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Abstract: Background: Hepatocellular carcinoma (HCC) accounts for 75% of primary liver tumors.
Controlling risk factors associated with its development and implementing screenings in risk pop-
ulations does not seem sufficient to improve the prognosis of these patients at diagnosis. The
development of a predictive prognostic model for mortality at the diagnosis of HCC is proposed.
Methods: In this retrospective multicenter study, the analysis of data from 191 HCC patients was
conducted using machine learning (ML) techniques to analyze the prognostic factors of mortality that
are significant at the time of diagnosis. Clinical and analytical data of interest in patients with HCC
were gathered. Results: Meeting Milan criteria, Barcelona Clinic Liver Cancer (BCLC) classification
and albumin levels were the variables with the greatest impact on the prognosis of HCC patients. The
ML algorithm that achieved the best results was random forest (RF). Conclusions: The development
of a predictive prognostic model at the diagnosis is a valuable tool for patients with HCC and for
application in clinical practice. RF is useful and reliable in the analysis of prognostic factors in the
diagnosis of HCC. The search for new prognostic factors is still necessary in patients with HCC.

Keywords: hepatocellular carcinoma; machine learning; prognosis; mortality; Milan criteria; BCLC;
albumin

1. Introduction

Primary liver tumors are the seventh most common cause of cancer worldwide and
the second leading cause of cancer-related deaths. Hepatocellular carcinoma (HCC) is
the most common primary liver neoplasm, accounting for 75% of cases of primary liver
malignancies [1]. HCC is an adenocarcinoma-type neoplasm that originates in hepatocytes
due to sustained cellular damage and stress. This damage induces chronic inflammatory
changes, necrosis, and fibrosis in hepatocytes, promoting the development of advanced
liver disease (ACLD) [2]. The development of advanced chronic liver disease (ACLD)
of any etiology is a key factor for HCC development. Up to 80% of HCC cases occur
in livers with ACLD. Viral infections with hepatitis C virus (HCV) and hepatitis B virus
(HBV), metabolic dysfunction-associated steatotic liver disease (MASLD), and alcohol
consumption are the major determinants in the development of ACLD and HCC [3,4]. The
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prognosis for patients diagnosed with HCC remains poor, with a global mortality rate of
8.3 per 100,000 individuals in 2020 [5]. These data underscore the need for further research
in this field.

HCC is diagnosed through imaging tests such as computed tomography (CT), hepatic
magnetic resonance imaging (MRI), or contrast-enhanced ultrasound (CEUS) in patients
with ACLD or chronic infection with HBV. Currently, confirmatory liver biopsy is not
always necessary [6,7], reserved for cases of uncertain diagnosis and for conducting a
more detailed histological analysis that allows for molecular and immunological studies to
guide treatment, especially in the context of immunotherapy [8–10]. Factors such as tumor
burden, liver dysfunction, and the patient’s functional status play a crucial role in prognosis
and therapeutic approach. Staging systems such as the Barcelona Clinic Liver Cancer
(BCLC) evaluate these aspects, along with objective scores like the Model for End-stage
Liver Disease (MELD), the albumin–bilirubin (ALBI) score, and biomarkers such as alpha-
fetoprotein (AFP) [11,12]. Early detection of HCC is associated with increased survival [13],
and screening programs based on ultrasound monitoring and AFP measurements every
6 months are implemented in patients with ACLD or chronic HBV infection [3,14–16].
However, the precise identification of risk populations remains a challenge, and scores like
PAGE-B and GALAD assist in risk stratification [17,18]. Despite advances, accurate risk
prediction, early detection, prognosis at diagnosis, and personalized treatments are areas
that require further research and development [19]. Improving studies on prognostic factors
for mortality in HCC is essential to determine their impact on clinical decision making.

