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Abstract: Brain tumors can have fatal consequences, affecting many body functions. For this reason,
it is essential to detect brain tumor types accurately and at an early stage to start the appropriate
treatment process. Although convolutional neural networks (CNNs) are widely used in disease
detection from medical images, they face the problem of overfitting in the training phase on limited
labeled and insufficiently diverse datasets. The existing studies use transfer learning and ensemble
models to overcome these problems. When the existing studies are examined, it is evident that
there is a lack of models and weight ratios that will be used with the ensemble technique. With the
framework proposed in this study, several CNN models with different architectures are trained with
transfer learning and fine-tuning on three brain tumor datasets. A particle swarm optimization-based
algorithm determined the optimum weights for combining the five most successful CNN models with
the ensemble technique. The results across three datasets are as follows: Dataset 1, 99.35% accuracy
and 99.20 F1-score; Dataset 2, 98.77% accuracy and 98.92 F1-score; and Dataset 3, 99.92% accuracy and
99.92 F1-score. We achieved successful performances on three brain tumor datasets, showing that the
proposed framework is reliable in classification. As a result, the proposed framework outperforms
existing studies, offering clinicians enhanced decision-making support through its high-accuracy
classification performance.

Keywords: brain tumor classification; convolutional neural network; deep learning; particle swarm
optimization; computer-aided diagnosis

1. Introduction

The brain comprises interconnected neurons and is the central nervous system’s
paramount component. It oversees and regulates the body’s functions [1]. Brain tumors
are masses created by irregular clusters of cells within the brain, and these cells prolif-
erate rapidly and without restraint [2]. Meningioma, glioma, and pituitary tumors are
among the most prevalent varieties of brain tumors. Brain tumors can potentially be life-
threatening, with World Health Organization reports indicating that 120,000 individuals
have succumbed to this condition in recent years. Magnetic resonance imaging (MRI) as-
sists in identifying various brain tumor types [3]. In brain tumor treatment, essential factors
include its type, location, and size [1]. The intricate variations within brain tumor cells
can complicate determining the tumor type and the suitable treatment strategy, potentially
resulting in varying clinician assessments [4]. Therefore, in this study, a computer-aided
diagnosis system was developed to classify brain tumor types accurately and quickly from
MR images.

Artificial intelligence applications are used in many areas, from cloud computing [5]
to disease diagnosis [6–8] with medical images. Different methods in the literature exist to
analyze images, such as CNN, vision transformers, and capsule networks. While vision
transformers require large data sets for training, capsule networks focus more on the part-
to-whole relationship. CNN, on the other hand, has many successful applications in the
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field of medical imaging. When used in concert with pre-trained models, it can effectively
capture common features learned across a large data set. Transfer learning is advantageous
in terms of overall performance in limited labeled data situations. This study preferred
CNN due to its task suitability, practical applicability, and reliability.

Convolutional neural networks (CNNs), a sub-branch of deep learning, have an
architecture that can perform end-to-end learning. As we increase the depth and width di-
mensions in CNN architectures, we encounter overfitting and gradient vanishing problems
in datasets with limited labeled data [9]. The gradient vanishing problem is usually solved
with residual connections [10]. Complex models with more learning parameters than the
amount of data show high performance in the training phase due to overfitting; however,
they perform poorly on test data they have not seen before [11]. To avoid overfitting in
these models, we usually use regularization techniques such as L2 regularization, dropout,
batch normalization, and data augmentation [12–14]. In cases where these techniques are
insufficient, ensemble learning techniques can be used, combining different features from
the dataset using multiple models [15]. The ensemble learning technique can solve the
overfitting problem by combining features of different models with different properties
from the available dataset. However, the issue of which models to combine and what
weight to use still needs to be solved.

This work aims to combine several CNN models with optimal weights using ensemble
learning to classify brain tumor types accurately. To overcome the problem of overfitting
on limited labeled datasets, we trained and analyzed several models with different architec-
tures on three brain tumor datasets. All layers of these models with different architectures
were retrained on the brain datasets and fine-tuned according to the validation datasets.
The success order was determined according to their performance on the test datasets.
The optimal weights of the five highest-performing models were obtained by the particle
swarm optimization (PSO) algorithm [16]. These models are combined with the optimal
weights to avoid overfitting and high inter-class similarity. With our proposed method, we
achieved successful performances on three brain tumor datasets. Thus, this framework will
support clinicians’ decision-making and expedite the diagnostic process.

1.1. Motivation

Early identification of the brain tumor type and prompt initiation of treatment are crucial
for effective intervention. Automating the classification process with computer-aided systems
will reduce the workload of expert clinicians and speed up decision-making processes. Many
studies classify brain tumors using CNN architectures. Although existing studies use scratch
models, transfer learning, and ensemble techniques, there are some shortcomings in the
classification of brain tumors from MR images. These can be listed as follows:

• Existing studies have generally applied the ensemble technique by majority voting on
a few predetermined CNN models. To the best of our knowledge, there are no studies
in the literature on determining the base models and the weights to which they will
contribute.

• Even if the CNN models proposed in existing studies are optimized, they perform
limited feature extraction from the dataset. For example, features extracted from a
scratch CNN model or a few predetermined CNN models fall into this group. Feature
extraction should be diversified with CNN models with different architectures.

The primary motivation of this paper is to attain optimal ensemble performance
by utilizing the best base models and introducing a novel weighted method specifically
designed for the brain tumor MRI dataset. In this study, an analysis of the accuracy/loss
graphs throughout the training and validation phases indicates that the models achieved
high accuracy during training. However, advanced approaches are needed for a reliable
and better-performing model.
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1.2. Contributions

In this study, a new weighted ensemble method is proposed for the classification of
brain tumors from MR images. The most successful ensemble model is obtained with
different models and weights on three publicly available brain tumor datasets. The study
offers the following list of contributions:

• We introduce a new ensemble strategy for gathering the best performance. The most
appropriate CNN models were iteratively identified and combined with ensemble
learning at optimum weights to classify three brain tumor types accurately.

