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Abstract: Ultrasound (US) has become a widely used imaging modality in clinical practice, character-
ized by its rapidly evolving technology, advantages, and unique challenges, such as a low imaging
quality and high variability. There is a need to develop advanced automatic US image analysis
methods to enhance its diagnostic accuracy and objectivity. Vision transformers, a recent innovation
in machine learning, have demonstrated significant potential in various research fields, including
general image analysis and computer vision, due to their capacity to process large datasets and learn
complex patterns. Their suitability for automatic US image analysis tasks, such as classification,
detection, and segmentation, has been recognized. This review provides an introduction to vision
transformers and discusses their applications in specific US image analysis tasks, while also address-
ing the open challenges and potential future trends in their application in medical US image analysis.
Vision transformers have shown promise in enhancing the accuracy and efficiency of ultrasound
image analysis and are expected to play an increasingly important role in the diagnosis and treatment
of medical conditions using ultrasound imaging as technology progresses.

Keywords: transformer; ultrasound (US); deep learning; convolutional neural network (CNN); vision
transformer (ViT); swin transformer

1. Introduction

Ultrasound (US) is a versatile imaging technique that has become a fundamental
resource in medical diagnosis and screening. Its wide acceptance and use by both physicians
and radiologists underscore its importance and reliability. US is widely utilized due to
its safety, affordability, non-invasive nature, real-time visualization capabilities, and the
comfort it provides to those performing the procedure. It stands out among other imaging
techniques like X-ray, MRI, and CT scans because of its several significant benefits, including
its absence of ionizing radiation, portability, ease of access, and cost-efficiency [1]. US is
applied in various medical fields, such as breast US, echocardiography, transrectal US,
intravascular US (IVUS), prenatal diagnostic US, and abdominal US. It is particularly
prevalent in obstetrics [2]. However, despite its numerous benefits, US also presents
certain challenges. These include a lower image quality due to noise and artifacts, a high
dependence on the operator or diagnostician’s experience, and significant variations in
performance across different institutions and manufacturers’ US systems [3].

Artificial intelligence (AI) methods, particularly deep learning models, have brought
about ultrasound imaging by automating image processing and enabling the automated di-
agnosis of disease and detection of abnormalities. Convolutional neural networks (CNNs)
have played a vital role in this transformation, demonstrating improvements in vari-
ous medical imaging modalities [4–9]. However, the limitations of CNNs in capturing
long-range dependencies and contextual information led to the development of vision
transformers (ViTs) [10] in image processing. The self-attention mechanism, a key part
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of the transformer, possesses the capability to establish relationships between sequence
elements, thus facilitating the learning of long-range interactions.

Significant strides have been made in the vision community to integrate attention
mechanisms into architectures inspired by CNNs. Recent research has shown that these
transformer modules can potentially substitute standard convolutions in deep neural
networks by working on a sequence of image patches culminating in the creation of ViTs.

In recent years, the integration of vision transformers into medical US analysis has
encompassed a diverse range of methodological tasks. These tasks include traditional
diagnostic functions like segmentation, classification, biometric measurements, detection,
quality assessment, and registration, as well as innovative applications like image-guided
interventions and therapy.

Notably, segmentation, detection, and classification stand out as the fundamental tasks,
with widespread utilization across various anatomical structures in medical US analysis.
The anatomical structures covered in our research include the heart [11], prostate [12], liver [13],
breast [14], brain [15], lymph node [16], lung [17], pancreatic [18], carotid [19], thyroid [11],
intravascular [20], fetus [21], urinary bladder [22], gallbladder, and other structures [23].

While there have been many review articles discussing the use of transformers, there
is currently no comprehensive review available that specifically addresses the application
of transformers in the ultrasound modality for medical image analysis. For example, the re-
view in [24] offers a broad perspective on the applications of vision transformers in medical
imaging, encompassing various modalities and imaging techniques. Nonetheless, it lacks a
specific focus on ultrasound imaging applications, which are crucial for understanding the
unique challenges and opportunities within this specialized field.

This review seeks to fill the knowledge gap in the field of ultrasound imaging by
providing a comprehensive examination of vision transformer-based AI methods that
are specifically designed for this application. Given the unique attributes and diagnostic
needs of ultrasound imaging, such an overview can offer invaluable insights for those
working in this specialized area. The purpose of this review is to offer a thorough analysis
of transformer models that have been specially developed for ultrasound imaging and its
associated analysis applications.

Figure 1 depicts the trend of published papers related to the intersection of ultra-
sound and vision transformers since 2017, based on the search query “Ultrasound AND
vision transformers” in PubMed. The plot clearly demonstrates a substantial increase
in the number of publications in this field over the specified period. The rising trend
suggests a growing interest and research activity in the application of vision transformers
in ultrasound imaging.
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ber of papers for each organ considered in the review, providing a comprehensive over-
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Search Strategy: For our literature survey, we investigated articles in the PubMed,
IEEE, Science Direct, and Springer databases, covering the period from 1 January 2021 to
10 December 2023. The keywords searched included the following: {ultrasound AND
(“transformers” OR “deep learning”)}. Our focus was especially on how transformers are
used for ultrasound imaging. We utilized the citations and references from the chosen stud-
ies as supplementary resources for our review. Initially, we looked at over 1000 article titles.
After an initial screening based on titles and abstracts, we prioritized the removal of du-
plicates and concentrated on research within the medical field. This led to the selection of
231 pertinent articles able to encapsulate recent advancements and allowed us to pinpoint
the most pertinent articles for this subject. Then, to ensure the relevance of our findings, we
applied the following exclusion criteria: (a) Case reports, editorials, and letters; (b) studies
not focusing on methodological aspects; (c) papers lacking a detailed examination of their
novelty; (d) papers on a medical imaging modality other than ultrasound; and (e) papers
without an evaluation of the clinical outcomes. Finally, 69 articles were included in the
narrative review.

Our review paper is divided based on the organs, and provides an in-depth analysis of
the different tasks, which include classification, segmentation, object detection, and image
enhancement. In Figure 2, the pie plot visually represents the distribution of the number of
papers for each organ considered in the review, providing a comprehensive overview of
the focus areas within the medical ultrasound analysis literature.
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Overall, we provide a comprehensive overview of the current state of the field, iden-
tifying major challenges, and proposing potential future directions. The structure of the
paper is as follows. Section 2 provides foundational information on the field, with an
emphasis on the key principles that underpin transformers. Our review is then segmented
based on the organs, covered in Sections 3.1–3.13. Lastly, we engage in a thorough discus-
sion of the overall state of the field, identifying significant challenges, spotlighting open
problems, and charting promising directions for the future.
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2. Background
2.1. Fundamentals of Transformers

Transformers have advanced the field of Natural Language Processing (NLP) by pro-
viding a fundamental framework for processing and understanding language. Originally
introduced by Vaswani et al. in 2017 [25], transformers have since become a cornerstone in
NLP, particularly with the development of models such as BERT, GPT-3, and T5.

Fundamentally, transformers represent a kind of neural network architecture that
does not rely on convolutions. They excel at identifying long-range dependencies and
relationships in sequential data, which makes them especially effective for tasks related
to language. The groundbreaking aspect of transformers is their attention mechanism,
which empowers them to assign weights to the significance of various words in a sentence.
This capability allows them to process and comprehend context more efficiently than earlier
NLP models.

In addition to their significant impact on NLP, transformers have also shown promise
in the field of computer vision. Vision transformers (ViTs) have emerged as a novel
approach to image recognition tasks, challenging the traditional CNN architectures.

By applying the self-attention mechanism to image patches, vision transformers can
effectively capture global dependencies in images, enabling them to understand the context
and relationships between different parts of an image. This has led to impressive results in
tasks such as image classification, object detection, and image segmentation.

The introduction of vision transformers has also opened up opportunities for cross-
modal learning, where transformers can be applied to tasks that involve both text and
images, such as image captioning and visual question answering. This demonstrates
the versatility of transformers in handling multimodal data and their potential to drive
innovation at the intersection of NLP and computer vision.

Overall, the application of transformers in computer vision showcases their adapt-
ability and potential to revolutionize not only NLP, but also other domains of artificial
intelligence, paving the way for new advancements in multimodal learning and our under-
standing of complex data.

2.1.1. Self-Attention

In transformers, self-attention is an element of the attention mechanism that allows
the model to focus on various segments of the input sequence and identify dependencies
among them [25]. This process involves converting the input sequence into three vectors:
queries, keys, and values. The queries are employed to extract pertinent data from the keys,
while the values are utilized to generate the output. The attention weights are determined
based on the correlation between the queries and keys. The final output is produced by
summing the weighted values.

This mechanism is especially potent in detecting long-term dependencies within the
input sequence, thereby making it a valuable instrument for natural language processing
and similar sequence-based tasks.

To elaborate, before the input sentence is fed into the self-attention block, it is first
converted into an embedding vector. This process is known as “word embedding” or
“sentence embedding”, and it forms the basis of many Natural Language Processing (NLP)
tasks. After the embedding vector, the positional information of each word is also included
because the position can alter the meaning of the word or sentence. This is performed to
allow the model to track the position of each vector or word. Once the vectors are prepared,
the next step is to calculate the similarity between any two vectors. The dot product is
commonly used for this purpose due to its computational efficiency and space optimization.
The dot product provides scalar results, which are suitable for our needs. After obtaining
the similarity scores, the next step involves normalizing and applying the softmax function
to obtain the attention weights. These weights are then multiplied with the original input
vector to adjust the values according to the weights received from the softmax function.
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2.1.2. Multi-Head Self-Attention

Multi-head self-attention is a strategy used in transformers to boost the model’s
capacity to grasp a variety of relationships and dependencies within the input sequence [25].
This methodology involves executing self-attention multiple times concurrently, each time
with different sets of learned queries, keys, and values. Each set originates from a linear
projection of the initial input, offering multiple unique viewpoints on the input sequence
(Figure 3).

Diagnostics 2024, 14, x FOR PEER REVIEW 6 of 41 
 

 

 
Figure 3. Self-attention and multi-head self-attention [25]. 

Utilizing multiple attention heads allows the model to pay attention to different por-
tions of the input sequence and collect various types of information simultaneously. Once 
the self-attention process is independently carried out for each head, the outcomes are 
amalgamated and subjected to a linear transformation to yield the final output. This meth-
odology empowers the model to effectively identify intricate patterns and relationships 
within the input data, thereby enhancing its overall representational capability. 

Multi-head self-attention is a key innovation in transformers, contributing to their 
effectiveness in handling diverse and intricate sequences of data, such as those encoun-
tered in natural language processing and other sequence-based tasks. 

2.2. Transformer Architecture 
The architecture of transformers consists of both encoder and decoder blocks (Figure 

4), which are fundamental components in sequence-to-sequence models, particularly in 
tasks such as machine translation [25]. 
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Utilizing multiple attention heads allows the model to pay attention to different
portions of the input sequence and collect various types of information simultaneously.
Once the self-attention process is independently carried out for each head, the outcomes
are amalgamated and subjected to a linear transformation to yield the final output. This
methodology empowers the model to effectively identify intricate patterns and relation-
ships within the input data, thereby enhancing its overall representational capability.

Multi-head self-attention is a key innovation in transformers, contributing to their
effectiveness in handling diverse and intricate sequences of data, such as those encountered
in natural language processing and other sequence-based tasks.

2.2. Transformer Architecture

The architecture of transformers consists of both encoder and decoder blocks (Figure 4),
which are fundamental components in sequence-to-sequence models, particularly in tasks
such as machine translation [25].

