Gaussian filters, anatomical normalization, and data augmentation
before being fed into all four CNN models. Each model, depending on its algorithm,
performs feature extraction and learning. The last fully connected layers of these models are
then combined to form a unified feature vector, aiding the four-path ensemble deep learning
model in classifying the instances as benign or malignant. Karen Simonyan and Andrew
Zisserman named VGGNet after the Visual Geometry Group at the University of Oxford
in 2014. It was one of the top performers in the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC). VGGNet’s architecture consists of 3 × 3 convolutional layers stacked
on top of each other, alternated with a max pooling layer, followed by two fully connected
layers with 4096 nodes each, and a SoftMax classifier at the end. Residual networks, or
ResNets, were developed to address the vanishing/exploding gradient problem associated
with adding too many layers to a deep neural network. They use skip connections in the
residual blocks, which are stacked to form ResNets. The ResNet 152 model, which has
152 layers, is notable for having fewer parameters than the VGG19 model and for winning
the ILSVRC ImageNet 2015 challenge. Building on the success of ResNets, Inception-ResNet
models, such as Inception-ResNet V1 and V2, were developed. These models incorporate
inception blocks, which are computationally less expensive, with residual connections
replacing the pooling operations in the reduction blocks. Additionally, batch normalization
is not used after summations, and filter expansion occurs after each inception block. The
computational costs of Inception-ResNet V1 and V2 are similar to those of Inception
V3 and V4, respectively. DenseNet, proposed by Huang et al. in 2016, features a ‘dense
block’ in its architecture, wherein each convolutional layer is directly connected to all
subsequent layers. DenseNet, short for densely connected convolutional networks, has a
complex interconnected structure with very short connections between input and output
layers throughout the network, which helps in mitigating the vanishing gradient problem.
The configuration of each of the variants of CNN is described in Table 1.

Table 1. CNN variant specifications.

Layer VGG16 DenseNet 101 Inception V3 ResNet 152

Size of Layers 41 101 48 152

Input image size 512 × 512 pixel 224 × 224 pixel 299 × 299 pixel 224 × 224 pixel

Convolutional Layer 13 128 42 51

Filter Size 64 & 128 3 1, 3, 5 1, 3

ReLU 5 2 42 (equivalent) 51 (equivalent)

Max Pooling 5 0 2 0

Fully Connected Layers 3 0 0 0

Softmax 1 1 1 1
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and DenseNet.

3.2.4. Algorithm for Segmentation Using UNet and Transformers

Algorithm 1: Algorithm for Segmentation using UNet and Transformers

Input: X as the input image, ci as the output of the ith convolutional layer in the UNet model,
fi as the ith feature map, pi as the ith pooling layer, ui as the ith up-convolutional (transposed
convolutional) layer in the U-Net model, ti as the output of the transformer model, mi as the
multi-head attention mechanism in the transformer model, di as the ith dense layer in the
transformer model.
Output: Segmented Lesion
1. for i in range(N) do:

E = sigma(Conv(E-1))
D = sigma(Conv(D-1)
S = E + D
L_bce = sum(y_i × log(O_i) + (1 − y_i) × log(1 − O_i) for i in range(N))
L_dice = (2 × TP)/((TP + FP) + (TP + FN))
L_jaccard = TP/(TP + FP + FN)

end for
# Transformer-style segmentation with MultiHeadAttention, Position-wise Feed-forward
Network, and Normalization
2. for i in range(N) do:

E = MultiHeadAttention_Layer(x) + x
D = MultiHeadAttention(Y) + Y + MultiHeadAttention(Encoder_Output)

FFN = ReLU(Conv1D(Z, W_1 + b_1)) @ W_2 + b_2
end for

3.3. Classification Using Ensemble Machine Learning Model for Biomarker Dataset

The classification process for the biomarker dataset involves meticulous preprocessing
of the tabulated biomarker (clinical parameters) data. This preprocessing includes fea-
ture selection, handling missing values, and transforming the dataset for a more concise
representation. The goal is to ensure that each feature encapsulates analogous examples.
Following these preprocessing steps, the dataset undergoes classification using machine
learning classifiers, namely K-nearest neighbors (KNN), logistic regression, support vector
machine (SVM), random forest, and decision tree.

Ensemble learning is employed to harness the diverse performances of these classifiers,
aiming to achieve an optimal outcome. The key to superior performance lies in careful
hyperparameter tuning. To elucidate and interpret this optimal performance, explainable
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AI methods such as LIME (local interpretable model-agnostic explanations) and SHAP
(SHapley Additive exPlanations) are utilized. These methods provide transparency in
understanding the influential factors contributing to the outcomes of the ensemble machine
learning model (Figure 5).
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Figure 5. Overview of the proposed ensemble machine learning model.