• Utilized a PSO-based algorithm to find the optimum weights that enhance the perfor-
mance of ensemble CNN models.

• The proposed PSO-Ensemble framework utilizes three different datasets and demon-
strates outstanding performance, as supported by extensive experimental results.

• Existing studies have generally not presented the use of their models. The framework
proposed in this study is integrated into the online system and available for use
(https://ai.gop.edu.tr/bt, accessed on 8 February 2024).

The remaining sections of this study are organized as follows. Section 2 categorizes
existing studies that use medical images for disease detection. Section 3 describes the
datasets used in the study. Details of the proposed method are given. Section 4 presents
extensive experimental studies and results. Section 5 discusses the results compared with
the existing work. Finally, Section 6 summarizes the conclusions and future work.

2. Related Works

CNNs are widely used for analyzing medical data, such as MRI and X-ray data [17,18].
In medical image classification using CNNs, three primary strategies can be found in the
literature. The initial approach involves creating custom CNN models and enhancing
their performance through diverse optimization techniques. The second strategy employs
transfer learning in conjunction with state-of-the-art CNN models. At the same time, the
third approach applies classical machine learning techniques, utilizing CNN models solely
for feature extractors.

In the first approach, custom model building, researchers create CNN models from
scratch and train the model from start to finish. Custom CNN models require a large
amount of labeled data to be trained and are also expected to have a large variety of data.
Limited access to labeled data in the medical field is an important limitation to the success
of custom models. This may cause overfitting or underfitting problems in the custom
models. In addition, determining the optimal depth and width parameters for the CNN
architecture is time-consuming.

Numerous studies [19–25] have explored the creation of custom CNN architectures
and enhanced these models through various methodologies for detecting brain tumor types.
Ayadi et al. [19] proposed a CNN architecture comprised of ten convolutional layers to
classify brain tumors. Raza et al. [20] created an advanced GoogleNet model in their study.
The proposed model achieved 99.67% accuracy on a three-class dataset. Khan et al. [21]
proposed two models in their study. Model 1 was tested on the Figshare dataset. In
Model 2, Model 1 is added to the VGG16 model. Rahman and Islam [22] developed a
novel CNN structure in their research. Asif et al. [23] used DenseNet201, DenseNet121,
Xception, ResNet152V2, and InceptionResNetV2 architectures by modifying their last layer.
The Xception architecture achieved a high accuracy rate of 99.67% on the 3-class dataset.
A CNN model created by Saurav et al. [24] uses channel-attention blocks to concentrate
on pertinent areas of the image for tumor classification. The selection of the pertinent
feature maps is carried out via channel-attention blocks. Akter et al. [25] performed binary
classification with a 39-layer model.

To overcome the challenges of developing a custom CNN model, the researchers
employed a transfer learning approach. This second approach takes state-of-the-art models
trained on large datasets and modifies and adapts their classification layers to the problem
at hand. Instead of training the entire model from beginning to end, some layers are

https://ai.gop.edu.tr/bt
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frozen. The disadvantages of using transfer learning include the possibility of noises being
transferred as features due to limited data and the fact that only one model is used, which
limits feature extraction diversity.

Transfer learning and feature extraction methods are also widely used to detect brain
tumor types. Deepak and Ameer [26] combined the GoogleNet architecture with a transfer
learning approach to extract features from brain MRI images. Alongside the Softmax
classifier, the study explored the use of SVM and KNN algorithms. Notably, the KNN
algorithm achieved the highest accuracy rate, reaching 98%, with 80% of the dataset
allocated for training. Swati et al. [27] tried to achieve high accuracy using AlexNet,
VGG16, and VGG19 models with transfer learning. The VGG19 model performed the
best, with 94.82% accuracy. Abdelaziz et al. [28] used the ResNet50 model in their study.
Mehrotra et al. [29] used various transfer learning architectures. They also utilized various
optimizers, including SGDM, Adam, and RMSProp, to improve the models’ success rates.
As a result, the AlexNet model achieved a high accuracy of 99.04%. In [30], Rasool et al.
used the GoogleNet model for feature extraction and SVM for classification. Badije and
Deniz Ülker [31] used the AlexNet model in their study. Alnowami et al. [32] used the
DenseNet architecture in their work. Talukder et al. [33] used various transfer learning
architectures (DenseNet201, InceptionResNetV2, ResNet50V2, and Xception) in their study.
The highest accuracy of 99.68% was achieved with ResNet50V2. Zulfiqar et al. [34] applied
a transfer learning-based fine-tuning approach to classify brain tumors into three categories
using EfficientNet architectures. Alanazi et al. [35] first developed CNN models consisting
of 19, 22, and 25 layers to detect the presence of brain tumors. They performed brain
tumor classification using the transfer learning method with the best-performing 22-layer
model. Gomez et al. [36] performed a four-class brain tumor type identification study with
a 17-layer custom CNN and six pre-trained models, namely EfficientNetB0, InceptionV3,
InceptionResNetV2, MobileNetV2, ResNet50, and Xception.

In the third approach, known as ensemble modeling, several architectures are trained
concurrently, and the output is combined using various methods (such as feature con-
catenation and majority voting). Consequently, feature extraction diversity is achieved,
in contrast to the transfer learning approach, since features are extracted using multiple
architectures. The overfitting issue can be resolved by integrating the features of many
models with various attributes from the available dataset. However, there is still a problem
with deciding which models to combine and how much weight to use.