Considering the limited published scientific literature, the following study assessing
clinical and analytical data for HCC diagnosis was proposed. The main goal is to develop
a predictive model for prognostic factors at the diagnosis of this type of tumor. For this
purpose, ML algorithms are used. ML employs statistical and mathematical algorithms
to extract patterns from variable data, assisting in making complex decisions in medical
applications [20–22]. These models are designed to make accurate predictions using data
from a multitude of variables. In this study, the random forest (RF) algorithm was used.
The selection of this ML method is based on its high accuracy, versatility, applicability
in large datasets, ability to estimate variable importance, and the lesser need for tuning
compared to other ML methods [23,24]. In this way, a predictive model that enables the
evaluation of different variables with the most influence on the mortality and prognosis of
our HCC patients has been developed.

2. Materials and Methods
2.1. Study Design and Population

A multicenter retrospective study was conducted involving patients diagnosed with
HCC in two different hospitals in Castilla-La Mancha, Spain. The participating hospitals
were the University Hospital of Guadalajara and the Virgen de la Luz Hospital in Cuenca.
Data collection spanned from January 2008 to December 2022. The study approval was
granted by the research ethics committee of the University Hospital of Guadalajara.

Inclusion criteria were as follows: Diagnosis of HCC through validated imaging
techniques or histological examination in cases of uncertain diagnosis in patients aged
18 years and older. Diagnosis through imaging techniques was performed using triphasic
CT or MRI, where the characteristic uptake of HCC was observed. Patients whose HCC
diagnosis was made at another center where clinical and analytical data for the diagnosis
were not collected were excluded. Additionally, patients diagnosed at these centers without
available study target variables were also excluded.

2.2. Data Collection

Patient general information was collected, including gender; active smoking habits
at the time of diagnosis; age at HCC diagnosis; censoring date, or date of death if it oc-
curred; and the etiology attributed to HCC (alcohol, HCV, HBV, MASLD, hemochromatosis,
autoimmune hepatitis, etc.).
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Important clinical characteristics in patients with HCC were noted: the presence of
cirrhosis, ACLD, encephalopathy, or clinically significant portal hypertension (CSPH). CSPH
was defined as the presence of a hepatic venous portal pressure gradient (HVPG) > 10 mmHg,
ascites, or the presence of varices during gastroscopy [25]. Other critical data in tumor
assessment, such as the presence of lymphadenopathy, metastasis, portal thrombosis, number
and size of hepatic lesions, were also recorded.

Important hepatic analytical data, including albumin (g/dL), international normalized
ratio (INR), alanine aminotransferase (ALT) (U/L), aspartate aminotransferase (AST) (U/L),
AFP (ng/mL), total bilirubin (mg/dL); other relevant general biochemical data like creati-
nine (mg/dL), sodium (Na) (mmol/L), C-reactive protein (CRP) (mg/L); and hematologic
information involving lymphocyte count (cell/mmc), neutrophil count (cell/mmc), and
platelet count (cell/mmc) were also collected.

Using the collected information, staging indices, liver function, and patient baseline
status were calculated, including BCLC, Milan Criteria, Child–Pugh, MELD, ECOG (Eastern
Cooperative Oncology Group), and TNM. These variables have been validated as useful tools
in the management and assessment of patients with liver disease and cancer [11,26–28].

2.3. Model Development

To conduct the data analysis, the use of ML techniques was proposed. Specifically, the
RF algorithm was chosen to develop the predictive model.

The RF algorithm was compared with other ML methods to verify its accuracy. The
algorithms used for comparison were support vector machine (SVM), Bayesian linear
discriminant analysis (BLDA), decision tree (DT), Gaussian naïve Bayes (GNB), and K-
nearest neighbors (KNN).

SVM is a supervised learning algorithm designed for classification. They seek an
optimal hyperplane in a higher-dimensional space, maximizing the margin between classes.
SVM handles non-linear data using the kernel trick, transforming it into a more manageable
space [24,29].

BLDA extends linear discriminant analysis (LDA) with additional probabilistic as-
sumptions. It assumes multivariate normal distribution within each class and employs
Bayesian approaches. BLDA is particularly useful when classes exhibit different distribu-
tions or varying variances [24,30].

DT is a predictive model structured as trees featuring decision rules and outcomes.
Nodes include the root, internal nodes, and leaf nodes. Depth impacts model generalization,
and pruning is applied to prevent overfitting. Construction involves recursively selecting
features to split data, maximizing homogeneity [24,31].

