
Citation: Bragança, C.P.; Torres, J.M.;

Macedo, L.O.; Soares, C.P.d.A.

Advancements in Glaucoma

Diagnosis: The Role of AI in Medical

Imaging. Diagnostics 2024, 14, 530.

https://doi.org/10.3390/

diagnostics14050530

Academic Editors: Jae-Ho Han and

Daniele Giansanti

Received: 30 November 2023

Revised: 17 February 2024

Accepted: 23 February 2024

Published: 1 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Advancements in Glaucoma Diagnosis: The Role of AI in
Medical Imaging
Clerimar Paulo Bragança 1,2,*, José Manuel Torres 1,3 and Luciano Oliveira Macedo 2

and Christophe Pinto de Almeida Soares 1,3

1 ISUS Unit, Faculty of Science and Technology, University Fernando Pessoa, 4249-004 Porto, Portugal;
jtorres@ufp.edu.pt (J.M.T.); csoares@ufp.edu.pt (C.P.d.A.S.)

2 Department of Ophthalmology, Eye Hospital of Southern Minas Gerais State, Rua Joaquim Rosa 14,
Itanhandu 37464-000, MG, Brazil; lucianoomacedo@gmail.com

3 Artificial Intelligence and Computer Science Laboratory, LIACC, University of Porto, 4100-000 Porto, Portugal
* Correspondence: 39270@ufp.edu.pt

Abstract: The progress of artificial intelligence algorithms in digital image processing and automatic
diagnosis studies of the eye disease glaucoma has been growing and presenting essential advances
to guarantee better clinical care for the population. Given the context, this article describes the
main types of glaucoma, traditional forms of diagnosis, and presents the global epidemiology of
the disease. Furthermore, it explores how studies using artificial intelligence algorithms have been
investigated as possible tools to aid in the early diagnosis of this pathology through population
screening. Therefore, the related work section presents the main studies and methodologies used
in the automatic classification of glaucoma from digital fundus images and artificial intelligence
algorithms, as well as the main databases containing images labeled for glaucoma and publicly
available for the training of machine learning algorithms.
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1. Introduction

Glaucoma is a multifactorial neuropathy that can affect the fundus of the eye, causing
gradual loss of vision and, in severe cases, blindness. Traditionally, the diagnosis of
glaucoma is applied with the help of readily available ophthalmological teams and highly
specialized equipment. The sensitivity of the diagnosis is generally high, as tests applied in
ophthalmology offices have the clinical potential to identify virtually all cases of the disease.
However, despite this sophisticated diagnostic scenario, the silent and slow evolution
of the disease, the costs of exams and consultations, and the lack of access to public
ophthalmological services in many cases prevent thousands of people from consulting an
ophthalmologist during the early stages of this neuropathy. This contributes to the fact
that around 70% of the patients are self-diagnosed, that is, alerted by their own visual
impairment and not by an appropriate early diagnosis [1,2].

Glaucoma is considered a global problem; even in developed countries, it is estimated
that at least 50% of patients with glaucoma do not know of their condition. This percentage
is even worse in low-income countries [3]. It is considered a progressive, chronic, and
incurable pathology; however, it can generally be efficiently controlled when treatment
begins in the early stages of the disease.

There are several types of glaucoma: open-angle glaucoma, angle-closure glaucoma,
congenital glaucoma and secondary glaucoma [4,5]. However, they all cause damage to the
optic nerve, which in most cases occurs slowly, initially leading to the loss of midperipheral
vision. In advanced stages, it affects central vision, leading to irreversible blindness.
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Damage to the optic nerve can be analyzed using fundus examinations, also known as
ophthalmoscopy or fundoscopy. The ophthalmoscopy examination is performed on the
back part of the eye (fundus), which includes the retina, optic disc, choroid, and blood
vessels. The funduscopic examination can be performed with a variety of equipment, such
as direct ophthalmoscopy, indirect ophthalmoscopy, and slit lamp ophthalmoscopy. Found
in almost all ophthalmology offices, these devices offer ophthalmologists a detailed view of
the eyeball. As shown in Figure 1, the brightest part of the retina represents the optic disc
(OD), which contains an excavation known as the optical cup (OC), depicted by the whitest
part of the interior of the optic disc. Therefore, if the size of the optic cup increases, it is
considered one of the main indicators of glaucoma [2,6–8].