Ensemble models have been proposed by some researchers to detect brain tumor
types [1,37–42]. Aurna et al. [1] proposed a two-stage method for brain tumor classifica-
tion. They determined the best feature extractors from five pre-trained models, and a new
one called Scratched CNN. The top-performing model pairs (EfficientNet-B0, ResNet-50,
and scratched CNN) were initially selected and used in the feature extraction stage. The
classification was conducted using five algorithms (Softmax, SVM, RF, KNN, and Ad-
aBoost), with Softmax achieving the highest performance. Rezaei et al. [37] combined KNN,
weighted kernel width SVM (WSVM), and histogram intersection kernel SVM (HIK-SVM)
algorithms with the MODE-based ensemble technique in the classification phase of their
study. Noreen et al. [38] proposed two models in their study. In Model-1, the Inception-v3
model was utilized to extract features, while Model-2 employed the Xception model. Then,
in both models, Random Forest, Support Vector Machine, and K-Nearest Neighbors algo-
rithms were used for classification using the ensemble technique. In their study, Patil and
Kirange [39] combined SCNN and VGG16 models in the feature extraction phase using
ensemble learning. Extreme Gradient Boosting, Ada-Boost, and Random Forest (XG-Ada
RF) are three high-performance individual machine learning models that Khan et al. [40]
suggested as an ensemble for binary classification. Tantel et al. [41] combined five CNN
(AlexNet, VGG16, ResNet18, GoogleNet, and ResNet50) architectures with ensemble tech-
niques for binary tumor classification. Features were retrieved for brain tumor classification
using several deep learning architectures in the study by Kang et al. [42]. Then, the best
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three features are combined, and classification is performed with nine different machine
learning algorithms.

Grid search, statistical-based optimization algorithms, and other heuristics were also
used to detect brain tumor types. The following are used in brain tumor classification
studies: Bayesian optimization algorithm [43], grid search [44], Nonlinear Lévy Chaotic
Moth Flame Optimizer (NLCMFO) [45], Combined Political Optimizer [46], Improved
Political Optimizer [47], Genetic Algorithm (GA) [48].

Evolutionary algorithms were widely used in the optimization of CNN models. The
Firefly Optimization Algorithm (FA) [49], Elephant Hearding Optimization Algorithm
(EHO), and Hybrid Elephant Hearding Optimization Algorithm (HEHO) [50] were used
to optimize the hyperparameters of the CNN. A CNN model based on binary swallow
swarm optimization (BSSO) was developed by Kothandaraman [51]. Rammurthy and
Mahesh [52] used WHHO, which is an integration of the Whale optimization algorithm
(WOA) and the Harris Hawks optimization (HHO) algorithm. Chawla et al. proposed
a bat-CNN model in [53]. Sharif et al. [54] used differential evolution and mouth flame
optimization algorithms for feature extraction in their study. Xu and Mohammadi [55] used
the Mobilenetv2 deep learning model optimized with the innovative meta-heuristic Fox
Optimization Algorithm (CFO).

When the existing studies are examined, there are many studies using scratch mod-
els [19–25], transfer learning [26–36], ensemble learning [1,37–42], and different optimiza-
tion algorithms [4,43–54]. Table 1 summarizes related studies on brain tumor classification
in terms of method, dataset, classification type, and results. The proposed study optimizes
CNN models with different architectures and determines the most successful models. These
best CNN models were combined with optimum weights, the ensemble technique was
applied, and successful classification performance was obtained.

Table 1. Summary of related studies.

Method Reference Year Dataset Classification Type Accuracy (%)

Sc
ra

tc
h

M
od

el

Ayadi et al. [19] 2021
Figshare MRI

Multi
94.74

Radiopaedia 93.71

Rembrandt 95

Raza et al. [20] 2022 CE-MRI Multi 99.67

Khan et al. [21] 2022
Figshare MRI Multi 97.8

Harvard Medical Binary 100

Rahman and Islam [22] 2023
Figshare MRI

Multi
97.60

Kaggle-Nickparvar 98.12

Asif et al. [23] 2023
Figshare MRI

Multi
99.67

Kaggle -Sartaj 95.87

Saurav et al. [24] 2023

BT-Small-2C Binary 96.08

BT-Large-2C 99.83

BT-Large-3C
Multi

97.23

BT-Large-4C 95.71

Akter et al. [25] 2024

Dataset-a

Binary

96.7

Dataset-b 89.4

Dataset-c 97.7

Dataset-d 95.2

Merged Dataset-1 98.7

Merged Dataset-2 97.6
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Table 1. Cont.

Method Reference Year Dataset Classification Type Accuracy (%)

Tr
an

sf
er

Le
ar

ni
ng

Swati et al. [27] 2019 CE-MRI Multi 94.82

Deepak and Ameer [26] 2019 Figshare MRI Multi 97.1

Abdelaziz et al. [28] 2020 CE-MRI Multi 99

Mehrotra et al. [29] 2020 TCIA Binary 99.04

Rasool et al. [30] 2022 Kaggle-Sartaj Multi 98.1

Badjie and Deniz Ülker [31] 2022 BraTS2020 Binary 99.62

Alnowami et al. [32] 2022

Dataset-1

Multi

72.10

Dataset-2 87.02

Dataset-3 96.52

Talukder et al. [33] 2023 Figshare MRI Multi 99.68

Zulfiqar et al. [34] 2023 Figshare MRI Multi 98.86

Alanazi et al. [35] 2022

Br35H Binary 99.33

Kaggle-Sartaj Multi 96.90

Figshare MRI Multi 95.75

Gomez et al. [36] 2023 Kaggle-Nickparvar Multi 97.12

En
se

m
bl

e
Le

ar
ni

ng

Rezaei et al. [37] 2020 MRI Dataset Multi 92.46

Noreen et al. [38] 2021 MRI dataset Multi 94.34

Patil and Kirange [39] 2023 Figshare MRI Multi 97.77

Aurna et al. [1] 2022
Figshare MRI Multi 99.13

Kaggle-Sartaj Multi 98.96

Kang et al. [42] 2021 Kaggle-Sartaj Multi 93.72

Khan et al. [40] 2023 Figshare MRI Binary 95.4

Tantel et al. [41] 2023

T1W
Binary

94.75

T2W 97.98

FLAIR 98.88

W
it

h
th

e
he

lp
of

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s

Ait-Amou et al. [43] 2022 Figshare MRI Multi 98.70

Devi [44] 2021 Kaggle-Sartaj Multi 90.25

Dehkordi et al. [45] 2022 BRATS 2015 Multi 97.4

Bashkandi et al. [46] 2023 Br35H Binary 97.09

Wu and Sen [47] 2023 Figshare MRI Multi 95.98

Anaraki et al. [48] 2019
IXI, REMBRAND,

TCGA-LGG Multi 90.9

Figshare MRI Multi 94.2

Bacanin et al. [49] 2021

IXI, REMBRANDT,
TCGA-GBM,
TCGA-LGG

Multi 93.3

Figshare MRI Multi 96.5

Bezdan et al. [50] 2021
IXI, REMBRANDT,

TCGA-GBM,
TCGA-LGG

Multi 94.50

Kothandaraman [51] 2023 Figshare MRI Multi 96.125



Diagnostics 2024, 14, 383 7 of 24

Table 1. Cont.