GNB is a variant assuming Gaussian distribution for input features. Widely used in
classification, it requires a training dataset with class-labeled examples. Parameters for
Gaussian distribution are calculated for each class, and Bayes’ rule is used for classification,
providing a probabilistic estimation [24,32].

KNN is a supervised learning algorithm for classification based on the majority of
labels from k-nearest neighbors. It relies on a training dataset with labeled examples,
utilizing a chosen distance metric and a specified k value. Classification involves voting
among the k neighbors to determine the label for a new point [33].

Among the various ML techniques, the decision to use this algorithm was made due to
its interesting features in this study. On one hand, the RF algorithm is an ensemble learning
model. It combines multiple models to obtain a more robust and accurate model compared
to a single model. The foundation of RF lies in decision trees. Several decision trees are
built during the training process. “Randomness” is key in Random Forest. Variations are
introduced during the construction of each tree, either through the random selection of
features or through the random selection of samples from the dataset. A process called
“bagging” (Bootstrap Aggregating) is used to build the trees in the RF model. This involves
training each tree with a random sample from the dataset, allowing the trees to be different
from each other. RF is known for being robust against overfitting and for handling large
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datasets with many features [23,24,34]. This technique is widely used in practice due to its
good performance and versatility [35].

Primarily, RF employs an ensemble of decision trees. Each tree is trained indepen-
dently, and their results are then combined. For RF, the trees are constructed in parallel and
independently of each other [24,36].

In Figure 1, the technique of cross-validation is described for obtaining our predictive
model, allowing the development of machine learning. The study data are divided into
two groups. The evaluation cohort of patients underwent 10-fold cross-validation to assess
the algorithm’s performance. In each validation fold, 70% of the patients were utilized for
training, while the remaining 30% were allocated for testing and validation. The testing
process was iterated a hundred times, each time with non-overlapping patient subsets. To
prevent the algorithm from being tested on data from the same patients used for training,
patient data were not shared between the training and testing subsets. Figure 1 illustrates
the step-by-step process undertaken for the entire study. As depicted, the initial phase
involved the selection of subjects to be studied. Following the creation of the database, the
machine learning methods were then trained and validated.
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Figure 1. Description of the machine learning methodology development process.

ML techniques typically incorporate one or more hyperparameters that facilitate the
adjustment of the algorithm throughout the training process. Varied values for these
hyperparameters, such as the number of splits, learners, neighbors, distance metric, distant
weight, kernel, box constraint level, and the multiclass method, among others, contribute
to distinct prediction performances. The objective is to achieve optimal performance
by optimizing these hyperparameters for each machine learning technique utilized in
this study. Bayesian optimization was employed for hyperparameter tuning, aiming to
identify configurations that maximize algorithm performance based on previous attempts.
This approach assumes a relationship between different hyperparameters and algorithm
performance. Performance measures, specifically the area under the curve (AUC) and
balanced accuracy were employed for maximization.

The most prominent hyperparameters of the implemented systems are as follows. For
the SVM method, a Gaussian kernel function is chosen with the following parameters:
C = 1, sigma = 0.5, numerical tolerance = 0.001, and iteration limit = 100. For the DT system,
the base parameter estimator is adjusted: tree, maximum number of splits = 20, learning
rate = 0.1, and number of learners = 40. GNB algorithm: usekernel: False, fL = 0, and
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Adjust = 0. As for the BLDA algorithm, the Bayesian kernel was selected. Finally, for the
KNN method, the distance metric was Euclidean, and it used 20 neighbors.

2.4. Performance Evaluation

In this work, the different methods were compared with the following metrics: speci-
ficity, precision (also known as positive predictive value), recall (also known as sensitivity),
balanced accuracy, degenerate Youden index (DYI), F1 score Matthew’s correlation coeffi-
cient (MCC), Cohen’s Kappa index (CKI), receiver operating characteristic (ROC), and area
under the curve (AUC) [24].