Figure 1. ISNT (Inferior (I), Superior (S), Nasal (N) and Temporal (T)) Rule.

In terms of the basic and traditional methods of diagnosing glaucoma, in addition to
the fundus examination to examine the optic disc and the retinal nerve fiber layer (RNFL),
ophthalmologists generally use tonometry and visual field tests as adjuncts. Tonometry
is an exam to assess the degree of dysfunction and measures intraocular pressure (IOP)
in millimeters of mercury (mmHg). The common eye pressure range is 10 to 21 mmHg,
which is based on the average eye pressure level of a normal person. Although tonom-
etry examination is very important in the management and treatment of glaucoma, it
cannot be considered a diagnosis due to the presence of cases of normal pressure glau-
coma [9]. Perimetry through the perimetry or campimetry exam, as is also known, the
degree of functional impairment resulting from the disease is examined through the re-
sults of the obtained visual field map. In clinical practice, visual field testing identifies
so-called blind spots (scotomas) and their locations in human vision and is therefore widely
used as the gold standard to assess whether a patient suffers from typical functional
glaucomatous damage [10].

Although the demographic and clinical characteristics associated with glaucoma are
relatively well known, there is still no uniform definition of the diagnosis of this disease
by ophthalmologists. In this way, many international efforts have been made to develop
such a definition, but no real consensus standard has been reached. Therefore, those
with an IOP greater than 21 mmHg, accompanied by characteristic damage to the optic
disc or defects in the visual field compatible with glaucoma, are generally included as
glaucomatous [11]. Due to this particularity, it is important to assess and document the
appearance of an increase in the cup-to-disc ratio as a way of evaluating possible structural
damage caused by the disease, as well as accompanying the patient to treatment or routine
appointments. Therefore, from ophthalmoscopy images, ophthalmologists can evaluate
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at least four important informative characteristics of glaucoma, such as cup/disc ratio,
inferior (I), superior (S), nasal (N), and temporal (T) rule (ISNT), cup asymmetry, and in
addition other structural damage caused to the optic disc, namely the following:

• Cup-to-Disc Ratio (CDR): An abnormal increase in disc cupping is important in the
diagnosis of glaucoma; however, many people may have increased nerve cupping
and not necessarily have glaucoma. This is especially true for myopic people, who
tend to have a larger optical disc and consequently a larger optical cup. Therefore,
during the diagnosis of glaucoma, it is important to assess not only the optical cup
but also the cup-to-disc ratio (CDR). For better understanding, the CDR measurement
is calculated from the relationship between the vertical diameter of the excavation
(VCD) and the vertical diameter of the disc (VDD), as shown in Figure 2.
To calculate the CDR ratio, the optical disc must be divided into 10 equal parts,
as in Figure 3, and then the excavation scope must be taken into account in each
division made. Therefore, it is considered a fractional percentage measurement,
generally made horizontally, and can vary greatly between normal individuals. How-
ever, optical excavations greater than 0.65 indicate possible abnormalities, suggesting
further investigation [2,12].

• ISNT Rule: The border formed between the optic cup and the optic disc, called the
neuroretinal ring or neural ring, is also considered an indication of glaucoma, for
which there is a rule called ISNT, which alludes to the orientation (inferior, superior,
nasal, and temporal) of the edges in the image of the fundus, as shown in Figure 1.
When considering the ISNT rule, in nonglaucomatous eyes, it is suggested that the
thickness of the neural ring should be greatest in the inferior quadrant, followed by
the superior, nasal, and temporal quadrants. Misalignment in the guidelines of this
rule leads to suspicion of glaucoma [13].