Encoder: The encoder is responsible for processing the input sequence. It typically
comprises multiple layers, each containing self-attention mechanisms and feedforward
neural networks. In each layer, the input sequence is transformed through self-attention,
allowing the model to capture dependencies and relationships within the sequence. The out-
puts from the self-attention are then passed through position-wise feedforward networks
to further process the information. The encoder’s role is to create a rich representation of
the input sequence, capturing its semantic and contextual information effectively.
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Decoder: The decoder, on the other hand, is tasked with generating the output
sequence based on the processed input. Similar to the encoder, it consists of multiple layers,
each containing self-attention mechanisms and feedforward neural networks. However,
the decoder also includes an additional cross-attention mechanism that allows it to focus
on the input sequence (encoded representation) while generating the output. This enables
the decoder to leverage the information from the input sequence to produce a meaningful
output sequence.

The encoder–decoder architecture in transformers enables the model to effectively
handle sequence-to-sequence tasks, such as machine translation and text summarization.
It allows complex dependencies within the input sequence to be captured and that infor-
mation to be leveraged to generate accurate and coherent output sequences.
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2.3. Vision Transformers

The achievements of transformers in natural language processing have influenced the
computer vision research community, leading to numerous endeavors to modify transform-
ers for vision-related tasks. Transformer-based models specifically designed for vision appli-
cations have been rapidly developed, with notable examples including the detection trans-
former (DETR) [26], vision transformer (ViT), data-efficient image transformer (DeiT) [27],
and Swin transformer [28]. These models represent significant advancements in leveraging
transformers for computer vision and have gained recognition for their contributions to
tasks such as object detection, image classification, and efficient image comprehension.

DETR: DETR, standing for DEtection TRansformer, has brought a major breakthrough
in the realm of computer vision, particularly in the area of object detection tasks. Created by
Carion et al. [26], DETR represents a departure from conventional methods that depended
heavily on manual design processes, and demonstrates the potential of transformers to
revolutionize object detection within the field of computer vision. This approach replaces
the complex, hand-crafted object detection pipeline with a simpler one based on transform-
ers. This method simplifies the intricate, manually crafted object detection pipeline by
substituting it with a transformer.

The DETR uses a transformer encoder to comprehend the relationships between the
image features derived from a CNN backbone. The transformer decoder generates object
queries, and a feedforward network is responsible for assigning labels and determining
bounding boxes around the objects. This involves a set-based global loss mechanism that
ensures unique predictions through bipartite matching, along with a transformer encoder–
decoder architecture. With a fixed small set of learned object queries, the DETR considers
the relationships between objects and the global image context to directly produce the final
set of predictions in parallel.

ViT: Following the introduction of the DETR, Dosovitskiy et al. [10] introduced the
Vision Transformer (ViT), a model that employs the fundamental architecture of the tradi-
tional transformer for image classification tasks. As depicted in Figure 5, the ViT operates
similarly to a BERT-like encoder-only transformer, utilizing a series of vector representa-
tions to classify images.
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The process begins with the input image being converted into a sequence of patches.
Each patch is paired by a positional encoding technique, which encodes the spatial positions
of the patches to provide spatial information. These patches, along with a class token,



Diagnostics 2024, 14, 542 8 of 39

are then fed into the transformer. This process computes the Multi-Head Self-Attention
(MHSA) and generates the learned embeddings of the patches. The class token’s state
from the ViT’s output serves as the image’s representation. Lastly, a multi-layer perceptron
(MLP) is used to classify the learned image representation.

Moreover, the ViT can also accept feature maps from CNNs as input for relational
mapping, in addition to raw images. This flexibility allows for more nuanced and complex
image analyses.

DeiT: To address the issue of the ViT requiring vast amounts of training data, Tou-
vron et al. [27] introduced the Data-efficient Image Transformer (DeiT) to achieve high
performance on small-scale data.

In the context of knowledge distillation, a teacher–student framework was imple-
mented, incorporating a distillation token, a term used in transformer terminology.
This token followed the input sequence and enabled the student model to learn from
the output of the teacher model. They hypothesized that using a CNN as the teacher
model could assist in training the transformer as the student network, allowing the student
network to inherit inductive bias.

Swin Transformer Introduced by Ze Liu et al. in 2021 [28], the Swin transformer is a
transformer architecture known for its ability to generate a hierarchical feature represen-
tation. This architecture exhibits linear computational complexity relative to the size of
the input image. It is particularly useful in various computer vision tasks due to its ability
to serve as a versatile backbone. These tasks include instance segmentation, semantic
segmentation, image classification, and object detection.

The Swin transformer is based on the standard transformer architecture, but it uses
shifted windows to process images at different scales. The Swin transformer is designed to
be more efficient than other transformer architectures, such as the ViT, with smaller datasets.

PVT: The Pyramid Vision Transformer (PVT) [29] is a transformer variant that is adept
at handling dense prediction tasks. It employs a pyramid structure, enabling detailed
inputs (4 × 4 pixels per patch) and reducing the sequence length of the transformer
as it deepens, thus lowering the computational cost. The PVT comprises several key
components: dense connections for learning complex patterns, feedforward networks
for data processing, layer normalization for stabilizing learning, residual connections
(Skip Connections) for mitigating the vanishing gradients problem, and scaled dot-product
attention for calculating the input data relevance.

CvT: The Convolutional Vision Transformer (CvT) [30] is an innovative architecture
that enhances the vision transformer (ViT) by integrating convolutions. This enhancement
is realized through two primary alterations: a hierarchical structure of transformers with a
new convolutional token embedding, and a convolutional transformer block that employs
a convolutional projection. The convolutional token embedding layer provides the ability
to modify the token feature dimension and the quantity of tokens at each level, allowing the
tokens to depict progressively intricate visual patterns across wider spatial areas, similar to
feature layers in CNNs. The convolutional transformer block replaces the linear projection
in the transformer module with a convolutional projection, capturing the local spatial
context and reducing semantic ambiguity in the attention mechanism.

The CvT architecture has been found to exhibit superior performance compared to
other vision transformers and ResNets on ImageNet-1k. Interestingly, the CvT model
demonstrates that positional encoding, a crucial element in existing vision transformers,
can be safely discarded. This simplification allows the model to handle higher-resolution
vision tasks more effectively.

HVT: The Hybrid Vision Transformer (HVT) [31] is a unique architecture that merges
the advantages of CNNs and transformers for image processing. It capitalizes on trans-
formers’ ability to concentrate on global relationships in images and CNNs’ capacity to
model local correlations, resulting in superior performance across various computer vision
tasks. HVTs typically blend both the convolution operation and self-attention mechanism,
enabling the exploitation of both local and global image representations. They have demon-
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strated impressive results in vision applications, providing a viable alternative to traditional
CNNs, and have been successfully deployed in tasks such as image segmentation, object
detection, and surveillance anomaly detection. However, the specific implementation of the
HVT can vary significantly depending on the task and requirements, with some HVTs incor-
porating additional components or modifications to further boost performance. In essence,
the hybrid vision transformer is a potent tool for image processing tasks, amalgamating the
strengths of both CNNs and transformers to achieve high performance.

3. Organs
3.1. Breast

Breast cancer is the most common cancer. Since the 1990s, providing breast cancer
screening and introducing new treatment methods have reduced the mortality caused
by this cancer [32]. The gold standard imaging method for breast cancer detection is
mammography, but mammography uses ionizing radiation. Also, mammography is not
suitable for detecting cancer in dense breasts. Sonography is another imaging system that
is routinely used for breast screening. It is harmless, cheap, uses portable systems and
provides better results in dense breast cases. Table 1 provides a detailed comparison of the
transformer-based models used for breast ultrasound image analysis.

Table 1. Detailed description of transformer-based breast US image analysis.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

TransUNet [33] Segmentation Transformer and
information bottlenecks BUSI F1: 0.8078

IoU: 0.6775
Used one
transformer layer

BUSSeg [34] Segmentation Cross-image
dependency modeling

BUSI
UDIAT

DSC: 0.8577
Jac: 0.7899
Acc: 0.9733
Sp: 0.9894
Se: 0.8584

cross-image
dependency module,
cross-image
contextual modeling,
and cross-image
dependency loss.

HAU-Net [35] Segmentation Hybrid CNN-transformer
BUSI
UDIAT
BLUI

DSC: 0.8311,
0.8873, 0.8948

Developed a
dual-module
transformer
architecture
combining local and
global transformer
components.
Implemented a
cross-attention block
to gather global
context from
multi-scale features
across various layers.

IB-TransUNet [36] Segmentation Transformer and
information bottlenecks Synapse dataset BUSI DSC: 0.8195

HD: 20.35

Used
multi-resolution
fusion to
skip connections.

DSTransUFRRN [37] Segmentation
A full-resolution residual
stream/TransU-
Net/transformer

Open BUS dataset
from the Sun Yat-sen
University Cancer
Center/UDIAT

DSC: 0.9104

Used deep
supervised
transformer
U-shaped
full-resolution
residual network.
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Table 1. Cont.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

HCTNet [38] Segmentation Transformer-based
U-Net

BUSI
BUS
B
total 1263
images

DSC: 0.82
Acc: 0.969
Jac: 0.718
Rec: 0.821
Prec: 0.832

Created a
Spatial-wise
Cross-Attention
(SCA) module that
minimizes the
semantic gap
between the encoder
and decoder
subnetworks by
merging the spatial
attention maps.
Introduced a TEBlock
within the encoder to
calculate pixel
interaction,
addressing the lack
of global information
obtained by CNNs.

[39] Segmentation/
Classification

Using both supervised and
unsupervised learning

BUSI
UDIAT

Acc: 0.99907
Sp: 0.9766
Se: 0.9977

Tackled the problem
of
mask unavailability.

CSwin-PNet [40] Segmentation Pyramid Vision
Transformer

UDIAT
780 Baheya Hospital
ultrasound images

DSC: 0.8725
DSC: 0.8368

Built a residual Swin
transformer block
(RSTB).
Designed interactive
channel attention
(ICA) and
supplementary
feature fusion
(SFF) modules.

3D UNET [41] Segmentation 3D Deep Attentive U-Net
with Transformer Self collected dataset

DSC: 0.7636
Jac: 0.6214
HD: 15.47
Prec: 0.7895
Se: 0.7542
Sp: 0.9885

Used 3D deep
convolution NN

ViT-BUS [42] Classification Vision Transformers (ViTs) BUSI+ Dataset B Acc: 0.867
AUC: 0.95

First application of
ViTs to normal,
malignant, and
benign ultrasound
image classification.

[14] Classification Semi-supervised
vision transformer

DBUI
BreakHis

Acc: 0.981
Prec: 0.981
Rec: 0.986
F1-core: 0.984

Used a
semi-supervised
learning ViT.

BUVITNET [43] Classification Vision transformer/
transfer learning

BUSI
Mendeley breast
ultrasound

Acc: 0.919
AUC: 0.937
F1-core: 0.919
MCC score:0.924
Kappa score:0.919

Used transfer
learning from cancer
cell classification.

Hover-trans [44] Classification Horizontal and
vertical transformers

UDIAT
BUSI
GDPH and SYSUCC

AUC: 0.92
Acc: 0.893
Spe: 0.836
Prec: 0.906
Rec: 0.926
F1-score:0.916

Derived horizontal
and vertical
spatial information.

[45]
Localization/BI-
RADS
classifications

Vision transformer Self collected dataset
Acc: 0.9489
Sp: 0.9509
Se: 0.941

BI-RADS
classification

Acc: accuracy, DSC: Dice similarity coefficient, HD: Hausdorff distance, Jac: Jaccard index, Se: sensitivity,
Sp: specificity, Prec: precision, Rec: recall, MCC: Matthews correlation coefficient, AUC: area under curve,
IoU: Intersection over union.
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Two-dimensional ultrasound images are mostly used, but recently, automatic breast
ultrasound systems (ABUSs) that produce 3D scans of the breast containing many 2D slices
have been developed. Due to speckle noise and artifacts and also various breast nodule
shapes, analyzing these images is a challenge and a lot of experience is needed.

There have been many attempts to use artificial intelligence for analyzing ultrasound
breast images. In recent years, vision transformers have been considered for this problem.