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

Specificity =
TN

FP + TN
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

The F1 score is described as:

F1 score = 2
Precision·Recall

Precision + Recall
(5)

MCC and DYI were also used to test the performance of the ML methods, defined as:

MCC =
TP·TN − FP·FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(6)

DYI =
√
(Recall ∗ Specificity) (7)

where TP shows the number of true positives, FP represents the number of false positives,
TN is the number of true negatives, and FN corresponds to the number of false negatives.
CKI was used to estimate the overall performance of the system [24].

3. Results

In accordance with the mentioned inclusion and exclusion criteria, analyzed data from
191 patients were included.

Baseline data are presented in Tables 1 and 2, where 86.91% of the patients were males,
and 87.96% of the total had ACLD. The mean age at HCC diagnosis was 67.13 years old.
Regarding the etiology attributed to HCC, 32.46% were associated with alcohol, 29.32% with
HCV, and 13.61% with both. At the time of diagnosis, according to the BCLC classification,
37.17% were in stage A, 30.37% in stage C, 15.18% in stage B, 12.04% in stage D, and 5.24%
in stage 0. At diagnosis, 37.17% of the patients met the Milan Criteria. It is noteworthy
that only 47.12% of the patients were diagnosed through screening. The median, Q1 (first
quartile), Q3 (third quartile), and interquartile range of the age at diagnosis and the most
relevant analytical data are documented in Table 2.

Below, the results obtained with the methods in the training phase are presented. As
shown in Tables 3 and 4, the ML models achieve good accuracy in the training phase.
The crucial aspect of the training phase is to ensure that the system has the ability to
generalize and does not exhibit overfitting. To achieve this, we use the cross-validation
technique depicted in Figure 1. This helps prevent the model from memorizing the data
and being unable to make accurate predictions on new data. Generalization capacity in
machine learning refers to the model’s ability to make accurate predictions on new data,
i.e., situations not included in the training set. Successful generalization is essential for a



Diagnostics 2024, 14, 406 6 of 16

model to be effective in real-world scenarios and to avoid overfitting to specific patterns in
the training set [24].

Table 1. Baseline data collected from the study patients. ACLD: advanced chronic liver disease, HCV:
Hepatitis C Virus, HBV: Hepatitis B Virus, BCLC: Barcelona Clinic Liver Cancer.

Sex
Male 86.91%
Female 13.09%

Milan criteria
No 62.83%
Yes 37.17%

Diagnostic by Screening
No 52.88%
Yes 47.12%

ACLD
Yes 87.96%
No 12.04%

Etiology
Alcohol 32.46%
HCV 29.32%
HCV + Alcohol 13.61%
HBV 2.09%
Others 22.52%

BCLC
Stage A 37.17%
Stage C 30.37%
Stage B 15.18%
Stage D 12.04%
Stage 0 5.24%

Table 2. Age at diagnosis and the most relevant analytical data collected from the study patients.
Q1: first quartile, Q3: third quartile, IQR: interquartile range, AFP: alpha-fetoprotein, AST: aspartate
aminotransferase, ALT: alanine aminotransferase.

Age at
Diagnosis

Bilirubin
(mg/dL)

Albumin
(g/dL)

Lymphocyte
Count

(Cell/mmc)

Platelet
Count

(Cell/mmc)

AFP
(ng/mL) AST (U/L) ALT (U/L)

Median 68 1.005 3.7 1300 127,000 7.3 47 33
Q1 58 0.7 3.2 900 89,000 3.52 27 19
Q3 76.5 1.6 4.2 1900 184,500 83.35 72 60
IQR 18.5 0.9 1 1000 95,500 79.83 45 41

Table 3. The table shows the results of the mean values of accuracy, recall, specificity, precision, and
F1 score obtained from the different ML models and RF method in the training phase. SVM: support
vector machine, BLDA: Bayesian linear discriminant analysis, DT: decision tree, GNB: Gaussian naïve
Bayes, KNN: K-nearest neighbors, RF: random forest.