• Cup-to-disc ratio (CDR) asymmetry: The CDR relationship between both eyes is
symmetric in most people, and asymmetry is an important sign of suspected glauco-
matous damage. This is due to the observation that 1% to 6% normal adults may have
a discrepancy of 0.2 in the cup/disc ratio, while 1% of the general population may
have an asymmetry of 0.3. Therefore, cup asymmetry is a finding on ophthalmological
examination that requires additional tests to rule out the presence of glaucoma or
other possible complications [14,15].

• Other structural damage to the optic disc: The main descriptions of these types of
damage related to glaucoma are as follows [2,16,17]:

1. Changes in RNFL: the presence of defects located in the retinal nerve fiber layer
is called Hoyt’s sign and is characterized by a dark area that extends and widens
from the optic disc, exhibiting an arched shape.

2. Peripapillary atrophy: According to the ophthalmological appearance, peripapil-
lary atrophy can be divided into a peripheral alpha zone and a central beta zone.
The alpha zone is characterized by patchy hypopigmentation and thinning of the
layers of the chorioretinal tissue. It is laterally adjacent to the retina and medially
in contact with the beta area, with the sclera and large choroidal vessels visible.
In normal eyes, the alpha and beta areas are usually located in the temporal
area, followed by the inferior and superior areas. In glaucomatous eyes, the beta
area is more present in the temporal region and its extension is associated with
thinning of the RNFL.

3. Excavation of the optic disc: In addition to disc excavation, the neuroretinal ring
or neural rim must also be observed, as excavation is influenced by the size of
the optic disc.

4. Disc hemorrhage: The presence of peripapillary hemorrhages is an important
sign in both the diagnosis and the monitoring of glaucoma. Therefore, vessel
deflection and nasal excavation must be examined.

5. Denudation of the lamina, cribriform: the presence of visible extinction of the
cribriform lamina to the edge of the optic disc is called a notch, which represents
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the evolution of a defect located in the neural rim until there is a complete
absence of tissue in the region, which exposes the cribriform lamina and allows
visualization of its pores. Although it is very suggestive of glaucoma, this sign is
not characteristic of the disease.

Figure 2. Measures considered in the CDR calculation.

Figure 3. Example of CDR calculation with figure showing excavation of 0.6.

Regarding the difficulties associated with the diagnosis of glaucoma, it is considered
that in cases in the moderate or advanced stages of the disease, the diagnosis is usually
more simplified. However, the best way is to detect early glaucoma, which is essential
for adequate treatment, mainly because quality of life can be altered even with slight loss
of visual field [18]. However, the early identification of this disease, although important,
can be challenging for several reasons, including glaucomatous characteristics that can
be ambiguous in the optic disc region, RNFL, or visual field results at the beginning of
the disease.

Over the years, more sensitive tests have been developed to more reliably identify
early loss of visual function in patients with glaucoma, and more sophisticated imaging
devices have been created to identify the first signs of disease-induced structural damage
to aid in precocious diagnosis. Among these devices, optical coherence tomography (OCT),
laser scanning polarimetry, and confocal laser scanning ophthalmoscopy stand out [19,20].
Although devices have demonstrated a good ability to assist ophthalmologists in the
diagnosis of glaucoma, few studies have specifically examined the use of such technologies
early in the disease, making the early diagnosis of glaucoma a difficult task for specialists,
even with the aid of sophisticated equipment [19].

Given the difficulties in diagnosing glaucoma early, what ophthalmology clinics have
done to try to overcome this difficulty is a combination of functional and structural exams.
Although functional changes may be detected before structural changes, in many cases the
first detectable manifestation of glaucoma is a structural abnormality change in the optic
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disc and RNFL, which therefore requires that the tests be combined to establish probability
levels of the presence or absence of the disease [9,12,18].