A single transformer layer and multiple information bottleneck (IB) blocks are used
in [33] for segmenting ultrasound breast images; this is instead of using many transformers
that increase complexity and become vulnerable to overfitting. Better results were obtained
in comparison to those obtained with TransUNet [46], which uses 12 transformer layers.

Ref. [34] considered cross-image modelling and cross-image dependency loss to con-
sider the common features of tumors in different images for segmentation purposes. They
combined a CNN-based encoder and a transformer-based encoder to obtain the near and far
dependencies. The authors suggested that this idea could be used for combining different
information like elastography and attenuation.

Zhang et al. [35] introduced HAU-Net, a novel breast tumor segmentation model that
integrates the advantages of transformers and CNNs to accurately detect breast lesions
in ultrasound images. The model replaces the conventional skip connection with an L-G
transformer block. A Cross Attention Block (CAB) is then implemented to optimize the
interaction of multi-size feature layers, improving feature representation and segmentation
accuracy. Despite its success, this method has limitations, particularly regarding its small,
irregular targets and blurred edges, especially when the target’s pixel intensity is similar to
the background. It also depends on manual labeling for training, which can be scarce in
practice. Future improvements aim to integrate a region-based attention mechanism and
explore self-supervised or semi-supervised training to reduce reliance on labeled samples
and enhance the model’s applicability in clinical diagnostics.

Transformer and information bottlenecks based on the UNet model (IB-TransUNet)
are used in [36] for ultrasound breast image segmentation. The bottlenecks remove the
redundant features and prevent overfitting. The high-resolution and low-resolution feature
maps are fused. The authors obtained an 81.05% Dice score for breast tumor segmentation.

A deep supervised transformer full-resolution residual network was presented in [37].
Its feature fusion is better and suppresses irrelevant features, while the deep supervision
mechanism reduces the gradient vanishing problem. Augmentation is used in the training
dataset. It took 33 msec for every image to be segmented when using GPU, which is an
acceptable time.

He et al. [38] introduced a hybrid CNN–transformer network (HCTNet) consisting of
transformer encoder blocks (TEBlocks) in the encoder and a spatial-wise cross attention
(SCA) module in the decoder to enhance breast lesion segmentation in BUS ultrasound
images. Their application of the HCT network highlighted the importance of local features
due to a unique computer kernel, though this focus led to difficulties in evaluating tumor-
like shadows and speckle noise. The HCTNet utilized a combination of transformer and
CNN structures in the encoder and extracted features across two CNN blocks and one
transformer block at different scales. The HCTNet maintains sufficient global information
and local details, making it suitable for breast ultrasound image segmentation.

Supervised learning and unsupervised learning are used together in [39] for the
segmentation and classification of breast ultrasound images.

To address the limitations of CNNs, the authors of [40] propose a segmentation
network that combines a CNN with a Swin transformer, creating a feature extraction
backbone. This backbone employs a pyramid structure network for encoding and decoding
features, with modules such as an interactive channel attention (ICA) module to emphasize
crucial feature regions, a supplementary feature fusion (SFF) module to enhance feature
fusion, and a boundary detection (BD) module to improve the boundary quality in the
segmentation results. The network incorporates a global modeling approach inspired by
TransUNet, using the Swin transformer for global feature extraction and a feature pyramid
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network for multiscale feature fusion. However, this method exhibits limited segmentation
accuracy for certain BUS images, especially when the lesion boundaries are unclear or the
lesion regions vary in intensity. As a result, future work aims to develop more effective
feature extraction modules, potentially integrating CNNs into transformers or constructing
more advanced transformer variants to better perceive and extract lesion regions and
boundary information.

In [41], a 3D U-Net with attention mechanism and transformer layers is used to
segment ABUS 3D images. The transformers are inserted between the encoder and decoder
to consider long-distance relations. Because of the low quality and high intrinsic noise of
these images, the Dice coefficient was 76.36%, which needs improvement.

ViT-BUS [42] represents the first effort to apply vision transformers (ViTs) to clas-
sify breast tissue types as normal, benign, or malignant through ultrasound imagery.
This study introduces the use of different augmentation strategies to enhance the system’s
performance. ViT-BUS contrasts ViTs of various configurations with convolutional neural
networks (CNNs), showcasing the advantages of ViTs in this medical imaging context.
Innovatively, ViT-BUS transfers pre-trained ViT models, specifically adapted to breast
ultrasound datasets, to mitigate the data-intensive requirements of ViTs. This strategy
aims to optimize the model’s performance without sacrificing its ability to handle large
datasets. Its evaluation on datasets like B, BUSI, and B+BUSI confirms the superiority of
attention-based ViT models over CNNs in the classification of ultrasound images.

In [14], a semi-supervised vision transformer is used for breast cancer classification in
2D breast ultrasound images. The authors tackle the problem of image scarcity in breast
cancer databases by using a semi-supervised vision transformer. They adopt an adaptive
token sampler to select informative tokens to reduce the computation cost.

Multistage transfer learning is performed using a pre-trained ViT model on ImageNet
and training it on histopathology images in [43] for early breast cancer detection. Balancing
the dataset by applying augmentation on the class with fewer samples is applied before
training. The trained vision transformer, vision transformer with transfer learning, and
CNN with transfer learning are compared with their model, and it the best results are
obtained. The patch sizes of 16 × 16 and 32 × 32 are compared, and the smaller patch size
provides better results.

Ref. [44] provides a relatively large breast ultrasound image dataset including
2405 images. The authors use the fact that most benign tumors grow horizontally and that
most malignant tumors expand vertically to the deeper tissues, and apply a horizontal
and vertical transformer to distinguish them without using a predefined region of interest.
The authors compare the results of their model with the diagnosis of two specialists and
find that their model is more precise in the performance of this task. Of course, in this
situation, the specialists only had an image for diagnosis, while in the real situation, their
diagnosis invovles multiple factors.

A relatively large dataset consisting of 21,332 images and a vision transformer are
used in [42] for localization and to determine the BI-RADS classification of the nodules.
Its outputs are used for improving the radiologists’ diagnostics and consistency.

3.2. Urinary Bladder

Bacterial infection can cause cystitis in the urinary bladder. Ultrasound imaging is one
of the methods used to diagnose cystitis. In [22], the urinary Bladder Wall Thickness (BWT)
is estimated in ultrasound (US) images in order to diagnose cystitis. Deep learning is used
to segment the urinary wall bladder, then feature extraction for classification is used to
detect cystitis. A CNN is compared with a vision transformer, and 250 subjects, half of
whom have cystitis, are enrolled. Image augmentation is applied to increase the images to
1000 images.

A U-Net is used to evaluate the urinary bladder wall; then, eight features are derived
from the segmented area, and five notable features are chosen between them. A CNN
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model is applied for classifying the normal and cystitis cases. The result is compared with
the results of a pre-trained CNN and vision transformer.

The best CNN model obtained a 95% precision, recall, F1 score and accuracy. Meanwhile,
the vision transformer obtained 94% precision, 89% recall, a 93% F1 score and 92.1% accuracy.

3.3. Pancreatic

Pancreatic cancer is the most difficult form of cancer to diagnose. Endoscopic ultra-
sound (EUS) is the best diagnostic method for this cancer, but EUS images are difficult
to analyze. In [18], a ViT-based dual self-supervised network (DSN) for classifying EUS
images into pancreatic and non-pancreatic cancer is presented. First, a Region of Interest
(ROI) is selected by a multi-operator transformation, and then a DSN transfers the unla-
beled images to the features. In this research, a huge publicly available EUS-based pancreas
image dataset (LEPset) that includes 3500 pathologically confirmed EUS images with labels
and 8000 EUS images without labels is gathered [47]. This method is also applied to the
BUID [48] dataset.

3.4. Prostate

Prostate cancer is a common cancer in men. Early diagnosis will help in treatment
and reduce mortality. The method usually used to diagnose prostate cancer is transrectal
sonography. These sonography images are difficult to label because of their low resolution,
noise and artifacts. Therefore, in [49], an unsupervised network is designed to extract
features from these images.

The ROI of the ultrasound image and biopsy core image is used to improve cancer
detection [12].

An “ROI-scale” network using self-supervised learning extracts features from small
ROIs and a “core-scale” transformer model can derive a series of features from several ROIs
in the needle trace region of prostate biopsy tissue to predict the tissue type. Attention
maps are used for localizing the cancer at the ROI region.

A dataset of micro-ultrasound images gathered from 578 patients who underwent
prostate biopsy is used to evaluate this method. The model performs better compared to
ROI-scale-only models. It obtains an 80.3% AUROC, a statistically significant improvement
over the ROI-scale classification. This method is compared to other studies on prostate
cancer detection with various imaging modalities. Table 2 compares the transformer-based
models used for the analysis of prostate ultrasound images.

Table 2. Detailed description of transformer-based prostate US image analysis.

Methods
/References Task Architecture Dataset Evaluation

Metrics Highlights

[49] Classification Online-Net and
Target-Net. Self-collected data

Acc: 0.8046;
Malignant:
Prec: 0.8267;
Rec: 0.8662;
F1-score: 0.7907;
Benign:
Prec: 0.7500;
Rec: 0.6364;
F1-score: 0.6885;

A self-supervised
dual-head
attentional
bootstrap learning
network (SDABL),
including
Online-Net and
Target-Net.

[12] Classification
ROI-scale and
core-scale feature
extraction

Self-collected data

Prec: 0.787;
Se: 0.880;
Sp: 0.512
AUROC: 0.803;

A
micro-ultrasound
dataset with
biopsy result

Acc: accuracy, Se: sensitivity, Sp: specificity, Prec: precision, Rec: recall, AUROC: area under the receiver
operating characteristic.
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3.5. Thyroid

The prevalence of thyroid nodules in adults is between 19% to 67%. There have been
many attempts to segment and classify these nodules. Table 3 presents a comprehensive com-
parison of the transformer-based models used in the analysis of thyroid ultrasound images.

Table 3. Detailed description of transformer-based thyroid US image analysis.

Methods/
References Task Architecture Dataset Evaluation

Metrics Highlights

[50] Segmentation CNN, Vision
Transformer,

Self-collected data,
the DDTI dataset,
the Breast
Ultrasound Images
Data Set (BUID)

IoU: 0.810,
DSC: 0.892;

Used boundary
attention
transformer net.

[51] Segmentation CNN, Vision
Transformer, Self-collected data

DSC: 84.76;
Jac: 74.39;
Miou: 86.5;
Rec: 83.9;
Prec: 86.5;

Used residual
bottlenecks,
transformer
bottlenecks, two
branch
down-sampling
blocks, and the
long-range feature
extractor
composed of the
vision transformer.

[52] Segmentation
Classification Swin Transformer Self-collected data DSC: 82.41;

Acc: 86.59;

The dynamic Swin
transformer
encoder and
multi-level feature
collaborative
learning are
combined
into U-net.

[53] Classification CNN, Vision
Transformer, Self-collected data

Acc: 0.9738;
Prec: 0.9699;
Sp: 0.9739;
Se: 0.9736;
F1-score: 0.9717;
F2-score: 0.9738;

Used ultrasound
images and
infrared thermal
images
simultaneously.
Used CNN and
transformer for
feature extraction
and vision
transformer for
feature fusion.

[54] Classification Hybrid CNN
and ViT Public CIM@LAB

F1: 96.67,
Rec: 95.01,
Prec: 98.51,
Acc: 97.63,

A hybrid ViT
model with a
backbone CNN.

[55] Classification Hybrid CNN and
Swin Transformer

Public dataset
DDTI provided by
the National
University of
Colombia,

Acc: 0.954;
Sp: 0.958;
Se: 0.975;
AUC: 0.974;

Shallow and deep
features are fused
for classification.

Acc: accuracy, DSC: Dice similarity coefficient, Jac: Jaccard index, Se: sensitivity, Sp: specificity, Prec: precision,
Rec: recall, AUC: area under curve, IoU: Intersection over union.