Method Reference Year Dataset Classification Type Accuracy (%)

W
it

h
th

e
he

lp
of

O
pt

im
iz

at
io

n
A

lg
or

it
hm

s Rammurthy and Mahesh [52] 2022
BRATS

Multi
81.6

SimBRATS 81.6

Chawla et al. [53] 2022 Figshare MRI Multi 99.5

Sharif et al. [54] 2022

BRATS 2013

Multi

99.06

BRATS 2015 98.76

BRATS 2017 98.18

BRATS 2018 94.6

Xu and Mohammadi [55] 2024 Figshare MRI Multi 97.32

The numbers and lowercase letters (1, 2, 3 and a–d) here indicate different datasets in the related articles.

3. Materials and Methods
3.1. Dataset

This study leveraged three datasets for its research purposes. To begin with, dataset 1 [56]
is a publicly accessible Figshare brain tumor dataset containing a total of 3064 brain MRIs.
This dataset has three distinct classes: glioma, meningioma, and pituitary tumors. Specifi-
cally, this dataset comprises 1426 glioma images, 708 meningioma images, and 930 pituitary
tumor images. Moving to dataset 2 [57], it is composed of four classes: glioma (926 images),
meningioma (937 images), pituitary tumors (901 images), and a category denoting the absence
of tumors (500 images). Finally, dataset 3 [58] is also an open-source brain tumor dataset
that merges data from three sources: Figshare [56], SARTAJ [57], and Br35H [59], resulting
in a total of 7023 brain MRIs. This dataset represents four categories: healthy brain images,
meningioma, pituitary, and glioma tumors. Concretely, there are 2000 images of healthy
individuals, 1621 glioma images, 1645 meningioma images, and 1757 of pituitary tumors.
Figure 1 shows example MR images from the datasets.
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We divided the datasets into train, validation, and test. First, we split the datasets into
80% train and 20% test. Then, we split 10% of the training datasets into validation. Figure 2
shows example MR images of brain tumor types and the process of the image segmentation
algorithm.
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The MRI images were first preprocessed. In Figure 2, a noise outside the brain region
was removed. For CNN architectures to focus only on the brain region, we first applied
Gaussian blur with the 9 × 9 kernel and then applied Otsu thresholding to extract the
binary image. The brain region’s contours were detected in the binary image, and brain
region segmentation was performed based on the extreme points of the largest contour
in all directions. Thus, CNN architectures will only operate within the brain region in
real-time applications.

3.2. Transfer Learning

CNN architectures are usually built sequentially, combining convolution, pooling, and
fully connected layers. With CNNs, feature vectors are automatically obtained from the
input images during the training phase, and classification is performed. In the training
phase, learning is achieved by updating the filter weights in the convolution layer and the
weights of the fully connected layer according to the training error. The back-propagation
algorithm is generally implemented to update weights [8,60].

With transfer learning, CNN models trained on large datasets, such as ImageNet, are
retrained on new datasets by preserving the weights of the parameters in the filters and
fully connected layers [61]. In CNN models, the first layers usually learn basic features such
as lines, edges, and color blobs, while the last layers learn more detailed forms relevant to
the problem at hand [62]. Therefore, in classical image classification problems, convolution
layers are usually frozen in the training phase and are not trained on the new dataset, and
successful results are obtained by updating the parameters in the fully connected layers.
However, the training should also include convolution layers in medical images. Since the
process of labeling medical images by an expert is costly and, in some cases, there needs to
be more diseased images, disease detection from medical images is usually faced with the
problem of limited labeled data. Although the transfer learning method gives successful
results in these cases, there is usually an overfitting problem in the training phase. In this
study, CNN models are constructed by preserving the previous parameter values until
the last convolution layer. After the final convolution layer, global average pooling and
flattening layers are analyzed separately. The number of fully connected layers, neurons in
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each layer, and dropout rates were optimized. In the last layer, a layer with four neurons
was added, along with the Softmax activation function. The first layers were frozen in the
training phase, and training was performed. Finally, in all datasets, the parameters in all
layers of the CNN models were updated, and training was completed.

3.3. Proposed Framework

Several CNN models with different architectures were retrained on the brain tumor
dataset with transfer learning and fine-tuning (see Figure 3). In these models, various
hyperparameters were optimized with grid search to determine the most successful models.
Table 2 summarizes the optimized hyperparameters and their values. CNN models are
constructed by preserving the previous parameter values until the last convolution layer.
After the final convolution layer, global average pooling and flattening layers were analyzed
separately. The last layer was added with three or four neurons using the Softmax activation
function. CNN models were retrained for 50 epochs. The study employed a batch size of
16. During the training phase, all layers of the models in the study were retrained. Three
datasets were used in this study. The five best-performing models on each dataset were
identified, and their performance on the test dataset was found using ensemble learning.
The PSO-based algorithm determined the weights of the five models for ensemble learning.
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Table 2. Optimized hyperparameters.