2. Epidemiology

According to the World Health Organization (WHO), at least 2.2 billion people around
the world suffer from some type of visual impairment. In almost half of the cases, this
deficiency could have been avoided or has not yet been treated. When considering these
data, it is inferred that today millions of people live with visual impairment or blindness
that could have been avoided but unfortunately were not.

Although the exact number is unknown, it is estimated that 11.9 million people
worldwide have moderate or severe visual impairment or blindness due to eye diseases
such as glaucoma, trachoma (an inflammatory condition that affects the conjunctiva and
cornea), and diabetic retinopathy, a chronic complication of diabetes mellitus [21–23].

Visual impairment and blindness can have a major impact on the daily lives of people
affected by such disabilities, since vision is the dominant sense for humans at all stages of
life. However, research estimates that by 2030, around 95.4 million people worldwide will
have glaucoma.

Visual impairment, in addition to being detrimental to patient quality of life, also
presents a huge global financial burden, as demonstrated by previous research that esti-
mated the costs of lost productivity. These costs can be divided into direct costs and indirect
costs. Direct costs include medications, surgeries, medical consultations, hospitalizations,
and complementary examinations. Indirect medical costs include mainly the economic
impacts caused by visual impairment on work productivity.

Although glaucoma generally progresses slowly and is underdiagnosed worldwide,
it is the most common cause of irreversible blindness globally, yet it can be prevented.
The disease is considered preventable because, if detected early, there are ways to control
it, but global statistics show that due to underdiagnosis, the result is a large number of
blind people. This problem can be even more serious in low-income or underdeveloped
countries, such as Brazil, considered by the World Inequality Lab report in 2018 [24] as one
of the countries with the highest social and income inequality in the world, marked by
extreme levels for many consecutive years.

Although statistical numbers of underdiagnosis in the general population combined
with the need for early diagnosis to prevent blindness may suggest that glaucoma is a good
candidate for population screening, studies have shown that, at least in countries such
as the United Kingdom and Finland, the detection of population-based glaucoma using
traditional diagnostic methods is not feasible due to the high cost of implementation and
maintenance and the relatively low prevalence of the disease in the general population,
which is approximately 3.5% [25,26]. Similarly, the US Preventive Services Task Force [27],
with the support of the American Academy of Family Physicians [28], does not recommend
screening for glaucoma in the primary care setting, citing insufficient evidence to assess its
implications, benefits, or harms.

3. Scientific and Technological Advances in Artificial Intelligence

In recent years, scientific and technological advances have opened up a wide range of
clinical and research opportunities in the field of ophthalmological care, which can help
combat glaucoma. In this way, artificial intelligence technologies have proven effective
in areas of medicine such as radiology, pathology, dermatology, etc. All of these studies
are in related areas that share parallels with ophthalmology because of their deep roots in
diagnostic imaging.

The term artificial intelligence is a technology that covers several areas of knowledge
and generally refers to the development of computational systems capable of performing
tasks that mimic human intelligence. More recently, through machine learning and algo-
rithms known as artificial neural networks (ANN) and deep neural networks (DNN) many
advances have been possible [29,30].
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The concept of machine learning encompasses a variety of methodologies, such as
random forests [31], K-nearest neighbors (KNN) [32], support vector machines (SVM) [33],
naive bayes [34], and artificial neural networks [29]. All of these technologies are aimed
at pattern recognition, statistical regression, and data classification processes. Among
machine learning algorithms, deep learning technology stands out, which has been at the
forefront of the development and advances in computing and big data in recent years,
mainly with the introduction and development of convolutional neural network (CNN)
networks, proposed by researcher Yann LeCun [35] and especially used in the areas of
pattern recognition and digital image classification.