Methods Accuracy (%) Recall Specificity Precision F1 Score

SVM 88.35 88.73 88.24 87.72 88.08
BLDA 83.75 83.78 83.65 83.15 83.50
DT 86.56 86.65 86.82 85.83 86.39
GNB 82.15 82.13 82.06 81.57 81.91
KNN 91.44 91.36 91.41 91.39 91.37
RF 97.86 97.94 97.71 96.94 97.42
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Table 4. The table presents the results of the mean values and standard deviation of MCC, AUC, DYI
and Kappa score achieved from the different ML models and the RF method in the training phase.
SVM: support vector machine, BLDA: Bayesian linear discriminant analysis, DT: decision tree, GNB:
Gaussian naïve Bayes, KNN: K-nearest neighbors, RF: random forest.

Methods MCC AUC DYI Kappa

SVM 78.34 0.88 88.34 78.65
BLDA 74.31 0.84 83.72 74.56
DT 76.77 0.86 86.53 77.03
GNB 72.83 0.82 82.21 73.09
KNN 81.32 0.91 91.64 81.54
RF 86.62 0.97 97.63 86.91

Results of the data analysis conducted by RF and different ML algorithms mentioned
before —SVM, BLDA, DT, GNB, and KNN—are presented in Table 5 and Figure 2. As
observed, the GNB and BLDA algorithms exhibit the lowest degree of accuracy, just
surpassing 80%. KNN demonstrates the highest accuracy, around 90%, but this is still
inferior to the one achieved by RF, which reaches 95%. These findings are consistent when
analyzing recall, precision, and the F1 score were analyzed.

Table 5. Results of the mean values and standard deviation of accuracy, recall, specificity, precision,
and F1 score obtained from the different ML models and RF method in the study. SVM: support vector
machine, BLDA: Bayesian linear discriminant analysis, DT: decision tree, GNB: Gaussian naïve Bayes,
KNN: K-nearest neighbors, RF: random forest.

Methods Accuracy Recall Specificity Precision F1 Score

SVM 86.82 ± 0.67 86.92 ± 0.62 86.72 ± 0.63 86.20 ± 0.64 86.56 ± 0.65
BLDA 82.31 ± 0.82 82.40 ± 0.83 82.21 ± 0.82 81.72 ± 0.83 82.06 ± 0.84
DT 85.05 ± 0.71 85.15 ± 0.68 84.95 ± 0.69 84.45 ± 0.71 84.80 ± 0.69
GNB 80.73 ± 0.92 80.83 ± 0.97 80.64 ± 0.96 80.16 ± 0.97 80.49 ± 0.98
KNN 90.06 ± 0.58 90.17 ± 0.56 89.95 ± 0.58 89.42 ± 0.59 89.79 ± 0.58
RF 95.94 ± 0.35 96.05 ± 0.32 95.83 ± 0.36 95.26 ± 0.37 95.65 ± 0.38
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Additionally, the results for the MMC, AUC, DYI, and Kappa index are given in Table 6
and Figure 3, for all the proposed methods. GNB shows the lowest results, with an MCC
of 71.64, DYI of 80.73, and Kappa of 71.88. Our proposed RF system exhibits an MCC
of 85.13, DYI of 95.94, and Kappa of 85.41, clearly outperforming the other algorithms,
such as KNN, SVM, DT, and BLDA, which have lower values. These results, along with
those presented in Table 3, indicate that the RF algorithm, among those proposed in ML,
was the most suitable algorithm for data analysis and the development of the proposed
predictive model.

Table 6. Results of the mean values and standard deviation of MMC, AUC, DYI, and Kappa obtained
from the different ML models and RF method in the study. SVM: support vector machine, BLDA:
Bayesian linear discriminant analysis, DT: decision tree, GNB: Gaussian naïve Bayes, KNN: K-nearest
neighbors, RF: random forest, MCC: Matthews’ correlation coefficient, AUC: area under the curve,
DYI: degenerated Youden index.