Algorithm 2 for Classification Using Ensemble Machine Learning Models and
Interpretation Using LIME and SHAP

Algorithm 2: Ensemble Machine Learning Model

Step 1: Data Preparation
Step 2: Base Model Training

base_models = {
‘Logistic Regression’: LogisticRegression(),
‘KNN’: KNeighborsClassifier(),
‘SVM’: SVC(),
‘Decision Tree’: DecisionTreeClassifier(),
‘Random Forest’: RandomForestClassifier()

}
base_model_predictions = {}

for model_name, model in base_models.items():
model.fit(X_train, y_train)
base_model_predictions[model_name] = model.predict(X_test)

Step 3: Base Model Predictions
base_model_predictions_array = np.array(list(base_model_predictions.values())).T

Step 4: Meta-Model Training
meta_model = Ensemble()
meta_model.fit(base_model_predictions_array, y_test)

Step 5: Final Prediction
final_predictions_array = np.array(list(base_model_predictions.values())).T
stacked_predictions = meta_model.predict(final_predictions_array)

Step 6: Evaluation
accuracy = accuracy_score(y_test, stacked_predictions)
print(f”Stacking Ensemble Model Accuracy: {accuracy}”)

Step 7: Explainability with LIME
def lime_explanation(model, instance, features):

Step 8: Explainability with SHAP
explainer = shap.Explainer(meta_model)
shap_values = explainer.shap_values(X_test)
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4. Experiments
4.1. Dataset Description

A total of 349 anonymous patient CT scan images were collected from SDM Medical
College and Science, Dharwad. The dataset consists of 540 benign and 487 malignant
images. Each image has a resolution of 512 × 512 pixels. The dataset includes axial,
coronal, and sagittal views to aid in evaluating the extent of the disease. In contrast, the
biomarker dataset comprises 349 entries with 50 features, including clinical biomarkers,
blood parameters, cancer antigen levels, liver enzymes, and hematological indices. This
dataset is split into training and testing sets with an 80:20 ratio, allocating approximately
280 instances for model training and 69 instances for testing.

4.2. Data Preparation and Preprocessing Technique

To optimize the training process, data augmentation and image normalization were adopted.

4.2.1. Data Augmentation

Deep learning algorithms require a substantial amount of data for the training process
to effectively understand the patterns within the data. Due to the limited availability of
data and to prevent overfitting during the training process, data augmentation is carried
out. This process generates additional data from the existing dataset. Various data aug-
mentation techniques, such as horizontal flipping, vertical flipping, contrast enhancement,
and adjustments with a zoom and shear range of 0.2 and a rotational range of 90◦, are
applied to the dataset to create more training samples, thus increasing the samples which
will improve the performance of the model.

4.2.2. Image Normalization

Intensity normalization is applied to attain the same range of values for each input
image before feeding into the CNN model. This process will help in speeding up the
convergence of the model. The input images are normalized using min–max normalization
to the intensity range between 0 and 1.

4.3. Experimental Settings

The following were the experimental settings at the time of training and execution of
the modified U-net model, as shown in Table 2.

Table 2. The configuration and environment settings for the experiment.

Parameters Values

Image size for the experiment 512 × 512 pixels

Batch size 64

Number of epochs 1000

Number of hidden neurons for the ReLU 256

GPU Nvidia RTX 3060 1.78 GHz with 3585 cores

RAM 32 GB

The images are passed through bicubic interpolation for the resizing. A fully connected
final layer with a ReLU activation function followed by a dropout layer with a probability
of 0.5 is used. The intention behind this dropout layer is to avoid overfitting. The Adam
optimizer is used in this experiment with the beta 1 and beta 2 parameters with the values
0.6 and 0.8. A 0.0001 learning rate is set for the model. Two classes, namely benign and
malignant, are the possible output classifications. All pretrained CNN models are fine-
tuned separately. The Keras package in Python is the core behind the implementation of
the architecture.
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4.4. Evaluation Metrics

The performance of the proposed model is evaluated based on accuracy, precision,
recall, and F1 score. Mathematically, the metrics are expressed as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
× 100

Precision =
TP

TP + FP
× 100

Recall =
TP

TP + FN
× 100

F1 score =
2 × Precision × Recall

Precision + Recall

5. Results and Discussion
5.1. Segmentation

The segmentation results obtained using the transformer model and U-Net model,
respectively, are compared in the subsections below with respect to the performance
metrics defined.