The networks presented are algorithms that require a lot of data for training, but often
there are not enough data, especially when considering clinical information. Therefore, a
widely used technique that allows neural networks to be applied to small data sets is the
process of transfer learning, considered the method of transferring knowledge acquired
during training in a certain domain (a database) to be applied in another domain, that is,
another similar problem. In view of this, algorithms that offer this technology are called
pre-trained. One of the conveniences of using pre-trained networks is that they already
have defined weights; that is, the weights are initialized with values obtained from already
completed training.

Still in transfer learning, the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) is an annual competition run by the ImageNet team since 2010, in which research
teams evaluate the performance of computer vision and machine learning algorithms
on various transfer learning tasks. visual recognition, such as object classification and
localization [36]. ImageNet is a project aiming to provide large libraries of images for use
in pre-training algorithms to be used in various other tasks and has been fundamental for
advancing research in computer vision and deep learning. This database contains more
than 14 million images, divided into more than 20,000 categories.

Due to data deficiency and other purposes, generative adversarial networks (GANs)
also emerged, a machine learning architecture that consists of two networks that ’fight’
against each other (damage to the environment). The potential of GANs is enormous
because they can learn to imitate any data distribution in the following way: First, a
neural network called a generator generates new data instances, while another neural
network called a discriminator evaluates their authenticity. In this way, the generator
produces false images in the hope that the false images will even be considered real by
the discriminator. With this exchange of information, the generator learns to generate
plausible data, while the discriminator learns to distinguish false data from the generator.
The discriminator penalizes the generator for producing concrete results, and with this, the
generator improves more and more.

Training of GANs networks is carried out using real data instances as positive and
fake data instances created by the generator as negative. After training, the classifier
classifies the real and fake generator data and propagates the discriminator loss through
the discriminator network to update the weights [37].

All these artificial intelligence technologies, regardless of the difficulty in finding
large sets of public data or the algorithmic model used, show the great commitment of
researchers to spread scientific growth seeking to find valid and effective solutions in the
diagnosis of glaucoma. In this way, with respect to the application of artificial intelligence
to ophthalmology, in addition to studies aimed at the automatic diagnosis of glaucoma,
this technology also focuses on studies on the diagnosis of diseases such as cataracts,
age-related macular degeneration, diabetic retinopathy, and others, showing that there is a
set of ophthalmological diseases that can receive greater attention considering the use of
deep learning.

Regarding the ophthalmological scenario of glaucoma, the use of artificial intelligence
appears as an auxiliary tool in the diagnosis of the disease by detecting changes present in
the OCT results, the results of the visual field exam, and mainly in the images of the fundus.
This is because, despite the potential to apply automation to different types of ophthalmic
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images, fundus images (i.e., images obtained with conventional ophthalmic equipment)
have gained prominence in many related works due to the availability, quality, and cost
effectiveness of acquisition.

4. Related Works

To prepare this review, the manuscripts were selected based on the titles and sum-
maries of the artificial intelligence methods used to classify glaucoma from digital fundus
images, therefore presenting some of the relevant scientific works published in recent
years. The search for articles was applied to the main data platforms (Scopus, Web of
Science, Google Scholar, Scielo and Medline). Due to the scope of this study, the search was
limited to algorithms developed to analyze digital fundus images, mainly with the aid of
CNN algorithms. Before presenting methods using deep learning, we describe the main
public databases containing fundus images used by many of the related works described
as instances for training and testing the classifiers, which are mostly supervised.

4.1. Main Public Databases

Table 1 describes some publicly found databases for work focused on classifying
glaucoma using deep learning and digital images of the fundus obtained by conventional
retinography with cameras. The viewing angle of each database is also described, as it
determines the amount of fundus area that will appear close to the optical disc. Furthermore,
to fill in the data in the table, only images labeled glaucoma and nonglaucoma from each
reported database were considered.

Table 1. Public and labeled databases for glaucoma.