Methods MCC AUC DYI Kappa

SVM 77.04 ± 0.58 0.87 ± 0.02 86.82 ± 0.65 77.29 ± 0.57
BLDA 73.03 ± 0.61 0.82 ± 0.02 82.31 ± 0.81 73.27 ± 0.63
DT 75.47 ± 0.51 0.85 ± 0.02 85.05 ± 0.68 75.72 ± 0.52
GNB 71.64 ± 0.75 0.81 ± 0.02 80.73 ± 0.93 71.88 ± 0.76
KNN 79.91 ± 0.48 0.90 ± 0.02 90.06 ± 0.57 80.18 ± 0.49
RF 85.13 ± 0.27 0.96 ± 0.02 95.94 ± 0.36 85.41 ± 0.26
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(SVM, BLDA, DT, GNB, KNN, and RF). SVM: support vector machine. BLDA: Bayesian linear
discriminant analysis. DT: decision tree. GNB: Gaussian naïve Bayes. KNN: K-nearest neighbors. RF:
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However, in Figure 4, the receiver operating characteristic (ROC) curve of the different
ML algorithms can be observed, comparing them among themselves and with the proposed
method, RF. As can be observed, in all of them, the AUC is greater than 0.8, but RF presents
the highest AUC value compared to the other evaluated methods, standing at 0.96, as
shown in Table 6. These results suggest that the RF method has the highest accuracy for
predicting prognostic factors at the diagnosis of HCC.
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To perform a comprehensive evaluation of all the proposed ML methods, a radar plot
was chosen, as depicted in Figure 4. It captures the different metrics and their values for
each algorithm. Thus, the larger the area of the circle forming the radar plot, the better
the chosen predictive model will be. It is evident that the RF method achieved the widest
area. The consistency of the image obtained in both phases—the training phase and the
validation phase—demonstrates that RF is accurate, does not overestimate, and therefore,
is generalizable. This translates to obtaining appropriate and reliable information with
new input data. These results indicate that the RF method is a valid, reproducible, and
applicable approach in the development of clinical practice (Figure 5).

In Figure 6, the variables with the most significant impact on the development of
the predictive model are observed. The fulfillment of Milan Criteria was the most crucial
variable, followed by one of the calculated scores, the BCLC classification. Additionally,
analytical values such as albumin levels were positioned as the third most important factor
in terms of significance. The receipt or non-receipt of a liver transplant, ECOG classification,
TNM, hepatic lesions size, Child–Pugh classification, and AST levels also play a substantial
role in our predictive model.

Conversely, variables with diminished influence include diabetes status and alcohol
consumption. Other analytical data that appear less relevant are platelet count and ALT
levels. The etiology attributed to HCC does not exhibit a significant impact in this model,
similar to the diagnostic method.

Other initially intriguing markers that did not appear to have a significant influence in
our model include CSPH, bilirubin levels, the presence of portal thrombosis, ascites, ACLD,
encephalopathy, or AFP levels.
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Figure 6. Representation of the importance of each variable in the machine learning predictive
model. BCLC: Barcelona Clinic Liver Cancer, TNM: tumor node metastases, ECOG: Eastern Coopera-
tive Oncology Group, AST: aspartate aminotransferase, MELD: model for end-stage liver disease,
AFP: alpha-fetoprotein, ACLD: advanced chronic liver disease, CSPH: clinically significant portal
hypertension, ALT: alanine aminotransferase.
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4. Discussion

As previously mentioned, liver tumors stand out as neoplasms with a dismal prog-
nosis, currently ranking as the second leading cause of cancer-related deaths [1]. Urgent
research in this field is essential to achieve more substantial goals and develop tools that
enhance the prognosis of our patients. A targeted approach to address this issue involves
intervening in the primary risk factors for the development of HCC and ACLD. Both HCV
and HBV emerge as the primary risk factors for ACLD globally. Vaccination campaigns
against HBV and effective treatments against HCV have contributed to a reduction in
infections caused by these viruses [3]. However, factors such as MASLD and alcohol con-
sumption continue to be determining factors in the development of ACLD and HCC, with
an increasing incidence in recent years, particularly in Western countries [3,37]. Indeed, it
seems that managing risk factors is advantageous but not entirely sufficient.

Another tool used to attempt to improve the prognosis of patients with HCC is the
implementation of screenings in the selected high-risk population [13,38]. The goal is to
achieve early diagnosis in patients predisposed to HCC for better management. It has been
demonstrated that ultrasound monitoring, along with AFP measurements, appears to be a
cost-effective tool in surveilling HCC development [39].