Hyperparameter Values

Number of fully connected layers 1, 2, 3
Number of neurons in the fully connected layer 64, 128, 256, 512, 1024

Dropout rate 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6
Optimizer Adam, SGD

Learning rate 0.001, 0.0001

The PSO algorithm, one of the algorithms based on swarm intelligence, was proposed
by Kennedy and Eberhart [16]. The algorithm consists of a swarm and individuals (so-
lutions) called particles within the swarm. The algorithm starts with a set of randomly
generated particles, and the particles are updated at each iteration to determine the optimal
value. In each iteration, each particle is updated according to two values. The first one is
Xi,pbest, which is the best fitness value that a particle has found so far. The second value
is the best fitness value obtained so far by any particle in the swarm, called Xgbest. These
values are also stored in memory for later use. After finding the best cases of both values,
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the velocities and positions of the particles are updated according to the formulas shown in
Equations (1) and (2).

Vi,new = ω × Vi,j + c1 × r1 ×
(
Xi,pbest − Xi,j

)
+ c2 × r2 ×

(
Xgbest − Xi,j

)
(1)

Xi,new = Xi,j + Vi,new (2)

In Equation (1), c1 and c2 are the acceleration factors and provide the correct orientation
of Xi,pbest, and Xg_best. C1 is guided by the particle’s own experience, and c2 is guided by
the experience of other particles in the swarm. Random numbers are assigned to r1 and r2
as coefficients, and these values are updated in every iteration. Both r1 and r2 coefficients
are confined to the range of 0 to 1. The inertia weight ω is typically chosen to vary between
0.1 and 1. In the PSO algorithm, cognitive weight (c1) and social weight (c2) were selected
as 1.5. The inertia weight was chosen as 0.7.

A weight (βi) was assigned to each model, and this weight was estimated using the
PSO-based algorithm as detailed in Algorithm 1. We calculate prediction probabilities (Pi)
for each model and multiply these predictions by their respective weights (βi) to determine
the final probabilities (ypred) for classification in Equation (3). Yi is ground truth (correct)
labels. The log loss or objective function is presented in Equation (4). The sum of the
weights assigned to each model should be 1, as shown in Equation (5).

ypred = ∑M
i=1 Piβi, M denotes the number of models. (3)

Loss = − 1
N ∑N

i=1

[
yi × log

(
ypred

)
+ (1 − yi)× log

(
1 − ypred

)]
(4)

∑M
i=1 βi = 1, (5)

Algorithm 1 PSO-based weighted ensemble learning algorithm

Obtain prediction probabilities (Pi) for each model; initial values of βi are determined randomly
for each particle, number of particles:= 100, maxIteration: = 1000
while i < maxIteration

for particle in swarm do:
for m in models do:

#Calculate final probabilities via Equation (3)
newPredictions += particle[m] × modelPredictions[m]

#Calculate objective value (loss) via Equation (4)
loss_score = log_loss(y, newPredictions)
results.append(loss_score)

end for
for j in swarm do

if results[j] < individualBestResult[j] then
individualBestResult[j]: = results[j]

end if
#Find minimum objective value and βi in particles
if min(results) < bestGlobalObjectiveValue then

bestGlobalObjectiveValue: = min(results)
bestβi: = βi

end if
Update βi in each particle according to Equations (1) and (2)
Adjust βi in each particle to satisfy Equation (5)
i: = i + 1

end while

Figure 3 shows the general structure of our proposed framework. After identifying
the most successful CNN models on a dataset, the optimum weights for these models are
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determined iteratively. When the optimum weights of the ensemble model are determined,
the classification phase is started.

3.4. Performance Metrics

The performance of the proposed framework is assessed using the following metrics:
area under the curve (AUC), recall, accuracy, precision, and F1-score. The AUC score
assesses the model’s capacity for class discrimination [63]. The formulas for accuracy,
F1-score, precision, and recall metrics calculated from the confusion matrix are presented
in Equations (6)–(9) [64].

Accuracy =
TP + TN

(TP + TN + FP + FN)
(6)

Precision =
TP

TP + FP
(7)

Recall =
TP

TP + FN
(8)

F1Score = 2 × Recall × Precision
Recall + Precision

(9)

4. Results

In this study, several state-of-the-art CNN models with different architectures were
trained with transfer learning on three brain tumor datasets. CNN models with different
architectures can extract various features of the dataset. Since ResNet and DenseNet
architectures solve the vanishing gradient problem with residual connections, deeper
architectures can usually be defined. The general disadvantage of these architectures is
the overfitting problem in the case of limited labeled data. Although many versions of
EfficientNet and RegNet architectures exist, the selected architectures generally perform
better. The calculations and processes were executed on a standard PC configuration
comprising 16 GB of RAM, an NVIDIA GeForce GTX 1080 Ti GPU boasting 11 GB of
memory, and an Intel i5-8400 processor.

Table 3 shows the accuracy and F1-score, while Table 4 displays the precision, recall,
and AUC values of CNN models on three datasets. In this study, the models were trained
five times, and the average values of the trained models on the test dataset are given.
Since Dataset 1 and Dataset 2 have a limited number of labeled data, they have limited
performance compared to Dataset 3. In DenseNet architectures, data from a convolution
layer block is combined with feature map values from all subsequent layers, which generally
leads to better performance. In general, deep learning models need many labeled images in
the training phase to avoid overfitting and extract general statistical patterns. Since there is
enough labeled data in Dataset 3, the models performed better. With transfer learning and
fine-tuning, many hyperparameters of CNN models were optimized. In the training phase,
many hyperparameters with different values (see Table 2) were optimized with GridSearch.

Table 3. Accuracy and F1-score performance metrics of the state-of-the-art CNN models on three datasets.

CNN Models

Dataset 1 (DS1) Dataset 2 (DS2) Dataset 3 (DS3)

Accuracy
(%)

F1-Score
(%)

Accuracy
(%)

F1-Score
(%)

Accuracy
(%)

F1-Score
(%)

DenseNet121 96.25 96.18 96.47 96.66 96.65 96.61
DenseNet169 94.13 93.88 96.01 96.15 97.64 97.48
DenseNet201 96.08 95.96 96.93 97.01 98.48 98.38

VGG16 91.52 90.64 82.06 81.88 97.18 96.97
VGG19 94.62 94.11 94.79 94.58 96.91 96.75

ResNet50 95.92 95.86 95.09 95.17 98.14 97.99
ResNet101 95.27 95.07 94.33 94.51 98.47 98.45
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Table 3. Cont.