Database Glaucoma Normal Total Viewing Angle

Acrima [38] 396 396 700 30 a 50◦

Drions [39] 55 55 110 30 a 50◦

Drishti-Gs1 [40] 50 51 101 30◦

Drive [41] 34 6 40 45◦

Glaucoma DB [42] 85 35 120 30 a 50◦

Hrf [43] 15 15 30 45◦

sjchoi86-Frf [44] 101 300 401 30 a 50◦

Messidor [45] 28 72 100 45◦

Origa [46] 168 482 650 30 a 50◦

Papila [47] 155 333 488 30 a 50◦

Refuge [48] 120 1080 1200 30 a 50◦

G1020 [49] 296 724 1020 45◦

BrG [50] 1000 1000 2000 25◦

Rim-one DL [51] 172 313 485 30 a 50◦

4.2. Approaches Using Deep Learning

Based on the analysis of the literature that constitutes the related studies, it was
observed that artificial intelligence models used in studies of this disease based on digital
fundus images are generally applied in two specific ways: calculating CDR or identifying
glaucoma patterns in the optic disc region.

CDR calculation: One of the ways that glaucoma classification models have used
has been through the calculation of the CDR measurement, generally obtained from the
segmentation of the disc and optical cup structures; see Figure 4. The algorithms then,
using the calculated CDR, estimate the presence or absence of glaucoma.

Although many algorithms, such as [52,53], have shown a high accuracy rate in
segmenting these structures, this method can only be considered an indication of glaucoma
and the need for a more detailed evaluation, since the diagnosis of this neuropathy is made
by examination of the entire structure of the optic disc and not just excavation. Furthermore,
although increased cupping suggests glaucoma, not all optic nerve cupping is related to
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this disease, as there are other conditions that can cause increased cupping of the optic
nerve, such as neuritis, tumors, multiple sclerosis, etc.

Figure 4. Example of image with segmentation of the disc and optical cup.

Recognition of glaucomatous patterns: Although the CDR calculation algorithms only
evaluate the excavation of the optic disc, this pattern recognition methodology seeks to
evaluate the entire region of the optic disc in search of characteristics that could lead to
the recognition of glaucoma. According to the context of deep learning and the analysis of
related work described in this section, this type of application can be operated by at least
four different methodologies, such as the following:

1. Feature vector extraction and classification: In this type of application, various image
processing and feature extraction techniques can be used on digital images; however,
a classifier will be the part of the system responsible for the categorization task, or
that is, it will apply the decision process on which category a given image belongs to.
Among the algorithms that work in this way are SVM, KNN, Naive Bayes, etc. Works
such as these have been published by several authors and have appeared in [54,55].

2. Use of CNN networks: This approach eliminates the need to extract feature vectors,
since CNN networks can extract such features through feature maps with their con-
volutional layers. Considered the gold standard of digital image processing, this
methodology was applied in works such as those consulted in [38,56,57], using public
and private databases.

3. Use of GANs networks: This involves discovering regularities and patterns in the
input data and learning them automatically. Examples of these algorithms in glaucoma
classification can be found in [58–60].

4. Use of multitechnologies: This type of modeling seeks to achieve the desired objec-
tive using a combination of techniques, such as KNN, SVM, CNN, etc. Numerous
researchers, such as [61–63], have opted for this type of application, which is shown
to be a valid way to recognize glaucomatous patterns.

Table 2 presents some of the various relevant works published in recent years as
presented in reviews as available in Zedan et al. [64].

Table 2. Examples of work related to glaucoma classification using artificial intelligence algorithms.