The management of patients with HCC should be coordinated. Multidisciplinary com-
mittees led by gastroenterologists, hepatobiliary surgeons, radiologists, oncologists, and
radiotherapists work collaboratively. In these committees, the best therapeutic decisions
are reached by consensus, aiming to enhance the prognosis of patients with HCC [40–42].

Despite applying these tools, the prognosis for these patients remains very limited,
necessitating ongoing research and the development of tools to achieve more ambitious
goals with these patients.

This study demonstrates that the variables with the most significant impact on the
prognosis of patients with HCC are the indices calculated based on clinical and analytical
data, such as the Milan criteria. The Milan criteria are used to assess HCC patients eligible for
liver transplantation. Patients with a single lesion between 1 and 5 cm or two or three lesions
between 1 and 3 cm are considered suitable for transplantation [43]. Consequently, meeting
transplant criteria will have a substantial impact on the prognosis of patients with HCC.

This makes sense, as the survival of patients who undergo transplantation is higher
than those who are not candidates. Therefore, there has been a proposal to expand the
Milan criteria for years. Criteria such as the University of California, San Francisco (UCSF)
criteria, up to seven criteria, extended Toronto criteria, and Kyoto criteria evaluate liver
transplantation in patients with a higher tumor burden than the limit established by the
Milan criteria. It has been demonstrated that the benefit of liver transplantation remains
superior in these patients compared to other therapeutic options [44,45]. Another tool used
to optimize initially non-transplantable patients is downstaging. It involves administering
neoadjuvant local therapy to these patients so that they meet the necessary criteria for liver
transplantation [46,47].

The BCLC, as a stratification tool based on tumor burden, the patient’s baseline state,
and liver function, also holds substantial significance as a determinant in the prognosis
diagnosis of patients in this study. This aligns with the importance demonstrated by
other variables that determine tumor burden, such as TNM, or variables that assess the
patient’s baseline state, like the ECOG scale [26,28]. This suggests that the combination
of both variables, as assessed by BCLC, along with the analytical analysis of other factors,
appears to be a suitable option in assessing the prognosis of patients with HCC. Clinical and
analytical scores that assess liver function in patients with ACLD, such as the Child–Pugh
score, also show significant relevance in the predictive model [27].

Albumin levels were the analytical value of utmost importance in the predictive model.
It can be affirmed that albumin levels are determinant as a prognostic factor in patients
with HCC. Low levels of serum albumin are associated with poor nutritional status and a
worse prognosis at the diagnosis of HCC [48,49]. Furthermore, various studies describe the
importance of albumin as a negative regulator in the progression of HCC, particularly in local
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invasion and metastasis of HCC [50]. It has been demonstrated that albumin levels allow for
an adequate assessment of hepatic functional reserve in patients with HCC. They have been
combined in different indices such as ALBI or PALBI (platelet–albumin–bilirubin ratio), which
discriminate the survival of patients with HCC [51]. In contrast, in this study, the significance
of bilirubin levels and platelet count is not as pronounced as that observed with albumin.
Further research is needed to evaluate these indices as prognostic factors in HCC.

Nevertheless, ACLD itself and its typical characteristics, such as the presence of ascites,
encephalopathy, and CSPH, lack a decisive impact in the predictive model. As mentioned,
around 80% of HCC cases occur in the liver with ACLD, and moreover, the population in
this study has a similar prevalence, reaching 87.96%. These data suggest that the isolated
presence of ascites, encephalopathy, or CSPH does not influence the prognosis of HCC.
In contrast, the combination of these factors translates into hepatic dysfunction that does
affect the predictive model. It can be concluded that the degree of tumor burden and the
patient’s functional status carry more weight than the level of hepatic dysfunction in the
prognostic assessment of the study’s patients, highlighting the need for further research.

According to the study findings, not meeting Milan criteria, being in stages B, C,
and D of the BCLC, and having low levels of albumin are associated with an unfavorable
prognosis in patients with HCC. These data enable us to identify which patients will
have a more favorable prognosis and which ones could benefit from different therapeutic
options, leading to an increasingly personalized management approach for patients. In this
regard, a tool using the proposed method could be generated, and an executable interface
could also be installed on medical equipment. This hardware/software tool must comply
with European regulations on medical devices and must also have minimum technical
characteristics (it is worthwhile to mention that currently, all computers can easily meet
these requirements).