Diagnostics 2024, 14, 542 15 of 39

In [50], a boundary attention transformer net (BTNet), by incorporating CNN, and
transformer short and long-range features are fused. A boundary attention block is de-
signed for improving edge information learning. The features are fused at different scales.

A hybrid model of CNN and ViT for diagnosing thyroid nodules is presented in [51].
The GAN model is used for data augmentation to overcome the problem of data shortage.
The authors show that the hybrid model, which combines ResNet50 and ViT_B16, has
better performance compared to the CNN or ViT when used independently.

Contrast-enhanced ultrasound (CEUS) can be used to monitor microvascular perfusion.
Ref. [52] provides a segmentation and classification method for thyroid nodules using CEUS
images. The authors use spatiotemporal transformer-based CEUS analysis.

In [53], ultrasound images and infrared thermal images are used simultaneously.
The features are derived separately by two CNN and transformer encoders to capture local
and global features, respectively, and these features are fused using a vision transformer.
Ultrasound images provide anatomical information and infrared thermal images provide
thermodynamic information about the nodules.

To protect the parathyroid glands during thyroid surgery using ultrasound images, a
network with a transformer is used to consider long-range dependency in [54]. It consists of
two encoding networks and one decoding network for the segmentation of the parathyroid
glands. The two branches extract local and global features.

In [55], shallow and deep features are fused for the classification of thyroid nodules.
The ROI of the nodule is fed to a CNN network for extracting shape and texture features.
The whole image is fed to a Swin transformer to derive deep features. Then, these two
group features are combined and fed to a fully connected layer to classify the nodule.

3.6. Heart

Understanding the heart’s complexity and dynamism presents considerable challenges
due to its intricate and constantly changing characteristics. These characteristics include
detailed structures such as chambers, valves, and vessels that undergo transformations
throughout the cardiac cycle.

Despite issues such as speckle noise, shadows, and changes in patient anatomy, several
deep learning models have been designed for applications like single-image classifica-
tion [56]. However, these models often fail to consider the dynamic nature of the heart and
struggle with signal loss in ultrasound images. Transformers are used in ultrasound heart
image processing, particularly in the analysis of complex temporal dependencies in patient
data, which can enhance the prediction of various abnormalities. Their successful applica-
tion in heart imaging is evident in various ways, including the detection of End-Systolic
(ES) and End-Diastolic (ED) frames in ultrasound videos, heart chamber segmentation,
predicting left ventricular ejection fraction (LVEF), the detection of aortic stenosis (AS) and
the classification of its severity, and assessing the size and function of the right ventricle
(RV) in cardiovascular patients. In the field of cardiac imaging, transformers are used to
process images and they are organized as time series, encompassing a variety of clinical
events, enabling the models to discover intricate temporal patterns over time.

This enables the models to comprehend progressively intricate temporal relationships.
The slow changes in the heart’s structure and background in echo imaging, along with
the resemblance of following frames, emphasizes the necessity of understanding the local
temporal context and minor spatial modification of the heart’s chambers, valves, and walls
for a thorough diagnosis. Table 4 compares the transformer-based models utilized in the
analysis of heart ultrasound images.
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Table 4. Detailed description of transformer-based heart US image analysis.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

Improved
UNet [57] Segmentation

CNNs (Squeeze-and-
Excitation (SE))
and transformer

CAMUS Dataset

DSC (for ED):
0.9252
HD (for ED):
11.04 mm
DSC (for ES):
0.9264
HD (for ES):
12.35 mm

The proposed network
architecture includes the
introduction of the Three-Level
Attention (TLA) module, utilizing
attention mechanisms.
The TLA module boosts the
feature embedding.
A transformer is integrated
at the bottleneck.

IFT-Net [58] Segmentation
Interactive fusion
transformer network
(IFT-Net)

4485 A4C and 1623
PSAX
echocardiography of
pediatric
dataset +
CAMUS

Acc: 0.954
DSC (LVEndo and
LVEpi): 0.9049
and 0.8046

The novel interaction established
between the convolution branch
and the transformer branch
enables the bidirectional fusion of
local features and global context
information.
A parallel network of Dual-Path
Transformers (DPTs) and CNN is
introduced, enabling the effective
fusion of local and global features
through full-process dual-branch
feature interactive learning.
This system is applied to perform
an automatic quantitative analysis
of pediatric echocardiography.

Position
Attention [59] Segmentation

Position Attention
Block + Atrous
Spatial Pyramid
Pooling (ASPP)

EchoNet-Dynamic
dataset

DSC: 0.9145
Precision: 0.9079;
Recall: 0.9278;
F1-score: 0.9177
Jac: 0.8847

Employs bicubic interpolation to
produce high-resolution images.
Integrates a position-aware
attention to capture
positional knowledge.

Segformer +
Swin
Transformer
and K-Net [60]

Segmentation

Mixed Vision
Transformer +
Lightweight
Segformer

EchoNet-Dynamic
dataset

DSC (for Swin and
Segformer): 0.9292
and 0.9279

The technique employs basic
post-processing by discarding
segments with the largest pixel
square, leading to more accurate
segmentation outcomes.
Two exclusive transformer
automated deep-learning
strategies are introduced for
Left-Ventricle (LV) segmentation
in echocardiography. These
strategies aim to enhance
missegmented outcomes via
post-processing.

MAEF-Net [61] Segmentation
and Detection

Dual attention (DA)
mechanism + atrous
spatial pyramid
pooling (EASPP)

EchoNet-Dynamic
(10,030 videos)
Private clinical dataset
(2129 images)

DSC: 0.9310
MAE: 0.9281

Captured heartbeat features,
minimized noise, integrated a
deep supervision mechanism, and
employed spatial pyramid
feature fusion.

[62] Segmentation gated axial attention 480 transverse images DSC: 0.919

The network leveraged axial
attention and dual-scale training
to obtain detailed insights from
long-range features, enabling the
model to focus on important
areas,
ensuring its applicability across a
wide range of medical
imaging scenarios.
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Table 4. Cont.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

[63]

Aortic stenosis
(AS) detection
and severity
classification

Temporal
Deformable
Attention (TDA) +
MLP + Transformer

Private AS Dataset:
2247 patients and 9117
videos public dataset:
TMED-2 577 patients

Acc (AS detection
on private and
dataset): 0.952 and
0.915
Acc (classification
on private and
dataset): 0.781
and 0.838%

Implemented a temporal loss
method to boost sensitivity
towards subtle movements in the
Autonomic Vascular (AV) system.
Applied temporal attention
mechanisms to merge spatial data
with temporal contextual
information.
Automatically identified key echo
frames for classifier.

CarpNet [64] Classification
Transformer
network +
Inception_Resnet_V2

Private Dataset:
1773 case Acc: 0. 71

The first public unveiling of the
application of the Carpentier
functional classification in
echocardiographic videos of the
mitral valve.

Semi-
supervised
learning with
NLP [65]

Right
ventricular
(RV) function
and size
classification

Text classification
with 12-layer
BERT model

12,684 examinations
with Swedish
text dataset

Se and Sp (Text
classifier for RV
size): 0.98 and 0.98
Se and Sp (Text
classifier for RV
function): 0.99 and
0.98
Acc (A4C and view
classification): 0.92
and 0.73 Se and Sp
(The image
classifier for RV
size and function):
0.8 and 0.85
Se and Sp (The
image classifier for
RV function):
0.93 and 0.72

Developed a pipeline for
automatic image assessment
using NLP models.
Utilized model-annotated data
from written echocardiography
reports for training.
Achieved significant
improvement in sensitivity and
specificity for identifying
impaired RV function and
enlarged RV.
Demonstrated the potential of
integrating auto-annotation
within NLP applications.
Showcased the capability for fast
and cost-effective expansion of
the training dataset.

UltraSwin [66]
Estimate the
ejection
fraction

hierarchical
vision Transformers

EchoNet-Dynamic
dataset MAE: 5.59

Calculated ejection fraction
without requiring
left-ventricle segmentation.

Ultrasound
Video
Transformers [11]

ES/ED
detection and
LVEF
estimation

BERT model and
Residual
Auto-Encoder
Network

Echonet-Dynamic
dataset

Average Frame
Distances of 3.36
Frames for ES and
7.17 Frames for ED,
MAE(LVEF): 5.95
R2(LVEF): 0.52

Developed an end-to-end
learnable approach that allows for
ejection fraction estimation
without the need for
segmentation.
Introduced a modified
transformer architecture capable
of processing image sequences of
varying lengths.

Co-attention
spatial
transformer [67]

Tracking
Co-Attention Spatial
Transformer Network
(STN)

Synthetic dataset + an
in vivo 3D
echocardiography
dataset

MTE: 0.99

Implementation of a
spatial–temporal co-attention
module within 3d
echocardiography

Acc: accuracy, DSC: Dice similarity coefficient, MAE: mean absolute error, ED: end-diastolic, ES: end-systolic,
LVEF: left ventricular ejection fraction, HD: Hausdorff distance, Jac: Jaccard index, MTE: median tracking error,
LVEndo: left ventricular endocardium, LVEpi: left ventricular epicardium, Se: sensitivity, Sp: specificity.

A novel model by Qurri [57] that merges the advantages of Convolutional Neural
Networks (CNNs) and transformers in the Unet framework is proposed for segmenting the
heart in ultrasound images from the CAMUS Dataset. A transformer is placed at the Unet
bottleneck to connect the encoder and the decoder and to capture long-range contextual
information. The model presents a new attention module named Three-Level Attention
(TLA) at the decoder side, which consists of an Attention Gate (AG), channel attention, and
spatial normalization technique. The TLA module enriched the feature map derived from
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the skip connections. For the encoder, Squeeze-and-Excitation (SE) is applied to the skip
connections leaving the encoder, as another type of attention.

Zhao et al. [58] developed an Interactive Fusion Transformer Network (IFT-Net)
for the quantitative analysis of pediatric echocardiography. This network constructs a
dual-attention pyramid transformer (DPT) branch that models long-range dependencies
from space and channels, thereby enhancing the learning of global context information.
The IFT-Net also incorporates a bidirectional interactive fusion (BIF) unit that merges local
and global features interactively. This approach maximizes their preservation and refines
the segmentation process. The BIF consists of two independent modules: the group feature
learning (GFL) and the channel squeeze–excitation (CSE) unit. The anatomical structures
are segmented through the decoder network, and the clinical anatomical parameters are
measured through key point positioning.

Luo et al. [59] present a new method for segmenting the heart in images that utilizes
multi-scale features and a position-aware attention mechanism. Their approach, based
on an inverted pyramid structure, is aimed at extracting contextual information from
low-resolution ultrasound images. The network is trained with images at different scales
and combines prediction results to improve its contextual awareness. An attention module
enhanced with positional encoding information is presented to help the network learn
important positional clues, thereby increasing the segmentation accuracy. This method is
able to capture contextual information at various resolutions, which is especially helpful in
comprehending the complexities of the heart’s structure and its varying changes throughout
the cardiac cycle. The method is verified through rigorous experiments on the EchoNet-
Dynamic dataset.

Liao et al. [60] suggest two different transformer models for LV segmentation in
echocardiography. One model utilizes Segformer, while the other combines the Swin
transformer and K-Net. The performance of the models on challenging samples that were
not easily segmented was also examined. The results confirmed the superiority of the
proposed transformer models over CNN models, even for samples that were not easily
segmented by the CNN model. To achieve precise segmentation results, post-processing
such as filtering out unnecessary parts is applied.

Zeng and et al. [61] developed the Multi-Attention Efficient Feature Fusion Network
(MAEF-Net), a system that automatically detects ES and ED frames and segments the left
ventricle in all frames of the cardiac cycle to calculate the LVEF. The system employs a multi-
attention mechanism for effective heartbeat feature capture and noise suppression, and
integrates a deep supervision mechanism and spatial pyramid feature fusion for improved
feature extraction. The method was tested and proven effective on the publicly accessi-
ble EchoNet-Dynamic dataset and a private clinical dataset, showing promising results.
The mean absolute error (MAE) for detecting ED and ES frames, as well as for predicting
LVEF on the public EchoNet-Dynamic dataset, was particularly noteworthy.