CNN Models

Dataset 1 (DS1) Dataset 2 (DS2) Dataset 3 (DS3)

Accuracy
(%)

F1-Score
(%)

Accuracy
(%)

F1-Score
(%)

Accuracy
(%)

F1-Score
(%)

ResNet152 93.56 93.46 92.33 92.82 97.66 97.62
ResNetRS50 93.15 92.79 95.55 95.67 97.64 97.44

ResNetRS100 95.19 95.04 96.32 96.46 97.71 97.61
InceptionResNetV2 94.37 94.19 96.17 96.12 98.44 98.28

InceptionV3 94.54 94.41 95.39 95.55 98.09 97.97
Xception 93.47 93.11 95.39 95.55 97.79 97.73

MobileNetV2 90.22 90.59 93.87 94.05 98.09 98.02
EfficientNetV2B3 88.25 87.76 93.40 93.57 97.86 97.74
EfficientNetV2S 95.43 95.22 93.63 93.62 97.56 97.39
EfficientNetV2M 88.01 87.71 95.09 95.09 95.50 95.32

RegNetX008 94.69 94.43 94.94 94.91 98.63 98.54
RegNetY008 95.11 94.98 95.86 95.84 97.18 97.00

Table 4. Precision, recall, and AUC performance metrics of the state-of-the-art CNN models on
three datasets.

CNN Models

Dataset 1 (DS1) Dataset 2 (DS2) Dataset 3 (DS3)

Precision
(%)

Recall
(%)

AUC
(%)

Precision
(%)

Recall
(%)

AUC
(%)

Precision
(%)

Recall
(%)

AUC
(%)

DenseNet121 96.01 96.41 97.24 96.60 96.76 97.78 97.21 96.39 97.61
DenseNet169 94.05 93.92 95.48 96.21 96.14 97.39 97.66 97.42 98.32
DenseNet201 95.84 96.10 97.02 97.21 96.83 97.88 98.49 98.35 98.93

VGG16 90.39 90.97 93.35 81.82 81.99 87.96 97.12 96.93 98.0
VGG19 95.20 93.27 95.09 94.60 94.60 96.42 97.0 96.75 97.87

ResNet50 95.99 95.75 96.70 94.77 95.66 97.01 98.14 97.96 98.68
ResNet101 95.22 94.93 96.22 94.5 94.76 96.42 98.56 98.35 98.92
ResNet152 92.91 94.48 95.71 93.88 92.83 95.09 97.85 97.46 98.33

ResNetRS50 92.83 92.85 94.66 95.45 95.98 97.24 97.68 97.42 98.32
ResNetRS100 95.13 94.97 96.23 96.63 96.30 97.12 97.81 97.57 98.40

InceptionResNetV2 93.88 95.12 96.25 95.79 96.51 97.62 98.41 98.30 98.90
InceptionV3 94.38 94.45 95.79 95.55 95.60 97.01 98.03 97.97 98.67

Xception 93.30 93.20 94.94 95.51 95.59 97.01 97.75 97.80 98.54
MobileNetV2 91.21 91.10 93.09 93.66 94.61 96.27 98.13 97.94 98.65

EfficientNetV2B3 88.50 87.24 90.41 93.90 93.41 95.57 97.79 97.71 98.50
EfficientNetV2S 95.42 95.16 96.37 94.68 95.43 96.84 97.47 97.44 98.32
EfficientNetV2M 88.58 88.14 91.11 95.07 95.22 96.78 95.61 95.13 96.80

RegNetX008 94.38 94.66 95.99 94.60 95.31 96.81 98.59 98.52 99.03
RegNetY008 94.58 95.50 96.55 95.47 96.35 97.49 97.21 96.98 98.03

Table 5 shows the weight ratios of the five CNN models that perform best with the
PSO algorithm for three datasets in ensemble learning. Using PSO optimization according
to Algorithm 1, the best-performing model weight ratios were found iteratively on the test
dataset. CNN models with different architectures can often extract different features from
the dataset. Combining these models with optimal weights is essential to improving their
performance on the test dataset. The accuracy values with weighted ensemble learning
on the datasets were 99.35% for Dataset 1, 98.77% for Dataset 2, and 99.92% for Dataset 3.
When these results are compared with the accuracy of the individual CNN models, there is
a performance improvement. Moreover, the weighted ensemble learning model produced
more stable results.
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Table 5. The weight ratios of the CNN models in ensemble learning on three datasets.

DS1
Models DenseNet121 DenseNet201 EfficientNetV2S ResNet50 ResNet101
Weights 0.209 0.212 0.237 0.038 0.304

DS2
Models DenseNet121 DenseNet169 DenseNet201 InceptionResNetV2 ResNetRS100
Weights 0.359 0.054 0.270 0.024 0.293

DS3
Models DenseNet201 InceptionResNetV2 MobileNetV2 RegNetX008 ResNet101
Weights 0.041 0.16 0.133 0.509 0.156

Figure 4 shows the accuracy/loss graphs of five different CNN models in Dataset 1.
The training accuracy line shows an upward trend in the training phase as learning occurs
over the epochs. If overfitting or memorization does not occur during the training phase,
the validation accuracy line in the validation data will continue to overlap or be parallel
with the training accuracy line. When CNN models become overfitted after a certain
epoch in the training phase, the validation curve starts to decrease after this epoch. Since
we try to optimize the models with the number of neurons in the fully connected layer
and the dropout rate during the training phase, the CNN models generally avoid falling
into an obvious overfitting state. When the loss graphs are analyzed, the training and
validation loss curves decrease throughout the epochs as learning occurs in the training
phase. However, in the case of overfitting after a certain epoch in the training phase, the
validation loss curve will continue to increase after this epoch. Figure 4a–e shows the
accuracy and loss plots of the DenseNet121, DenseNet201, EfficientNetV2S ResNet50, and
ResNet101 models in Dataset 1, respectively. Since the training and validation graphs in
Figure 4 overlap at several points throughout the epochs, we can say there is no overfitting
in Dataset 1.
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Figure 4. Accuracy/loss plots of five different CNN models in Dataset 1: (a) DenseNet121,
(b) DenseNet201, (c) EfficientNetV2S, (d) ResNet50, and (e) ResNet101.