An active search was conducted of the current literature on determining prognostic
factors for mortality at the diagnosis of HCC using ML techniques. Only one article, au-
thored by Hiraoka et al. [52], was found in which artificial intelligence is utilized to develop
a predictive prognostic model related to short- and medium-term survival outcomes. This
model is designed to inform decision making regarding the optimal therapeutic approach
for both initial and recurrent cases of HCC. Studies that employed ML techniques were
identified to classify patients benefiting from immunotherapy in HCC [53] or outlined the
application of ML techniques in analyzing radiological and histological images to obtain
diagnostic and prognostic information for HCC patients [54]. Within this context, multiple
articles describe the analysis of potential prognostic biomarkers for HCC [55–59], which are
covered in Piñero et al.’s review [59]. Stefano et al. perform a review of the most relevant
biomarkers in the prognosis of HCC [57]. Lima et al. detail, in their review, the potential
new minimally invasive biomarkers in the diagnosis and prognosis of HCC [58]. The
data analysis in these studies is conducted through conventional statistics, and the review
concludes that more tools are needed to determine the prognosis of patients with HCC [59].

The use of ML techniques for the analysis of clinical and analytical data in HCC
patients to develop a predictive mortality model and identify prognostic factors at the diag-
nosis has not been explored. Thus, the aim of this study is to employ various widely used
machine learning methods in the scientific and medical community to develop a useful tool
for assessing the prognosis of patients with HCC. The selection of the proposed RF method
over alternative machine learning algorithms is grounded in the notable advantages that
position it as a superior choice in terms of accuracy, robustness, and versatility. Compared
to SVM, RF exhibits a unique ability to handle complex and high-dimensional datasets
without compromising computational efficiency. The inherent diversity in its ensemble
approach minimizes the risk of overfitting, providing more general and predictive models,
particularly in scenarios with elevated problem complexity. Against GNB, RF stands out for
its effective handling of irrelevant or noisy features. The inclusion of multiple independent
decision trees allows the model to ignore less informative variables, significantly enhancing
robustness and prediction efficacy. Unlike KNN, which may be sensitive to noisy data, RF
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demonstrates inherent resilience to dataset noise and variability. By constructing models
based on multiple trees, the impact of outliers or errors is mitigated, ensuring greater
reliability in decision making. In summary, the preference for RF is justified by its ability
to deliver robust and accurate predictive models, especially in complex environments
and large datasets. Its resistance to overfitting, capacity to handle irrelevant features, and
versatility relative to other algorithms make it a preferred choice, ensuring more reliable
results and enhancing the model’s generalization capabilities.

As observed in the results, the proposed RF algorithm achieved the best outcomes in
all analyzed parameters, with most metrics surpassing 90%. These results outperformed all
other machine learning algorithms evaluated. This allows for the creation of an effective tool
for classifying HCC patients. Moreover, the main determinants influencing the prognosis
of HCC patients were identified. This tool aids in clinical practice for decision making by
healthcare professionals, enhancing the quality of life for patients.

5. Conclusions

Meeting Milan criteria and BCLC classification are the variables with the greatest impact
on the prognosis of patients with HCC in the developed predictive model. Both are valuable
in clinical practice. Albumin levels emerge as an analytical variable that holds significant
importance in the prognosis of HCC patients, and their combination with other analytical
values may be interesting for the development of new prognostic biomarkers in HCC.

The proposed RF method achieves the best results in identifying the main prognostic
factors of HCC at diagnosis and in the development of the predictive model. RF achieved
superior results in all analyzed parameters, securing an AUC of 0.96 and standing out from
the other proposed models. These results demonstrate that RF is useful and reliable for the
analysis of prognostic factors in HCC diagnosis.

The development of a predictive prognostic model at the diagnosis of HCC aims to
identify the factors that most influence patient mortality. This tool allows us to determine
the prognosis of patients and, in the future, could help us personalize and optimize the
management of patients at the time of HCC diagnosis. Therefore, it is essential to conduct
the search for new prognostic factors and develop additional tools.
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