Tang et al. [62] proposed a novel approach that merges a deformable model with a
medical transformer neural network for image segmentation, addressing the challenge
of data scarcity in medical imaging. The axial attention and dual-scale training strategy
are applied to mine long-range feature information. The image augmentation strategy
effectively applies these techniques to enhance the performance of deep neural networks in
medical image processing.

Ahmadi et al. [63] examined aortic stenosis severity by focusing on the temporal
localization of the opening and closing of the valve, and the shape and mobility of the aortic
valve. They applied Temporal Deformable Attention (TDA) in frame-level embedding
to enhance the transformers’ understanding of locality and a temporal coherent loss to
increase its sensitivity to minor aortic valve movements. Finally, they adopted attention
weights to identify echo frames with significant clinical importance, prioritizing these
frames in the weighted aggregation for the final classification.

Vafeezadeh and his colleagues [64] introduced the CarpNet network to account for
the time information of all echocardiography video frames. This was accomplished by
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combining the transformer network and the Inception_Resnet_V2 convolutional network
as a feature extractor. As a result, the performance of mitral valve classification based on the
Carpentier criteria was enhanced, surpassing the performance of single-image acquisition.

Hagberg et al. [65] created a deep learning model that employs Natural Language
Processing (NLP) to evaluate the size and functionality of the right ventricle (RV) from
echocardiographic images. They established a pipeline for the automatic annotation of
video loops, which formed the basis for constructing two image classification models. These
models were trained on labels generated through a combination of manual annotation and
NLP models. The models were then employed to assess RV function and size. The RV
size and function models were 12-layer BERT models, which were pre-trained on a large
Swedish dataset.

Fazry and his team [66] introduced a new deep learning method for estimating the
ejection fraction from echocardiogram videos, eliminating the need for left-ventricle seg-
mentation. This approach, known as UltraSwin, leverages hierarchical vision transformers
and Swin transformers to extract spatio-temporal features. UltraSwin comprises two pri-
mary modules: the Transformers Encoder (TE), which serves as a feature extractor, and
the EF regressor, which functions as a regressor head. The method was evaluated on the
EchoNet-Dynamic dataset.

Ultrasound videos, which can have varying lengths and cardiac cycles of different
durations, often require more sophisticated processing methods than traditional frame-by-
frame approaches. This is because such methods can overlook the temporal information
encoded within the videos. In order to incorporate spatio-temporal support within deep
convolutional networks, heuristic frame sampling methods are typically applied to create
a stack of chosen frames from videos. In research conducted by Reynaud et al. [11], a
transformer architecture known as the Residual Auto-Encoder Network was utilized along
with a BERT model to automatically identify the Early Systole (ES) and Early Diastole (ED)
frames in ultrasound videos. This was performed to compute the Left Ventricular Ejection
Fraction (LVEF).

A Co-Attention Spatial Transformer Network (STN) that exploits interframe corre-
lations to improve left-ventricle motion tracking between ED and ES frames and strain
analysis in noisy 3D echocardiography was introduced by Ahn et al. [67]. This method
enhances feature extraction through the utilization of feature cross-correlations, drawing
inspiration from speckle tracking techniques. The team introduces an innovative temporal
constraint aimed at normalizing the motion field, thereby facilitating the generation of
smooth and realistic paths of cardiac displacement over time, all without the need for
preconceived notions about cardiac motion. This objective is accomplished by integrating
a temporal consistency regularization component into the loss function. Both a synthetic
echocardiography dataset and an in vivo porcine 3D+time echocardiography dataset were
utilized for thorough performance evaluations.

3.7. Fetal

Researchers have developed innovative methods for analyzing fetal obstetric ultra-
sound imagery, leveraging the power of transformer and CNN architectures. Yang et al. [21]
proposed a one-stage network for the automatic measurement of fetal head circumference
(HC) using ultrasound images, without any post-processing. This system detects the fetal
head position and ellipse parameters utilizing an anchor-free method. Their network
combines a simple transformer with a CNN to extract global and local features, and uses
a soft stage-wise regression (SSR) strategy and an IOU loss term to improve the accuracy
of rotating elliptic object detection. The network is the first of its kind to directly measure
fetal HC, marking a significant advancement in the field.

Other researchers have introduced TransFSM [68], a hybrid transformer framework
designed for fetal anatomy segmentation and biometric measurement tasks in ultrasound
images. TransFSM differs from traditional transformers by employing a deformable self-
attention mechanism that enables it to process multiscale information, making it effective
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for segmenting fetal anatomy with irregular shapes and varying sizes. To overcome
limitations in extracting local features, a boundary-aware decoder (BAD) that utilizes
boundary-wise prior knowledge is used to capture intricate local details. Furthermore,
an auxiliary segment head within the transformer component enhances mask prediction
by learning the semantic correspondences between pixel categories and distinguishing
features among them. TransFSM is particularly suited for tasks like fetal gestational age
estimation, growth pattern analysis, and abnormality identification, where standard CNN
architectures often fall short due to restricted receptive fields. TransFSM addresses two
primary challenges: the inherent difficulties of ultrasound imaging, including limited soft-
tissue contrast, indistinct anatomical boundaries, and the variability of anatomy at different
gestational stages, as well as the limitations of CNN-based methods, particularly their
constrained receptive fields and inadequate context modeling. Qiao and colleagues [69]
proposed a dual-path chain multi-scale gated axial-transformer network (DPC-MSGATNet)
that models both global dependencies and local visual cues for fetal US four-chamber
(FC) views for segment heart chambers, supporting clinicians in studying cardiac anatomy
and aiding in the identification of fetal congenital heart defects (CHDs). This model
enables the precise segmentation of the four chambers, assisting clinicians in analyzing
cardiac morphology and aiding in the diagnosis of fetal congenital heart defects (CHDs).
The DPC-MSGATNet consists of a local and a global branch that operate concurrently on
an entire FC view and image patches to learn multi-scale representations. To enhance the
interactions between these branches, an interactive dual-path chain gated axial-transformer
(IDPCGAT) module has been designed.

Rahman and his team [70] enhanced the precision of identifying fetal planes from ul-
trasound images by training the Swin transformer. They have also improved image quality
through the use of Histogram Equalization and Fuzzy Logic-based contrast enhancement.
Table 5 provides a thorough evaluation of the transformer-based models employed in the
analysis of fetal obstetric ultrasound images.

Table 5. Detailed description of transformer-based fetal US image analysis.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

RDHCformer [21] Segmentation
Integrating
transformer and
CNN

HC18 dataset MAE ± std (mm):
1.97 ± 1.89

Rotating ellipse detection
method was employed for
skull edge detection, based
on the anchor-free method.
To address the challenge of
angle regression, a Soft
Stagewise Regression (SSR)
strategy was introduced.
Kullback–Leibler
Divergence (KLD) loss was
incorporated into the total
loss function to enhance the
regression accuracy.

TransFSM [68] Segmentation Hybrid transformer HC18 dataset + seven
clinical datasets

MAE (mm): 1.19
DSC: 0.9811

Introduced a
boundary-aware decoder
for managing ambiguous
boundaries.
Designed a transformer
auxiliary segment head for
enhancing
predicted masks.

DPC-MSGATNet [69] Segmentation

Interactive
dual-path chain
gated
axial-transformer
(IDPCGAT)

556 FC views F1 score: 0.9687
IoU: 0.9399

DPC-MSGATNet was
developed with a global
and a local branch
network, allowing for the
simultaneous handling of
the full image and its
smaller segments.
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Table 5. Cont.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

Fetal
plane detection [70] Classification

Swin Transformer +
Evidential
Dempster–Shafer
Based CNN

BCNatal:
12,400 images Acc: 0.889

Utilized an evidentiary
classifier, specifically the
Dempster–Shafer Layer, in
conjunction with a
custom-designed CNN for
fetal plane detection.
Implemented an end-to-end
learnable approach for
sample classification,
exploring the effects of the
Swin transformer, which is
infrequently used in
ultrasound fetal
planes analysis.

COMFormer [71] Classification
Residual
cross-variance
attention (R-XCA)

BCNatal:
12,400 images

Acc (maternal-fetal):
0.9564
Acc (brain anatomy):
0.9633

The COMFormer model
employs a R-XCA block,
leveraging residual
connections to decrease
gradients and boost the
learning process.

placental ultrasound
image texture
evolution [72]

Classification Vision transformer
(ViT) 1008 cases

Acc (T1 and T2
images): 0.6949
Acc (T2 and T3
images): 0.7083
Acc (T1 and T3
images): 0.8413

Evaluated three deep
learning models and found
that the transfer learning
model achieved the
highest accuracy.

CIDNet [73] Classification

MI-DTC
(multi-stance
deformable
transformer
classification)

9999 images
balance Acc (BACC):
0.8464
AUC: 0.9716

Utilized four CNN-based
models as backbone
networks for
pre-processing.
Implemented an effective
cropping procedure in the
pre-processing module.
Multi-weighted new loss
function led to
improvement.
Application of Gaussian
blurring curriculum was
confirmed to fix the
texture bias.

BabyNet [74] Regression
Residual Transformer
Module in the 3D
ResNet

225 2D fetal
ultrasound videos MAPE: 7.5 + 0.66

Presented a new
methodology for predicting
birth weight, which is
derived directly from fetal
ultrasound video scans.
Leveraged a novel residual
transformer module.

[75] Regression BabyNet
900 routine fetal
ultrasound
examinations

MAPE: 3.75 + 2.00%.

There is no significant
difference observed
between fetal weight
predictions made by human
experts and those generated
by a deep network

BabyNet++ [76] Regression

Residual Transformer
with Dynamic
Affine Feature
Transform Maps
(DAFT)

582 2D fetal
ultrasound videos MAPE: 5.1 + 0.6

Demonstrated that
BabyNet++ outperforms
expert clinicians.

Proved that BabyNet++ is
less sensitive to
clinical data.
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Table 5. Cont.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

Transformer-VLAD [77] Image retrieval

Transformer-VLAD
(vector of locally
aggregated
descriptors)

ScanTrainer
Simulator (535,775
US images)

recall@top1: 0.834

The task of directing
the movement of the
US probe was
addressed as a
landmark retrieval
issue, utilizing a
learned descriptor
search method. A
transformer–VLAD
network was
specifically
developed to
facilitate automatic
landmark retrieval.

Acc: accuracy, MAE: mean absolute error, AUC: area under curve, IoU: Intersection over union, MAPE: mean
absolute percentage error, std: standard deviation.

A transformer-based image classification approach using a newly designed residual
cross-variance attention (R-XCA) block named COMFormer was introduced for catego-
rizing maternal–fetal and brain anatomical structures within 2D fetal US images [71].
The structures are divided into two primary categories: maternal–fetal (which includes the
brain, abdomen, thorax, femur, and the mother’s cervix, among others), and brain anatomi-
cal structures (such as trans-ventricular, trans-cerebellum, trans-thalamic, and non-brain
structures). A significant feature of the R-XCA block is the use of residual connections,
which help mitigate the vanishing gradients problem and enhance the learning process of
COMFormer. The performance of this architecture was assessed using a widely accessible
dataset known as “BCNatal” for two separate classification tasks.

In another study, Arora et al. [72] explored the application of the vision transformer as
a machine learning method to analyze the texture of placental ultrasound images during the
first, second, and third trimesters of pregnancy. This was achieved through a prospective
observational study that involved the collection of 2D placental US images at different
stages of pregnancy.

Chen and his team [73] introduced the Children Intussusception Diagnosis Network
(CIDNet), a comprehensive artificial intelligence algorithm designed for the swift diagnosis
of intussusception in children using ultrasound images. The system utilizes a transformer-
based approach and a Multi-Instance Deformable Transformer Classification (MI-DTC)
module, which includes a pre-processing component. This module is engineered to pre-
cisely identify and locate abnormal regions related to intussusception in ultrasound images.
The team also incorporated several CNN-based algorithms as the backbone networks.