Figure 5a–e shows the accuracy and loss graphs of the DenseNet121, DenseNet169,
DenseNet201, InceptionResNetV2, and ResNetRS100 models in Dataset 2, respectively.
When the graphs in Figure 5 were examined, we saw that the validation accuracy line
followed the train accuracy line from below. Still, the gap between them indicates that the
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models are in a slightly overfitting situation. For Dataset 2, the data in the training phase
needs to be increased.
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Figure 5. Accuracy/loss plots of five different CNN models in Dataset 2: (a) DenseNet121;
(b) DenseNet169; (c) DenseNet201; (d) InceptionResNetV2; (e) ResNetRS100.

Figure 6a–e shows the accuracy and loss graphs of the DenseNet201, InceptionRes-
NetV2, MobileNetV2, RegNetX008, and ResNet101 models in Dataset 3, respectively. When
the graphs in Figure 6 were analyzed, we could see that the train and validation accuracy
curves overlap at many points and move upwards. CNN models did not fall into overfitting
or memorization in Dataset 3.
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In this study, when the curves of the accuracy/loss graphs in the training and vali-
dation phases were examined, the models exhibited high accuracy in the training phase.
Although they partially avoided overfitting with regularization techniques, the models
could not reach the desired generalization capacity. In these cases, the ensemble technique
should be used, as it will both provide feature diversity and emphasize the strengths of
different models.

Figure 7a shows the three-class confusion matrix values of the DenseNet121 model in
Dataset 1. Horizontal values (rows) represent actual values. Vertical values (columns) show
the predicted values of the model. When Figure 7a was examined, the model correctly
classified 273 out of 285 glioma images. This value is true positive (TP) for the glioma class.
In the first row, six images with a true label of glioma were misclassified as meningioma and
the other six as pituitary. The 12 (6 + 6) incorrectly classified images give a false negative
(FN) value. When the column values for glioma were analyzed, three images with the
correct label, meningioma, and five images with the correct label, pituitary, were incorrectly
predicted as glioma. These eight (3 + 5) images represent the false positive (FP) value for
the glioma class. In Figure 7, among the base models, the fewest errors were observed in
Densenet121, and the most errors were observed in ResNet101. When the proposed model
is analyzed in Figure 7f, three images with the real label of meningioma are incorrectly
predicted as pituitary. The number of meningioma and pituitary images can be increased
in this dataset.
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Figure 8c shows the confusion matrix values of the DenseNet201 model in Dataset 2.
The second row of the confusion matrix in Figure 8c shows that the model correctly
predicted 181 of the 187 meningioma tumor images. This value is true positive for the
meningioma class. Three images with the true label meningioma were incorrectly predicted
as glioma and another three as pituitary. In total, these six (3 + 0 + 3) misclassified images
were false negative. When the meningioma column values in Figure 8c are analyzed, five
images with the true label glioma, one image with no tumor, and four images with pituitary
were incorrectly predicted as meningioma. In total, these ten (5 + 1 + 4) values were false
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positive. Among the base models, the fewest errors were observed in DenseNet201, and
the most errors were observed in DenseNet169. In general, when we look at Figure 8, we
can say that the models have difficulties due to the inter-class similarity between Glioma
and Meningioma.
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When we examine the fourth row in Figure 9d (RegNetX008), 299 of the total 300 pitu-
itary images were correctly predicted. In addition, one pituitary was incorrectly predicted
as meningioma. This one value gives a false negative value for the pituitary class. When we
look at the column values in the pituitary class, one glioma and nine meningioma images
were incorrectly predicted as pituitary. These ten values show a false positive value for the
pituitary class. Among the base models, the fewest errors were observed in RegNetX008,
and the most errors were observed in MobileNetV2. Figure 9f shows the confusion matrix
values of the proposed model in Dataset 3. In Figure 9f, we can see that the proposed model
performs very well due to the sufficient data in Dataset 3. In addition, when examining the
models in all three datasets, DenseNet121, DenseNet201, and InceptionResnetV2 models
can be selected as base models.

Table 6 compares our proposed weighted ensemble model with existing studies in the
literature regarding accuracy and F1-score measures. Some studies proposed a classification
model with only three classes (Glioma, Meningioma, and Pituitary) in the Figshare database
instead of the four-class dataset. Our proposed new ensemble model outperforms all
existing studies.
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Table 6. Comparison of the proposed model with existing studies.

Study Year Dataset Classes Accuracy (%) F1-Score (%)

Ayadi et al. [19] 2021 [56] 3 94.74 94.19 *
Deepak and Ameer [26] 2019 [56] 3 97.17 97.20

Ait-Amou [43] 2022 [56] 3 98.70 98.60
Kothandaraman [51] 2023 [56] 3 96.125 96.097

Wu and Sen [47] 2023 [56] 3 95.98 89.98
Alanazi et al. [35] 2022 [57] 4 95.75 95.72 *
Saurav et al. [24] 2022 [57] 4 95.71 95.98
Kang et al. [42] 2021 [57] 4 93.72 -
Aurna et al. [1] 2022 [58] 4 98.96 99.0

Gomez et al. [36] 2023 [58] 4 97.12 97.28

Proposed Model 2023
[56] 3 99.35 99.20
[57] 4 98.77 98.92
[58] 4 99.92 99.92

* Calculated from the given confusion matrix in the reference paper.