5.1.1. Performance Metrics

The performance metrics applied to evaluate the segmentation results are listed below:
Dice score: This metric measures the similarity between the two images—the ground

truth image and the segmented image. The formula for the Dice score is given below:

Dice =
2∗|S ∩ G|
|S|+|G|

where S indicates the segmented region predicted by the model and G indicates the ground
truth segmented region. |.| indicates the cardinality of the set. The Dice score ranges
between 0 and 1, and the closer the score is to 1, the better the segmentation results.

Jaccard score: This metric calculates the area of overlap between the segmented and
the ground truth. The formula for the Jaccard score is given below:

Jaccard =
Dice

2 − Dice

The Jaccard score ranges between 0 and 1. The higher the value, the better the
segmentation results.

5.1.2. Comparison of UNet and Transformers

Figures 6 and 7 and Table 3 depict the segmentation results of UNet and transformers
on the open dataset. During testing, the data could randomly be picked from either the
training dataset or the validation/test dataset, making the model well-trained. This setup
ensures that the segmentation model becomes more robust and performs better in real-
world scenarios. The results illustrate that the transformer model outperformed UNet,
with a Dice score of 0.98 and a Jaccard score of 0.97 for benign images and a Dice score of
0.99 and a Jaccard score of 0.98 for malignant images.

The segmentation model UNet was trained for 5000 and transformers for 6000 epochs,
respectively. From Figure 8, it can be noted that the models are well trained, and no
saturation was observed.
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Figure 7. Segmentation results of benign images and malignant images using transformers.

Table 3. Quantitative comparison of Dice and Jaccard score of the UNet model and transformers.

UNet [28] Transformers [27]

Benign Malignant Benign Malignant

Dice Jaccard Dice Jaccard Dice Jaccard Dice Jaccard

Mean 0.91 0.84 0.94 0.9 0.98 0.97 0.99 0.98

Std. Dev 0.04 0.06 0.05 0.09 0.01 0.02 0.01 0.01
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Figure 8. Epochs vs. loss analysis of UNet (left) and transformers (right).

5.2. Classification of Ovarian Tumors Using Deep Learning

The current work focuses on developing a four-model ensemble deep neural network
to classify ovarian tumors. The performance of the classifiers was individually evaluated
using pretrained models such as VGG16, DenseNet 101, Inception V3, and ResNet 152, with
modifications made to their final layers. The mean accuracy was calculated by running each
classifier for five iterations and recording their accuracy. These values are tabulated and
presented in Table 4. The table clearly indicates that DenseNet 101 outperforms the other
classifiers, achieving a mean accuracy of 97.7%. DenseNet utilizes a compound scaling
method that optimally balances the depth, width, and resolution of the model while also
using computational resources more effectively to process both low-level and high-level
features. Often, essential information in CT scan images is distributed across different
scales, and this technique successfully captures these significant details more effectively
than the other models.

Table 4. Mean accuracy of 4 individual classifiers using transfer learning.

Model VGG16 [29] DenseNet 101
[30]

Inception V3
[31] ResNet 152 [32]

Mean Accuracy 94.01 ± 1.688 97.7 ± 1.362 95.87 ± 1.456 91.84 ± 2.10

Individual classifiers are merged into an ensemble to reduce the variance of each.
When several models are trained on the same data, they may exhibit different errors due
to their varied characteristics. Merging their outputs helps mitigate the impact of these
individual errors, thereby producing more stable and reliable predictions. This approach
effectively captures different aspects of the data distribution. Different classifiers may
excel in different regions of the feature space within the same dataset or sometimes on
different subsets of the data. The diverse perspectives observed in each model contribute
to a more robust ensemble model, which typically demonstrates better accuracy and is
likely to perform better on unseen or test data. The performance of the ensemble model is
presented in Table 5 and Figure 9. The color line in Figure 9 indicates the mean value.

Table 5. Performance of the 4-stage ensemble deep neural network.