Paper Algorithm Dataset Accuracy/Precision

Dias et al. [38] multilevel CNN Private 99.4%
Bragança et al. [50] Ensemble CNN BrG 90.0%

Singh et al. [54] SVM, KNN e Naive Bayes STARE e
MESSIDOR

95.0%

Shiny et al. [55] SVM DRISHTI 95.3%
Shinde et al. [61] Le-Net e modelo U-Net CNN RIM-ONE, DRISHTI-GS,

DRIONS-DB, JSIEC e DRIVE
100%

Sreng et al. [62] VGG16-19,Xception ,
ResNet50 e InceptionV3

ACRIMA, DRISHTI GS1,
HRF, RIM-ONE,

96.5%

Santos et al. [63] DeepLabv3+ and MobileNet RIM-ONE, ORIGA,ACRIMA,
DRISHTI-GS1 and REFUGE

95.59

Zulfira et al. [65] SVM, KNN e Naive Bayes DRIONS-DB 98.6%
Yunitasari et al. [66] Dynamic Ensemble RIM-ONE 91.0%
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Table 2. Cont.

Paper Algorithm Dataset Accuracy/Precision

Wang et al. [67] SVM DRISHTI 95.0%
Gheisari et al. [68] VGG e AlexNet DRIONS-DB, HRF,

RIM-ONE e DRISHTI-GS1
94.3%

Li et al. [69] VGG, ResNet e RNN Private 95.0%
Liu et al. [70] ResNet Private 95.0%

Nawaz et al. [71] ResNet Private 96.2%
Kim et al. [72] EficienteNet-B0 ORIGA 97.2%

Hemelings et al. [73] VGG,Inception e ResNet Private 96.2%
Alghamdi et al. [74] ResNet Private 98.0%

Aamir et al. [75] VGG-16 RIM-ONE e RIGA 93.0%

The benefits sought for these possible applications are varied, from the potential
reduction in costs associated with the traditional diagnosis of glaucoma to assistance
in population screening applications aimed at early diagnosis and reducing the rate of
underdiagnosis of the disease.

5. Discussion and Conclusions

Significant progress has been made in the development of glaucoma classification
algorithms, which have shown remarkable success in differentiating between digital fundo-
scopic images of glaucoma and nonglaucoma. According to the work of Phene et al. [76] in
experiments using artificial intelligence in glaucoma classification, these algorithms have
even shown higher precision compared to classifications made by experienced ophthalmol-
ogists. However, despite the consensus among various studies that artificial intelligence
algorithms can be utilized as a supportive tool for the diagnosis of glaucoma, currently
there is no software available for real clinical applications. This suggests that further
theoretical and practical efforts are required to enhance the usability and effectiveness of
such algorithms.

The machine learning methodology to achieve more representative tests faces chal-
lenges due to the limited number of images in the databases. In addition, the labeling
process of these images can negatively affect the classification algorithms. In relation
to database labeling, the studies discussed in this review generally required assessors
(specifically ophthalmologists) to annotate labels by only examining retinal images to
determine the presence or absence of glaucoma. However, a study involving six glaucoma
specialists assigned to diagnose the disease solely on photographs of the ocular fundus
revealed that their agreement was only 49% [77]. This finding highlights the fact that
labeling the database solely based on fundus image observation can be detrimental to
the classifier’s final results, as it is highly prone to errors. Consequently, training algo-
rithms with inaccurately labeled data can compromise the overall quality of classifier
results. To minimize errors in database insertion through image labeling, it is important
to incorporate certain practices. One of such practice involves ensuring the presence of
experienced ophthalmologists and adhering to the standard for the diagnosis of glau-
coma, which entails a combination of functional and structural exams. Achieving this
level of quality is often considered challenging. Consequently, some authors, such as
Ting et al. [57] and Phene et al. [76] who work with large private datasets, have opted not
to label their databases against a diagnostic gold standard. Instead, they have relied on a la-
beling consensus evaluated by experienced ophthalmologists. However, it should be noted
that their databases were still labeled solely based on visual information obtained from
fundus images.

The availability of images labeled with glaucoma in publicly accessible databases is
limited in terms of quantity and diversity. These databases often consist of small sample
sizes that are racially or clinically homogeneous, which may not accurately represent the
entire population under study. Consequently, the applicability of algorithms to a broader
context may be hindered. To address this limitation, researchers have explored the use
of Generative Adversarial Networks (GANs) to generate synthetic images that resemble
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the original images. However, even if these networks produce satisfactory results, the
generated images may not effectively address the issue of data homogeneity with respect to
race or variations in the manifestation of glaucomatous damage. In light of these challenges,
many authors opt to combine or merge multiple databases to improve the classification
of glaucoma.