In a landmark study (For the first time) [74], Płotka et al. introduced an innovative
system for predicting fetal birth weight (FBW), known as BabyNet. This system leverages
multimodal data and a visual data-processing component, effectively integrating transform-
ers and CNNs. The hybrid model enhances the 3D ResNet-18 architecture by incorporating
a Residual Transformer Module (RTM). This module refines features through a global self-
attention mechanism and residual connections, and facilitates both local and global feature
representation. The architecture of BabyNet was further developed in their subsequent
research [75]. The convolutional component identifies local image patterns and interac-
tions, while the transformer component models long-term dependencies and relationships.
A module is implemented in the deeper layers of BabyNet to conditionally shift feature
maps based on non-imaging data, such as gestational age. Following up on their initial
work, Płotka et al. unveiled BabyNet++ [76], a unique network specifically engineered for
FBW prediction using multimodal data. This network uses a custom RTM and incorporates
Dynamic Affine Feature Transform Maps (DAFTs) to efficiently incorporate clinical data
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within the model structure. This approach evaluates 2D+ t spatio-temporal features in fetal
US videos using tabular clinical data.

Finally, Zhao et al. [77] designed a landmark retrieval-based method for guiding
US-probe movement, which constructs a set of landmarks around a virtual 3D fetal model
and compares the current ultrasound image to the landmarks’ global descriptors using a
deep neural network (DNN) model. Their method uses a transformer–VLAD network to
learn the global descriptors, and avoids human annotation by using a KD-tree search of
3D probe positions to generate training data in a self-supervised way. This approach is
intuitive and suitable for human operators, and it avoids costly human annotation.

The application of transformer models in diagnostic procedures should be founded on
the primary literature [78], which provides a consensus on the standardized perspectives
from which the diagnostic technique is derived. Essentially, the alignment of the trans-
former model with standardized views of the fetus is of paramount importance to ensure
the successful training of AI systems for clinical applications.

3.8. Carotid

Atherosclerosis, a common cause of ischemic heart disease and stroke, is typically
monitored by physicians through the analysis of various anatomical and biomechani-
cal properties of carotid plaques over several cardiac cycles. Ultrasound (US) imaging
plays a crucial role in detecting this process, providing a non-invasive method for visu-
alizing, evaluating, and screening carotid atherosclerotic plaque. It enables radiologists
to accurately segment these plaques and extract key features such as size, shape, and
echo strength, thereby significantly improving early diagnosis and treatment strategies for
carotid atherosclerosis. Despite the computational challenges associated with using trans-
formers for analyzing carotid US videos, the advent of several transformer-based networks
for ultrasound medical video analysis signals a promising advancement in this field.

LIN et al. [79] developed a model called the U-shaped CSWin transformer (U-CSWT)
for the purpose of automatically segmenting the lumen–intima boundary (LIB) and media–
adventitia boundary (MAB) in 3D ultrasound images of the carotid artery (CA).
The U-CSWT, which is composed of hierarchical CSWT modules in both its encoder and
decoder, is designed to extract comprehensive global context information from the 3D
image. The U-CSWT’s U-shaped structure and the inclusion of the CSWin transformer in
the encoder and decoder allow the modeling of long-range dependence while reducing
the model’s computational complexity. This process involves descriptor learning via con-
trastive learning, using self-constructed anchor positive–negative ultrasound image pairs.

Lastly, Hu et al. developed the RMFG_Net [19], a network designed for the automatic
segmentation of atherosclerotic carotid plaques in ultrasound videos. This network uses a
transformer-based algorithm for stable plaque positioning, extracts spatial and temporal
features across video frames for high-quality segmentation, integrates a spatial–temporal
feature filter to suppress noise and enhance target area detail, applies multi-layer gated
computing for feature fusion and adequate feature map aggregation, and is trained end-to-
end, eliminating the need for additional operations. Furthermore, it can process at a speed
of 68 frames per second. Table 6 shows a detailed assessment of the transformer-based
models used in the analysis of carotic ultrasound images.
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Table 6. Detailed description of transformer-based carotic US image analysis.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

U-CSWT [79] Segmentation U-shaped CSWin
transformer

213 3D ultrasound
Images

DSC (MAB in the
common carotid
artery): 0.946
DSC (LIB in the
common carotid
artery): 0.908

This method employs a
novel approach to
descriptor learning, which
is accomplished through
contrastive learning. This
technique makes use of
self-constructed anchor
positive–negative pairs of
ultrasound images.

RMFG_Net [19] Segmentation
Transformer-based
Cross-scale Spatial
Location (TCSL)

DT dataset: 157
DSC: 0.8598
IoU: 0.7922
HD (mm): 11.66

A proposed
Spatial–Temporal Feature
Filter (STFF) learns more
target information from
low-level features.
A multilayer gated fusion
model is introduced for
efficient information
propagation, reducing
noise during fusion.

BP-Net [80] Classification

Boundary and
perfusion network
(BP-Net) +
multi-modal
fusion block

245 US and CEUS
videos

Acc: 0.9235
AUC: 0.935

A multi-modal fusion block
is incorporated to delve
deeper into the
internal/external
characteristics of the plaque
and highlight more
influential features across
US and contrast-enhanced
ultrasound (CEUS) videos.
It capitalizes on the
sturdiness of CNN and the
refined global modeling of
transformers, leading to
more precise
classification results.

Acc: accuracy, DSC: Dice similarity coefficient, HD: Hausdorff distance, Se: sensitivity, Sp: specificity, AUC: area
under curve, IoU: Intersection over union.

Li et al. [80] proposed a new video analysis transformer-based network, known as
BP-Net, which is guided by target boundary and perfusion features and is designed
to assess the integrity of the fibrous cap using B-mode US and contrast-enhanced US
(CEUS) videos. Building on their previously proposed plaque auto-tracking network,
they introduced a plaque edge attention module and reverse mechanism to focus the
dual video analysis on the fiber cap of plaques. To extract the most valuable features
from the fibrous cap, they proposed a feature fusion module. Finally, they integrated
a multi-head convolution attention into a transformer-based network to evaluate the
integrity of fibrous caps accurately. This approach captures both semantic features and
global context information.

3.9. Lung

Xing et al. [81] proposed a semi-supervised, frame-to-video-based lung ultrasound
(LUS) scoring model for diagnosing respiratory diseases. The model consists of
two components: a frame-level (FL) scoring model and a video-level (VL) scoring model.
The FL model uses a dual attention vision transformer (DaViT) to extract local and global
features from LUS frames, which are manually scored by clinicians. The VL model employs
a frame-to-video approach, using a 40-channel input with a patch embedding layer, and
transferring DaViT parameters from the FL model to each channel. It uses a long–short-
term memory (LSTM) module for the correlation analysis of the 40-channel output and a
final MLP head for video scoring. The model achieves high accuracy in both FL and VL
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scoring, with 95.08% and 92.59% accuracy, respectively. Table 7 provides a comprehensive
evaluation of the transformer-based models that have been applied in the analysis of lung
ultrasound images.

Table 7. Detailed description of transformer-based lung US image analysis.

Methods
/References Task Architecture Dataset Evaluation

Metrics Highlights

DaViT [81] Segmentation
A dual attention
vision transformer
(DaViT)

LUS dataset: 202

Acc (FL scoring):
0.9508
Acc (VL scoring):
0.9259

Used a
long–short-term
memory (LSTM)
module for
correlation analysis.

Nehary [82] Classification Vision transformer
(ViT)

lung ultrasound
images (LUS)
dataset: 202

Acc: 0.8666

The advantages of ViT
models include their
ability to extract
abstract features,
leverage transfer
learning, utilize
transformer encoding
for spatial context
understanding, and
perform accurate
final classification.

POCFormer [17] Classification
Vision transformer
and a
linear transformer

212 US videos Acc: 0.939 Lightweight
transformer architecture.

Acc: accuracy.

Various studies have explored the use of transformers in the lung organ, particularly
in relation to COVID-19 data. Nehary et al. [82] discuss the application of deep learning
and hand-crafted features for classifying lung ultrasound images to detect COVID-19.
Their proposed method involves a fusion of Histogram of Oriented Gradient (HOG) fea-
tures and abstract features from deep learning models like VGG16 and the vision trans-
former (ViT) to enhance detection accuracy. The effectiveness of this fusion technique is
demonstrated using a public COVID-19 dataset, showing improved classification accuracy
when HOG features are fused with abstract features from VGG16 and ViT.

Perera et al. introduced POCFormer [17], a lightweight transformer architecture de-
signed for COVID-19 detection using point-of-care ultrasound. The architecture, consisting
of a vision transformer and a linear transformer, is compact, with around 2 million parame-
ters, making it suitable for deployment on low-power devices like smartphones. It can run
in real time and has the potential to be used in rural and underserved areas. POCFormer
outperforms other architectures in binary and multiclass classification experiments, demon-
strating high accuracy in distinguishing between COVID-19 and healthy patients, as well
as COVID-19 and bacterial pneumonia.

3.10. Liver

Transformer models have indeed been used for tasks related to liver ultrasounds,
specifically for the classification of liver lesions. One notable example is the TransLiver
model, a hybrid transformer model designed for multi-phase liver lesion classification.

Zhang et al. [83] discus the use of deep learning techniques, specifically a vision
transformer (ViT)-based classification method, for the automatic recognition of standard
liver sections in ultrasound images. The research aims to address subjective errors in
traditional manual scanning and standardize the medical examination of the liver in adults.
The authors collect 12 common liver ultrasound standard sections and train the ViT model
on these, achieving an accuracy of 92.9% in the available ultrasound dataset. The ViT
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model outperforms other deep learning frameworks and shows promising results for
the recognition of standard liver sections. The research contributes to the study of adult
organs, as previous research has mainly focused on fetal organs. The document also
mentions the use of visual attention mechanisms and targeted histogram equalization to
enhance the recognition and contour information in the ultrasound images. Table 8 gives
a comprehensive overview of how transformer-based models have been utilized in the
analysis of liver ultrasound images.

Table 8. Detailed description of transformer-based liver US image analysis.

Methods
/References Task Architecture Dataset Evaluation

Metrics Highlights

[83] Classification Vision transformer
(ViT) 13,970 images Acc: 0.929

Standardized the
medical examination
of the liver in adults.

Ultra-Attention [84] Classification Transformer 14,900 images Acc: 0.932

Accurately identified
standard sections by
considering the
coupling of anatomic
structures within the
images.

DETR [13] Detection
Vision transformer
and a linear
transformer

1026 patients Sp: 0.90
Se: 0.97

Detecting, localized,
and characterized
focal liver lesions.

Acc: accuracy, DSC: Dice similarity coefficient, HD: Hausdorff distance, Se: sensitivity, Sp: specificity, AUC: area
under curve, IoU: Intersection over union.

Zhang et al. [84] introduced the use of an ultra-attention structured perception strat-
egy for the automatic recognition of standard liver sections in ultrasound imaging. This
deep learning approach, inspired by natural language processing attention mechanisms,
amplifies small features in ultrasound images that may be overlooked. The ultra-attention
model, guided by a convolutional neural network, addresses the challenge of accurately
identifying standard sections by considering the coupling of anatomic structures within the
images. It uses a modularized approach where each local piece of information contributes
to the final decision, rather than focusing solely on local areas like traditional convolu-
tional neural networks. The ultra-attention structure consists of multiple encoder layers,
each performing attention operations on the ultrasound images. It uses a modularized
approach where each local piece of information contributes to the final decision. The model
incorporates dropout mechanisms and part-transfer learning to enhance robustness and
convergence. With a classification accuracy of 93.2%, the ultra-attention model outper-
forms traditional convolutional neural network methods, offering a promising solution for
improving the accuracy and efficiency of ultrasound diagnosis.