CNNs are described as black-box models and do not explain the reason for the clas-
sification decision [65]. This prevents interpretation of the results [66]. Since CNN-based
state-of-the-art models were used in this study, the interpretability of the results could
be improved. To make the decision-making process of CNN models more explicit, the
gradient-weighted class activation mapping (GradCAM) technique was utilized [67]. Grad-
CAM is a technique that aids in locating an input image’s crucial regions for predictions,
enhancing CNN models’ transparency [68].

CNN outputs visualized on a heat map with Grad-CAM for Dataset 1, Dataset 2, and
Dataset 3 are represented in Figures 10–12, respectively. The original images are overlaid
with a color spectrum ranging from blue to red, where the red regions indicate the dominant
focus during model predictions. The sample images in Figure 1 were used as the original
images in the Grad-CAM application. Grad-CAM analyses of the models in the ensemble
framework are presented for three data sets. Figure 10 shows that while all models focus
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on the brain, different models may focus on different regions of the same MRI image. This
trend also helps to increase feature diversity. This can be considered an indicator of better
performance with ensemble learning.
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Figure 13 shows the real-time implementation of the proposed framework for multi-
classification of brain tumors. Furthermore, it is important to highlight that existing research
findings have not been completely incorporated into a live system [69]. To fill this gap,
the suggested method has been applied to an online system in real-time to showcase its
effectiveness and simplicity for physicians to employ.
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5. Discussion

CNN models, which are used to create the model that will extract features from the
raw image in the training phase, make successful classifications with these models after the
training is over. CNN models learn the statistical patterns of each class in the data during
the training phase. In order for the models to be successful or to generalize the dataset,
a large amount of data is required. Databases created with medical images usually have
a limited amount of labeled data. When training with limited labeled medical images, it
becomes crucial to avoid overfitting. In CNN models, the first layers learn general features
such as lines, edges, and color blobs, while later layers learn more complex structures
specific to the dataset. With transfer learning, using the filter weights of state-of-the-art
CNN models that have been previously trained on large datasets and retraining them on
the new dataset at hand can be a solution to the limited labeled dataset problem. These
models with different architectures often suffer from overfitting. Successful results can be
achieved with ensemble learning, which is based on combining the strengths of different
CNN models. When the loss/accuracy graphs of different models in the training and
validation phases are examined, it is seen that the validation accuracy graphs follow the
training accuracy graphs from below. In this case, since the models cannot generalize fully,
they do not reach the desired learning capacity. This study shows that we can overcome
this situation with the proposed ensemble technique.

We provide a solution to the problem of which models to combine with ensemble
learning and at what weight ratio. With the framework we developed in this study, the
most successful CNN models were determined by transfer learning and fine-tuning on a
dataset. The optimal ensemble learning weight ratios of the most successful CNN models
were found with a PSO-based algorithm. Existing studies usually combine pre-selected
CNN models with ensemble learning without finding the optimal weights. With this
framework, different CNN models were identified for ensemble learning on three datasets
and combined with optimal weights to achieve the highest performance. This framework
will contribute to the decision-making process of clinicians and has practical use.

In the diagnosis of brain tumors, studies have been carried out using models from
scratch [19–25], transfer learning [26–36], and ensemble learning [1,37–42] techniques.
Ayadi et al. [19] performed a brain tumor diagnosis with a scratch model. The model
includes 10 consecutive convolutional and batch normalization layers. With the proposed
model, an accuracy rate of 94.74% was achieved. Deepak and Ameer [26] used GoogleNet
architecture with a transfer learning method. In the study, the best accuracy rate (97.17%)
for brain tumor classification was obtained with the KNN algorithm. Aurna et al. [1]
investigated the best architectures for ensemble models in brain tumor diagnosis and
found that EfficientNet-B0, ResNet-50, and proposed scratch CNN models performed best.
They achieved the best accuracy rate (98.96%) by using the two-stage ensemble model and
the Softmax classification algorithm. In scratch CNN models, even if the models can be
improved by hyperparameter optimization, there is usually an overfitting problem in the
training phase due to limited labeled data. The use of pre-trained models on large datasets
with transfer learning also provides a partial solution to the problem of limited labeled
data; however, deep and complex models also suffer from overfitting, and only one CNN
model may be insufficient to learn different features on limited and non-diverse datasets.
In Table 6, the best results of existing studies in Datasets 1, 2, and 3 are 98.7%, 95.71%, and
98.96%, respectively. Our proposed method obtained better results than the existing studies
in all datasets.

6. Conclusions

Detecting brain tumor types in MRI images using computer-aided systems and
promptly initiating the appropriate treatment process is paramount. Although CNN
models are widely used in disease detection from medical images, they often face the
problem of overfitting when training on limited labeled data and data with high inter-class
similarity. By employing diverse CNN models with varying architectures and utilizing
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transfer learning and the ensemble method, we enhance the breadth of feature extraction
within the dataset, effectively addressing the overfitting issue. With the framework we
developed in this study, we train the CNN models with different architectures on a dataset
and determine the best-performing models. Combining these models with a PSO-based
algorithm and ensemble method with optimum weights, we detected brain tumor types
with high accuracy. We trained the framework on three brain tumor datasets, identified the
best CNN models for each dataset, and determined their optimal weights. We obtained
99.92% accuracy and a 99.92% F1-score on the test data of the Dataset 3. The proposed
model outperformed the existing studies. We achieved successful performances with our
proposed framework on all three brain tumor datasets, which shows that the proposed
framework is consistent in brain tumor classification. It contributes to the automatic detec-
tion of brain tumor types and doctors’ decision-making processes. Different CNN models
will be added to future studies. In addition, this model is planned to be used in other
datasets. This research brings numerous advances in the use of deep learning models to
classify brain tumors, but it also has some limitations. Data preprocessing was performed
prior to training the models with the MRI images in the datasets. One of the study’s
shortcomings is the lack of documentation of the model training phase using the original,
non-preprocessed images in the datasets. Future research will address this constraint by
investigating the role of data preprocessing in the success of brain tumor diagnosis.
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