Model Accuracy Precision F1 Score

4-Stage Ensemble Deep CNN Model 98.96 ± 1.269 97.44 ± 1.2 98.7 ± 1.423

In this study, we developed and evaluated a newly proposed ensemble deep convolu-
tional neural network (CNN) model for classifying CT scan tumors as benign or malignant.
The proposed ensemble model exhibited excellent performance, achieving a mean accuracy
of 98.96%. A figure this high signifies that the model accurately predicts a significant
portion of the test data. The model also achieved a precision of 97.44%, highlighting its
ability to precisely classify positive instances and reduce false positives. Furthermore, the



Diagnostics 2024, 14, 543 14 of 19

F1 score, which balances precision and recall, reached 98.7%, emphasizing the robustness
and effectiveness of the CNN model in correctly identifying both true positive and true
negative instances.
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5.3. Classification Using Machine Learning

As previously noted, the study included a comparison between outcomes generated
by deep learning models for CT image data and those derived from the biomarker dataset.
Considering the tabular structure of the gathered data, various machine learning models
such as logistic regression, KNN, SVM, decision tree, random forest, and boosting methods
were employed. The performance metrics of these individual classifiers are detailed
in Table 6. The performance of SVM and the random forest was further enhanced with
hyperparameter tuning techniques such as manual hyperparameter, Randomized searchCV,
and Grid Search CV. The results of the hyperparameter tuning are tabulated in Table 7.
Subsequently, an ensemble model was created by amalgamating the results from these
individual classifiers to enhance overall accuracy. The summarized results of the ensemble
model are presented in Table 8.

Table 6. Performance of the single classifiers.

Model Logistic Regression KNN SVM Decision Tree Random Forest

Accuracy 90% 81.4% 82.42% 82.85% 80.57%

Table 7. Hyperparameter tuning.

Model Manual Randomized SearchCV Grid SearchCV

SVM 87.4% 91.42% 90.11%

Random Forest 82.7% 88.57% 87.46%

Table 8. Performance of the ensemble model.

Model Accuracy Precision F1 Score

5-Stage Ensemble Machine Learning Model 92.85% 97% 94%

Combining the strengths of individual machine learning classifiers, the ensemble
model achieved an enhanced accuracy of 92.85%. Precision and F1 Score metrics, crucial
for evaluating classification models, were notably high at 97% and 94%, respectively.

5.4. Explainer Models

The research employed LIME and SHAP explainer models to interpret and pro-
vide insights into the results obtained from machine learning models applied to the
biomarkers dataset.
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5.4.1. LIME Explainer

Utilizing the Local Interpretable Model-Agnostic Explanation (LIME) technique to
interpret results from machine learning models, our investigation into the biomarkers
dataset has unveiled a compelling revelation. The standout features indicative of a positive
condition, namely the presence of an ovarian tumor, are as follows: HE4, with a noteworthy
value of 42.17; CA125 at a striking value of 17.46; AFP registering at 1.25; AST displaying a
significant 25.00; and CL making its mark at 104.50, as shown in Figure 10a,b.
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The interpretation of the LIME results is as follows for Figure 10a sample 1: For the
test sample shown in Figure 10a, the model predicted the sample as malignant, indicating
‘1’ as shown on the left side of the figures. The features that contributed to predicting the
samples as malignant are indicated in orange. Since three features contribute towards the
positive side, the resultant prediction is malignant. The weights assigned by the model for
the features HE4, CA125, and AFP are 0.22, 0.11, and 0.11, respectively. The feature values
shown on the right side of the image indicate the actual values of the features present in
the dataset. The model considered these three features because the actual values present in
the dataset for the samples are less than the threshold values. For example, the actual value
of HE4 for the given sample is 42.17, while the model value is 42.53. Since the actual value
is less than 42.53, the model considers HE4 as a positive contributing feature. AST and
CL contribute towards the negative side; these two features have not contributed to the
prediction of malignancy for the given test sample. For sample 2, as shown in Figure 10b,
the model was predicted as benign for the test sample passed, indicating ‘0′ as shown on
the left side of Figure 10b.

5.4.2. SHAP Explainer

SHAP values also play a pivotal role in elucidating the significance of individual
features when predicting a specific instance. These values effectively allocate the prediction
value across input features, thereby providing valuable insights into the specific importance
of each feature in the prediction process. A careful examination of the graph below reveals
49 features and their corresponding importance values, where we can observe that HE4 is
one of the top features. Delving further into the intricacies, one can uncover the nuanced
relationships and dependencies among these features. This analytical approach allows for
a comprehensive understanding of the intricate dynamics involved in making predictions,
as shown in Figure 11.
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test samples (b,d).