Dadoun et al. [13] discuss a study on the use of deep learning networks, specifically
Faster R-CNN and DETR, for detecting, localizing, and characterizing focal liver lesions
(FLLs) on abdominal ultrasound images. The networks were trained on a dataset of
1026 patients and tested on 48 additional patients. DETR outperformed Faster R-CNN
and was comparable to or exceeded the performance of three caregivers in detecting FLLs,
localizing lesions, and characterizing FLLs as benign or malignant. The study suggests that
these networks, particularly DETR, could assist non-expert caregivers in screening patients
at high risk of malignancy, potentially improving the early detection of hepatocellular
carcinoma. However, the study had limitations, including a limited number of images in
the test set and the retrospective nature of the study. Further research is needed to validate
these findings and explore the integration of clinical information in the screening process.
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3.11. IVUS

Transformer models have indeed found applications in the analysis of intravascular
ultrasound (IVUS) images.

Huang et al. [85] proposed a framework, POST-IVUS, for the automated segmentation
of the lumen and external elastic membrane (EEM) boundaries in intravascular ultrasound
(IVUS) images. This framework addresses the challenges of IVUS segmentation, such as
inter-observer variability and the presence of artifacts, by combining Fully Convolutional
Networks (FCNs) with temporal context-based feature encoders, a selective transformer
module, and a temporal constraining and fusion module. The POST-IVUS framework has
shown superior performance compared to state-of-the-art methods, with a Jaccard measure
of 0.92 for the lumen and 0.94 for EEM segmentation. It has been integrated into a software
called QCU-CMS (version 4.69) for user-friendly automated IVUS image segmentation,
demonstrating its potential for practical applications.

The proposed framework for IVUS segmentation includes two temporal context-based
feature encoders, the rotational alignment encoder and the visual persistence encoder,
which focus on relevant vessel movement and encode residual visual features, respectively.
The Selective Transformer module in the STR U-Net enhances the inference ability of the
segmentation model, particularly in regions with little visual information, by mimicking the
perceptual organization property of human vision and capturing long-range dependencies
and global context. The Swin transformer, a key component of the framework, is used as
the backbone of the inference branch in the STR U-Net. It introduces connections between
areas by dividing images into different patches and calculating hierarchical representations,
thereby improving the accuracy of boundary prediction in challenging areas.

The Multilevel Structure-Preserved Generative Adversarial Network (MSP-GAN) is
discussed in [20], which is a method for domain adaptation in intravascular ultrasound
(IVUS) analysis. The MSP-GAN addresses the poor generalizability of IVUS analysis
methods due to the diversity of IVUS datasets by integrating a vision transformer, a
superpixel-wise multiscale contrastive (SMC) constraint, and an uncertainty-aware teacher-
student consistency (TSC) constraint. These components work together to effectively
preserve structures at the global, local, and fine levels, improving the generalizability
of IVUS analysis methods. The vision transformer, incorporated into the generator of
the MSP-GAN, maintains global pathology information during the image translation
process by capturing long-range dependencies and understanding the global context of the
images. This enhances the structural similarity between the synthetic and source images,
thus improving the accuracy of downstream IVUS analysis methods such as vessel and
lumen segmentation and stenosis-related parameter quantification. The document also
discusses the transformer-incorporated generator, a key component of the MSP-GAN,
which preserves global pathology information during the image translation process by
combining the strengths of convolutional networks and transformers. It captures both
local interactions and long-range dependencies in IVUS images. The generator comprises a
convolution-based encoder for efficient visual feature learning and a vision transformer for
modeling the complex relations of feature components and extracting global information.
The outputs of the encoder and transformer are fused to generate context-rich features,
which are then decoded into the synthetic image. By incorporating the vision transformer,
the generator can interpret the global context of IVUS images, maintain the global pathology
information presented in the source images, and improve the structural similarity between
the synthesized and source images. Table 9 provides a summary of the application of
transformer-based models in the analysis of IVUS ultrasound images.
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Table 9. Detailed description of transformer-based IVUS image analysis.

Methods
/References Task Architecture Dataset Evaluation

Metrics Highlights

POST-IVUS [85] Segmentation Selective
transformer IVUS-2011 Jac: 0.92

Segmentation by
combining Fully
Convolutional
Networks (FCNs)
with temporal
context-based
feature encoders.

MSP-GAN [20] Classification
Vision transformer
and a
linear transformer

212 US videos Acc: 0.939
Domain
adaptation
in IVUS.

Acc: accuracy, Jac: Jaccard.

3.12. Gallbladder

Basu et al. proposed RadFormer [23], a novel deep neural network architecture for the
accurate and interpretable detection of Gallbladder Cancer (GBC) from ultrasound (USG)
images. RadFormer combines global and local attention mechanisms using a transformer-
based approach. It outperforms human radiologists in detection accuracy and provides
interpretable explanations for its decisions. These explanations are based on visual bag-
of-words-style feature embeddings that can be mapped to the radiological features used
in the medical literature. The model demonstrates high sensitivity and specificity in
detecting GBC from USG images and allows for the discovery of new visual features
relevant to GBC diagnosis.

RadFormer uses a global branch to extract deep features from the entire ultrasound
image and a local branch to generate a region of interest (ROI) and extract deep features
using a bag-of-features (BOFs) technique. These features are fused using a transformer-
based architecture, enhancing GBC detection performance. RadFormer’s performance is
evaluated against several baseline models, demonstrating superior accuracy. By mapping
the neural features to radiological lexicons, RadFormer provides precise and interpretable
explanations for GBC detection. The architecture addresses the challenges presented in
ultrasound images, such as sensor noise, artifacts, and visual similarities between non-
malignant regions and the cancerous gallbladder. Overall, RadFormer presents a significant
advancement in the field of medical imaging and cancer detection.

3.13. Other-Synthetic

This section delves deeper into the wider application of transformer technology be-
yond the specific analysis of ultrasound images for certain organs, as discussed in previous
sections. The field of imaging and tracking has witnessed substantial advancements
through the use of transformer networks. For example, Zhao et al. trained an automatic
segmentation Medical Transformer (MedT) network for ultrasound images of the distal
humeral cartilage [86]. This research represents the first application of multiple deep
learning algorithms for dynamic, volumetric ultrasound images in distal humeral cartilage
segmentation, which are important for minimally invasive surgeries.

Zhou et al. introduced the Lightweight Attention Encoder–Decoder Network (LAED-
Net) [87], an innovative and efficient asymmetrical encoder–decoder network, for the
segmentation of the Head Circumference Ultrasound Images Dataset (HCUS).

Katakis and his team [88] evaluated the potential of vision transformers for the auto-
mated segmentation of a muscle’s cross-sectional area (CSA) and its mean grey level value,
aiming to estimate the echogenicity of muscle architecture.

Zhang et al. [89] have introduced a novel Pyramid Convolutional Transformer (PCT)
architecture for the segmentation of parotid gland tumors. This architecture employs a
shrinking pyramid framework to capture dense pixel features effectively and leverages
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multi-scale image dependencies. A Fusion Attention Transformer CNN (FTC) block is also
incorporated to manage the complex and variable contour characteristics of parotid gland
tumors. This block merges the transformer with a CNN, forming a dual-branch structure
to extract both global and local image features.

Another transformer-based approach, the Depthwise Separable Convolutional
Swin transformer, was introduced by Liu et al. [16]. This transformer is designed for
cervical lymph-node-level classification in ultrasound images. The network includes a
depthwise separable convolution branch in the self-attention mechanism to capture discrim-
inative local features. To tackle data imbalance issues, a new loss function was proposed to
enhance the performance of the classification network.

Lo [90] employed a pre-trained vision transformer (ViT) model to extract image
features for the purpose of diagnosing septic arthritis from gray-scale and Power Doppler
ultrasound images. Leveraging the deep learning capabilities of the ViT, the system
autonomously and efficiently gathers significant image features for classification purposes.

Finally, Manzari et al. [91] suggested an innovative hybrid model that integrates the
strengths of CNNs and transformers, mitigating the high quadratic complexity of the self-
attention mechanism. They use an efficient convolution operation to attend to information
across various representation spaces. Additionally, they aim to enhance the model’s
resistance to adversarial attacks by learning smoother decision boundaries. The hybrid
model, known as the Medical Vision Transformer (MedViT), combines local representations
and global features using robust components. A novel patch moment changer augmentation
has also been developed to add diversity and affinity to the training data.

Qu et al. [92] developed the Complex Transformer Network (CTN), which integrates
complex self-attention (CSA) and complex convolution modules for zero-degree single-
angle polarization waveform imaging (PWI) beamforming. This technique maps delayed
in-phase and quadrature (IQ) data directly to an image, with the CSA module assigning
dynamic weights to reconstruction features based on their coherence. Table 10 gives a
thorough review of the utilization of transformer-based models in the examination of other
synthetic ultrasound images.

In the realm of microbubble (MB) localization, Liu et al. [15] have introduced a
Swin transformer-based neural network for the end-to-end mapping of MBs. They further
refined this method with a Super-Resolution Modified Transformer (SR-MT), improving MB
localization and scaling the input dimension. They proposed a transformer-based neural
network to replace the MB localization step in generating Ultra-Structure-Super-Resolution
(US-SR) images.

Yan et al. [93] utilized a transformer-based network for motion prediction in their
needle tip tracking system. This approach helped them estimate the target’s current position
from its past position data, addressing the issue of the target’s temporary disappearance.
The transformer network processes the entire data sequence at each instance, capturing
both long- and short-term dependencies to fully understand the internal relationships
within the input data sequence.

Table 10. Detailed description of transformer-based other synthetic US image analysis.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

[86] Segmentation Medical Transformer
(MedT) 5321 ultrasound images DSC: 0.894

Developed image-guided
therapy (IGT) for
visualization of distal
humeral
Cartilage.
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Table 10. Cont.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

LAEDNet [87] Segmentation

Lightweight
Attention
Encoder–Decoder
Network +
Lightweight Residual
Squeeze-and-
Excitation (LRSE)

Brachial Plexus (BP)
Dataset
Breast Ultrasound
Images Dataset (BUSI)
Head Circumference
Ultrasound (HCUS)
Dataset

DSC (BP): 0.73
DSC (BUSI): 0.738
DSC (HCUS): 0.913

The LAEDNet’s unique
asymmetrical structure
plays a crucial role in
minimizing network
parameters, thereby
accelerating the
inference process. A
compact decoding
block named LRSE has
been developed, which
employs an attention
mechanism for smooth
integration with the
LAEDNet backbone.

TMUNet [88] Segmentation

Vision transformer +
The contextual
attention network
(TMUNet)

2005 transverse
ultrasound DSC: 0.96

Providing additional
knowledge to ensure
the execution of the
previously
mentioned tasks.

PCT [89] Segmentation
Pyramid
Convolutional
Transformer (PCT)

PGTSeg (parotid gland
tumor segmentation)
dataset: 365 images

IoU: 0.8434
DSC: 0.9151

The transformer branch
incorporates an
enhanced version of the
multi-head attention
mechanism, referred to
as the multi-head
fusion attention
(MHFA) module.

Depthwise Swin
Transformer [16] Classification Swin transformer 2268 ultrasound images

(1146 cases)

Acc: 0.8065
Se: 0.8068
Sp: 0.7873
F1 value: 0.7942

Introduces a
comprehensive
approach for
categorizing cervical
lymph node levels in
ultrasound images.
Employs model that
combines depthwise
separable convolutions
with transformer
architecture, along with
a novel loss function.

[90]
Feature
extraction +
Classification

Vision transformer
(ViT) 278 images Acc: 0.92

AUC: 0.92

Vision transformer is
employed as a feature
extractor, while a
Support Vector
Machine (SVM) acts as
the classifier.