The exclusion of people with multiple eye injuries is an important consideration in the
development of databases and glaucoma classification studies. Many authors have reported
that they specifically removed individuals with ocular diseases other than glaucoma from
their training and testing datasets. They also excluded images that were compromised
by systemic diseases that could directly impact the optic nerve or visual field. However,
this type of exclusion can be seen as a negative aspect, as it may manipulate the real-
world scenario in favor of algorithmic precision. Furthermore, the racial homogeneity of
the datasets contrasts with the diverse population, making it challenging to generalize
the algorithms to populations beyond those observed in the dataset. However, when
considering the quality of the databases and their construction, several key characteristics
can be observed.

• The databases were obtained using high-resolution retinal cameras, except for the BrG
set, which was obtained using a smartphone connected to a portable ophthalmoscope.

• With the exception of the refuge and Rim-one-dl datasets, which were formed using
two digital fundus cameras, all other datasets were obtained using only one digital
retinal camera.

• Most databases were labeled based on ophthalmological opinions solely by examining
fundus images. Only a few databases were labeled with ophthalmic care and the gold
standard for diagnosing glaucoma.

• All publicly available databases are considered too small to train classification algo-
rithms from scratch, which means without using transfer learning.

• Publicly available databases generally have a homogeneous ethnic composition in the
collected population.

In addition to the limitations of the database, deep learning algorithms face challenges
in accurately classifying glaucoma due to the absence of consistent and objective diagnostic
criteria. Consequently, researchers exploring the application of artificial intelligence in
this field have had to establish their own definitions for categorizing instances as “yes” or
“no” for glaucoma. As a result, various approaches have been pursued, such as texture
analysis, analysis of the CDR ratio, ISNT rules, and others. This divergence in methods
is mainly attributed to the absence of specific and quantifiable biomarkers to define the
disease. Consequently, many researchers have attempted to predict similar diagnostic
results for glaucoma, but have employed different methodologies, making it challenging to
compare the performance of different studies. These biomarkers are essential not only to
provide a definitive diagnosis, but also to justify the reasoning behind the diagnosis.

In light of this medical necessity, numerous authors, such as Ting et al. [57], have
demonstrated the importance of identifying crucial image regions in order to validate the
results obtained by deep learning algorithms when used for the classification of glaucoma.
This approach serves as a justification for the results achieved by the methodology, at least
until the healthcare community fully accepts these algorithms.

In the given context, it is important to note that the main objective of the previous
studies was not to develop a market-ready algorithm, but rather to showcase the essential
components required to achieve satisfactory results in glaucoma classification using fundus
images. These findings may be valuable for potential future applications. As a result, for
further advancement of such research, it is recommended to label databases based on the
diagnostic gold standard in order to enhance the utilization of deep learning algorithms. In
addition, there should be a clear distinction between training and test sets, with a diverse
range of images captured by different devices, involving patients from various ethnic
backgrounds. Furthermore, the databases should include images captured under different
lighting conditions, contrast levels, noise levels, etc. [51,78].
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After analyzing the databases identified, it can be observed that they only partially
fulfill the requirements outlined in this study. However, they still play an important role
in the training of various algorithms and driving technological advancement. In terms of
the algorithms themselves, although some scientific research has demonstrated their high
accuracy in distinguishing between glaucomatous and nonglaucomatous images, further
clinical trials and in-depth studies are needed to identify and address potential factors that
may hinder the integration of such algorithms into practical clinical applications. With
continued efforts in this area, it is anticipated that future advances in artificial intelligence
will greatly contribute to the diagnosis of eye diseases, including glaucoma.
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