The interpretation of the SHAP explainer is as follows: Figure 11a displays the top
20 features based on their weights as considered by the models. Since SHAP serves as
the global interpreter, Figure 11a showcases the features of the overall test samples. From
the test dataset, we randomly selected a subset of 50 samples and interpreted the predic-
tions on these 50 samples. It is observed from Figure 11b that the features considered of
high importance on the overall test samples remain important even on the subset data.
Figure 11c elucidates the contribution of the HE4 feature to each of the test samples, as
depicted in 11c. The contribution of HE4 to the sample ID 196 from the test dataset is 0.1937.
All the points above the horizontal line in yellow and orange represent the samples for
which the impact of HE4 is positive, leading to malignant samples, while all the points
below the line in blue and gray represent those samples for which the impact of HE4 is
negative, leading to benign results. Figure 11d demonstrates the interpretation for the
single test sample with the index ID 219. Since the number of features contributing towards
the positive side, indicated by the yellow bar lines, is greater than the features contributing
towards the negative side, indicated in gray, the test sample 219 is identified as malignant,
with the major features contributing being HE4, CA72-4, CA125, and ALB.

6. Conclusions and Future Scope

In conclusion, this research introduces an ensemble-based deep-learning approach for
the accurate diagnosis of ovarian cancer. By leveraging the transformer for feature extrac-
tion and combining the strengths of prominent CNN models such as VGG19, ResNet 152,
Inception-ResNet V4, and DenseNet 169, the ensemble model demonstrates superior gen-
eralization performance with an accuracy of 98.96%, compared to individual classifiers.
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The experimental findings not only showcase the model’s superiority over single classifiers
but also its ability to surpass state-of-the-art machine learning algorithms across all test set
samples. Remarkably, transformers exhibit enhanced performance, even excelling in the
detection of small malignant tumors compared to UNet. This underscores the effectiveness
of the proposed deep learning multiensemble model in elevating prediction performance
beyond the capabilities of base architectures.

In addition to the deep learning approach, this research incorporates an ensemble
machine learning model, leveraging the combined results of various classifiers to achieve
an enhanced classification accuracy of 92.85%. Furthermore, the application of explainable
AI (XAI) methodologies, such as SHAP and LIME, proves invaluable in identifying and
interpreting the key features influencing classification outcomes. This not only ensures a
transparent understanding of the model’s predictions but also offers a practical advantage
by potentially reducing the need for extensive blood tests. XAI aids in pinpointing crucial
features, streamlining the diagnostic process, and providing valuable insights for informed
decision-making in ovarian cancer detection.

Looking ahead, the research suggests promising directions for the ongoing enhance-
ment and application of the developed ensemble-based deep learning approach for ovarian
cancer detection. The integration of multi-modal data, such as genetic information or addi-
tional clinical parameters, could further enrich the model’s understanding and diagnostic
capabilities. Future efforts may focus on real-time implementation in clinical settings, facili-
tating swift and accurate diagnoses for timely interventions. Additionally, collaboration
with medical professionals for rigorous clinical validation studies is essential to ensure the
reliability and efficacy of the proposed models in real-world scenarios. Advancements in
explainable AI methodologies can provide more detailed insights into the decision-making
process, fostering trust among healthcare practitioners. Exploring patient-specific predic-
tions could contribute to personalized medicine approaches, tailoring diagnostic insights
to individual characteristics. These endeavors collectively aim to advance the current state
of ovarian cancer detection, addressing challenges and paving the way for more robust,
practical, and widely applicable diagnostic solutions.

7. Discussion

In total, 349 samples, each of which is a CT image of ovarian cancer, are classified
using a deep convolutional ensemble classifier, which provided an accuracy of 98.96%.
From the same patients, the clinical parameters are measured, which are subjected to an
ensemble machine learning model, and an accuracy of 92.85% is obtained. Whenever a
patient is subjected to health screening/diagnosis as primary care, clinical parameters such
as hormonal tests and other blood investigations are prescribed. When there are diagnostic
indications of possible ovarian cancer, the patient is advised to take a CT scan of the ovary.
The clinical knowledge suggests that CT scans are specific in the diagnosis of ovarian cancer.
This research methodology investigates the efficacy of both clinical parameters and CT
scan images independently in diagnosing the disease, along with the investigation of the
discrimination potential of each of the approaches (clinical parameters and CT images),
which ultimately proves logically that CT scan images can not only provide a more specific
but also efficient diagnosis of ovarian cancer than clinical parameters. It is advised as
primary care to investigate clinical parameters to rule out conditions other than ovarian
cancer. The primary contribution of this research is the evaluation and comparison of
the efficacy of both clinical and CT scan images in diagnosing ovarian cancer and the
justification of why CT image-based diagnosis of ovarian cancer is to be considered.
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