Diagnostics 2024, 14, 542 31 of 39

Table 10. Cont.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

MedViT [91] Classification
Medical Vision
Transformer
(MedViT)

BreastMNIST: 780
breast ultrasound

AUC: 0.938
Acc: 0.897

To improve both the
generalization
performance and
adversarial resilience,
the authors aim to
increase the model’s
reliance on global
structure features
rather than texture
information. They do
this by calculating the
mean and variance of
the training examples
along the channel
dimensions in the
feature space and
mixing them together.
This method enables
the exploration of new
regions in the feature
space that are mainly
associated with global
structure features.

CTN [92] Plane-wave
Imaging (PWI)

CTN: complex
transformer
network

1700 samples

Contrast ratio:
11.59 dB
contrast-to-noise
ratio: 1.16
generalized
contrast-to-noise
ratio: 0.68

A CTN was developed
using complex
convolution to manage
envelope information
and extract complex
reconstruction features
from complex IQ data.
This resulted in a
higher spatial
resolution and contrast
at significantly reduced
computational costs.
The Complex
Self-Attention (CSA)
module was developed
based on the principles
of the self-attention
mechanism.
This module assists in
eliminating irrelevant
complex reconstruction
features, thus
enhancing
image quality.

SR-MT [15] Localization Swin transformer 11,000 realistic
synthetic datasets

Lateral localization
precision (LP)
(MB = 1.6
MBs/mm2): 15.0
DSC: 0.8
IoU: 0.66

The research confirmed
the effectiveness of the
proposed method in
precisely locating
Microbubbles (MB) in
synthetic data and the
in vivo visualization of
brain structures.
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Table 10. Cont.

Methods
/References Task Architecture Dataset Evaluation Metrics Highlights

tip tracking [93] Tracking Visual
tracking network 3000 US images Tracking success

rate: 78%

Implemented a motion
prediction system,
based on the
Transformer network.
Constructed a visual
tracking module
leveraging dual mask
sets to pinpoint the
needle tip and
minimize background
noise.
Constructed a robust
data fusion system that
combines the results
from the motion
prediction and visual
tracking systems.

Acc: accuracy, DSC: Dice similarity coefficient, AUC: area under curve, Se: sensitivity, Sp: specificity,
IoU: intersection over union.

4. Discussion

Transformers, a unique type of convolutional-free neural network architecture, are
designed to excel in capturing long-range dependencies within sequential data, making
them suitable for language-related and computer vision tasks. They utilize an attention
mechanism, specifically self-attention, which allows the model to focus on different parts
of the input sequence and identify relationships between them. This makes self-attention
a powerful tool for tasks involving sequences, such as video processing. Additionally,
transformers incorporate multi-head self-attention, which multiplies the model’s capacity
to perceive a multitude of relationships within the input sequence. This technique provides
multiple unique viewpoints on the input sequence, enabling the model to focus on different
segments of the input sequence and capture a variety of information simultaneously.

Our exploration has centered on the application of transformers, especially vision
transformers, and an examination of advanced models for ultrasound imaging analysis.
Although these models have shown promise in analyzing images from different organs,
the progress of AI-enhanced ultrasound remains slower compared to AI-enhanced CT
and MRI, and also there is substantial room for improvement in several crucial aspects.
The goal is to create a more practical and medically accurate system that fully harnesses the
capabilities of transformers. To achieve this, we address the several challenges currently
faced by transformer-based systems and outline the exciting prospects for future research.
This section aims to aid researchers in comprehending the current limitations and in
spurring the advancement of more accessible automated systems for ultrasound image
analysis that leverage transformer technology.

Data availability: Training transformer-based methods requires vast amounts of
labeled data to mimic human performance in computational tasks. However, compliance
with healthcare privacy laws and medical data regulations often restricts access to medical
data, making them less abundant compared to other scientific domains. Moreover, the
quality of the model heavily depends on the quality of the annotations, which are typically
provided by professionals and are required for unbiased model creation. Data annotation
was once a significant barrier to deep learning development; however, recent advancements,
such as Generative Adversarial Networks (GANs) for data generation, unsupervised
learning, semi-supervised learning, Few-Shot Learning (FSL), and weakly supervised
learning, have significantly reduced reliance on manual data annotation.

Apart from the scarcity of labeled data, another challenge in dataset preparation is
class imbalance. This issue, while a common occurrence in everyday clinical practice, poses
a problem for most contemporary AI models that require balanced datasets for optimal
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training. To address this, engineering solutions like the creation of synthetic data are emerg-
ing as active research fields. Furthermore, rebalancing strategies and sampling techniques
are being employed as solutions to tackle the issues arising from imbalanced learning.

Also, the establishment of a standardized, nationwide ultrasound database using uni-
form measures and calibrated algorithms could be beneficial in this context. Collaborating
with ultrasound manufacturers and software companies on such a database could encour-
age research into algorithms suited for heterogeneous ultrasound databases, potentially
addressing these challenges and advancing the application of deep learning in clinical
decision making.

Also, in some new ultrasound imaging technologies, such as ABUS 3D imaging, a rela-
tively new method of breast ultrasound imaging, there are few publicly available databases.

Transfer learning in ultrasound imaging: Despite their potential, transformers face
challenges in ultrasound imaging due to data sparsity and the complexity of medical
data. In the field of analyzing ultrasound images, transformer-based techniques generally
begin by learning from larger datasets like ImageNet to establish starting values for future
work, and most current transformer-based methods can be easily applied to ultrasound
imaging problems without significant changes. Prominent state-of-the-art transformer
models like SWIN and ViT are widely adopted. The availability of pre-trained weights
simplifies the fine-tuning process for these models across various tasks, making them
more attractive to researchers. Simplicity favors preference, and researchers often gravitate
towards straightforward models like ViT over more intricate ones. These models are
compatible with common frameworks like PyTorch or Keras, and are ideal candidates for
pre-training on ImageNet.

However, the considerable differences between natural image datasets and medical
ultrasound datasets can compromise the precision of feature extraction specific to medical
imagery. These discrepancies may hinder the potential for sustained performance gains.
Consequently, we anticipate that future research will be heavily influenced by the evolution
of more optimized transformer architectures for ultrasound images.

Computational costs: Transformers are surpassing conventional methods in med-
ical image analysis. Despite their promising results, challenges remain due to the high
computational demand of transformers. Therefore, improvements to the architecture of
transformers are needed to make them more lightweight and efficient. Despite their cutting-
edge performance, transformer-based networks currently face certain hurdles in practical
implementation. The primary obstacle is the substantial computational load imposed by
the extensive parameter count inherent to these models. This arises from the quadratic
time and space complexity associated with the attention mechanism within the transformer
architecture. For instance, U-Net++ models [94], which are based on CNNs, require approx-
imately 9.163 million parameters to achieve a Dice score of 76.40 on the BUSI dataset [38].
In contrast, TransUnet [46], which secures a higher Dice score of 81.18 on the BUSI dataset,
necessitates only about 44.00 million parameters [38]. Nevertheless, researchers must grap-
ple with the intense demand for GPU resources to meet these demands. Fewer studies have
focused on addressing the challenge of improving model efficiency in ultrasound imaging.

Interpretability: In today’s world, a significant number of deep learning (DL) models
have a “black box” feature in their decision-making processes due to the hidden nature of
the underlying processes in complex transformers. However, with the advent of explain-
able artificial intelligence (XAI) and the development of algorithms aimed at providing
interpretable predictions in DL-based systems, researchers are striving to integrate XAI
methods into the construction of transformer-based models. This integration aims to de-
velop more reliable and comprehensible systems across various fields, including medical
analysis [95,96].

Current methodologies typically emphasize the crucial areas of the medical image
that contribute to the model’s prediction by utilizing attention maps [95]. In the realm
of medicine, interpretable DL models have demonstrated encouraging outcomes in a
range of applications, such as diagnosing COVID-19 [97], classifying brain tumors [98],
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categorizing retinal images [99], and subtyping lung tumors [100]. By visualizing the
learned features and attention scores, these models not only achieve high accuracy, but also
offer valuable insights into disease detection and classification, thereby enhancing patient
care and decision-making regarding treatment.

We are of the opinion that the inclusion of interpretable vision transformers in medical
ultrasound applications can enhance user-friendly predictions and aid decision-making in
ultrasound image analysis. This inclusion represents a promising avenue for exploration in
medical research problems.

Spatio-temporal ultrasound analysis: Most automated ultrasound image processing
methods that are based on transformers primarily focus on static ultrasound images and
do not explore the analysis of the spatial and temporal features in medical ultrasound
video sequences. Despite a study successfully integrating standard transformer models
into their AI frameworks to enhance dynamic clinical tasks, the limited number of such
approaches indicates that video-based ultrasound analysis is still in its infancy and presents
a promising area for future research [11]. This includes investigating the capabilities of
video vision transformer variants in ultrasound videos.

On the other hand, the majority of medical imaging tasks necessitate the processing
of 3D volumetric data. However, vision transformer models are known for their high
computational and memory demands, making the efficient and effective management of
3D data a significant challenge in integrating transformers into medical image analysis.
Several groundbreaking methods, such as UNETR [101], TransBTS [102], CoTr [103], and
nnFormer [104], have been proposed to address the challenges of modeling volumetric
segmentation in medical modalities other than ultrasound data. These efforts underscore
the potential for creating new architectures that utilize 3D volumetric ultrasound data for a
more precise analysis of this modality.

Architectures: Various architectures, including vision transformers (ViT), Swin trans-
formers, hybrid vision transformers (HVT), pyramid vision transformers (PVT), and DETR,
have been developed for ultrasound imaging. Initially, basic methods such as ViT and
Swin transformers were applied with fine-tuning. Later, HVT, CvT, and DETR methods
were introduced to enhance these basic approaches. DETR has been primarily tested and
evaluated using synthetic and simulation data [105,106]. Architectures like DeiT and DETR
may require substantial effort to further refine their application in ultrasound imaging.

Applications: When examining the task categories, there is a roughly balanced dis-
tribution: 43.47% are for segmentation and 39.13% for classification, with the remainder
allocated for detection and other tasks. There is a recognized need to assess the suitability
of transformer models for reconstruction and registration in ultrasound imaging. As trans-
former architectures are relatively new, they necessitate further investigation to determine
their potential use in these specific applications. Research indicates that the breast, heart,
and fetus are the three anatomical sites most studied, whereas organs like the bladder,
spleen, and gallbladder have received less attention.

Despite the promising outcomes demonstrated by transformer methods for ultrasound,
the advancement of AI-powered ultrasound lags behind that of AI-powered CT and MRI.
This is primarily due to the significant intra- and inter-reader variability encountered
during the acquisition and interpretation of ultrasound images.

5. Conclusions

Given the unique characteristics and diagnostic needs of ultrasound imaging, a com-
prehensive review of AI methods based on vision transformers, specifically designed for
ultrasound imaging, can offer important insights for researchers and practitioners in this
particular field. Hence, this review seeks to fill this void by providing an examination
of transformer models that have been specifically developed for ultrasound imaging and
its related image analysis applications. This analysis involves an extensive review of
69 relevant papers in order to summarize recent advancements and identify the most
pertinent ones for this topic.
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For this purpose, we began by describing the fundamental structures of transformers;
this was followed by an introduction to the most significant architectures of vision trans-
formers. Subsequently, based on the ultrasound images of different organs, we explained
the different approaches used by the transformer in each organ to understand the diverse
applications of this technology. We reviewed the most relevant papers that have utilized
vision transformers in medical ultrasound, highlighting the transformative impact of these
methodologies in the field. As the landscape of medical ultrasound continues to evolve, the
role of vision transformers is anticipated to become increasingly prominent, paving the way
for more sophisticated and precise diagnostic tools. This review underscores the potential
of vision transformers to change medical ultrasound analysis, marking a significant stride
towards the future of healthcare.

There are numerous opportunities for enhancement across various ultrasound do-
mains that could lead to a more realistic and clinically precise system through the utilization
of transformer models. Addressing general challenges in medical transformer research,
such as generalization, interpretability, stability, and computational costs, remains a sparse
area of study. These considerations set the stage for future advancements in the field.
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