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Abstract: One of the most challenging and prevalent side effects of LVAD implantation is that of right
heart failure (RHF) that may develop afterwards. The purpose of this study is to review and highlight
recent advances in the uses of Al in evaluating RHF after LVAD implantation. The available literature
was scanned using certain key words (artificial intelligence, machine learning, left ventricular assist
device, prediction of right heart failure after LVAD) was scanned within Pubmed, Web of Science,
and Google Scholar databases. Conventional risk scoring systems were also summarized, with their
pros and cons being included in the results section of this study in order to provide a useful contrast
with Al-based models. There are certain interesting and innovative ML approaches towards RHF
prediction among the studies reviewed as well as more straightforward approaches that identified
certain important predictive clinical parameters. Despite their accomplishments, the resulting AUC
scores were far from ideal for these methods to be considered fully sufficient. The reasons for this
include the low number of studies, standardized data availability, and lack of prospective studies.
Another topic briefly discussed in this study is that relating to the ethical and legal considerations of
using Al-based systems in healthcare. In the end, we believe that it would be beneficial for clinicians
to not ignore these developments despite the current research indicating more time is needed for
Al-based prediction models to achieve a better performance.

Keywords: left ventricular assist device; right heart failure; right ventricle failure; artificial intelligence;
machine learning

1. Introduction

Despite all the major pharmacological and clinical improvements in cardiovascular dis-
ease management, heart failure still remains a global public health concern, with dramatic
increases annually [1]. Since ventricular assist device implantation began to be used for end
stage heart failure patients, treatment strategies for heart failure have changed dramatically.
Currently, left ventricular assist device (LVAD) implantation is the most accepted alterna-
tive treatment option of heart transplantation for the aforementioned patient group. As a
result of the advancements in LVAD technology and experience in using it, 1-year survival
after implantation has now increased to over 80% [2-6]. However, well-known and serious
side effects still exist. One of the most challenging and prevalent side effects of LVAD
implantation, which is the topic of our review, is that of right heart failure (RHF) that may
develop afterwards and may cause significant early- and/or long-term detrimental effects.
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RHF occurs in 10-40% of all cases after LVAD implantation [7-25]. The main reasons
for this wide prevalence range that is reported in different studies are differences in the di-
agnostic criteria of RHF, patient demographic characteristics, and institutional management
strategies [26,27]. Even though well-accepted signs and symptoms of RHF are known by
all clinicians, there remain no universally accepted classification and definition algorithms.
Certain studies are based on clinical statuses like high central venous pressure (CVP), the
requirement of inotropic support, an increase in pulmonary arterial pressure, nitric oxide
(NO) inhalation, or the requirement of mechanical support for the right ventricle [28-34].

Over time, certain changes have been made to eliminate ambiguity and inconsistency
in the definition of RHF [35-38]. Recently, the Mechanical Circulatory Support Academic
Research Consortium has proposed a broader, more comprehensive definition of RHF after
LVAD implantation [39].

The fact that most studies are conducted in a single center and on relatively small
patient groups reduces the reliability of the analyses of the pre- and postoperative results.
The variable characteristics of LVADs and patient demographics also make meaningful
interpretations difficult. Additionally, due to the complex and heterogeneous pathophysiol-
ogy of RHE it is not easy to classify or generate a risk score for post-LVAD RHF. However,
risk scores created using multivariate analyses have provided significant benefits in de-
termining the development of RHF. Thus, it would not be wrong to say that one of the
most useful things to carry out in order to prevent RHF after LVAD implantation is to use a
validated risk scoring system.

On the other hand, with the increasing use of Al and ML applications in the medical
field in recent years, the doors of new development have been opened in this regard. The
number of studies conducted on this subject is increasing year by year.

Being first proposed by Alan Turing in 1950, Al is the concept of creating a digital mind
that can learn and “think” like a human mind can. ML is a process that is encompassed
by Al, where a software model can learn to acquire new data and interpret them in a
meaningful way for the task at hand, therefore providing useful feedback and surpassing
classical algorithm-based computer programming. It is viable that Al could fulfill any and
all given assignments as long as the ML model is sophisticated enough [40-42].

There are two main approaches to ML with many more subtypes and variations below
them. “Supervised ML” involves identifying and labeling data with known class informa-
tion and training the ML model with this available knowledge. Therefore, a ML model
can then determine the common properties within each class and thus “learn” to identify
that class on its own. Supervised ML, however, requires manual dataset preparation for
labelling and needs expert knowledge about the task [43,44].

The second approach of “unsupervised ML” is carried out by making all the data
available to the software model, withholding the information about classes, and letting
the ML model decide which cases belong together according to their data similarities.
Unsupervised ML can be very beneficial for obtaining new information about complex
systems with many variables as clustering decisions and feature associations are made
by the model on its own, sometimes yielding previously unexpected results. [43,44]. A
flowchart visually explaining the ML process is shown in Figure 1.

Regarding our subject matter, it can be easily imagined that Al will be able to help
in a multitude of ways, such as by discovering RHF mechanism-hidden parameter rela-
tionships, the early prediction of risk groups pre-implantation, the identification of clinical
parameters that are critical for early RHF detection post-implantation, and determining
treatment plans for RHF patients post-implantation in order to change their prognosis.
Achieving all of these tasks through conventional means seems to be a difficult undertaking
when the sheer volume of data analysis that would be necessary is considered. Therefore,
utilizing Al for this job appears to be a natural fit [45—48].

The purpose of this study is to review and highlight recent advances in the uses of Al
in evaluating RHF after LVAD implantation as these types of research will lead to a better
understanding of a common issue with LVAD implantation, which is of critical importance.
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Figure 1. A flowchart visually explaining the machine learning process. Abbreviations: ML:
machine learning

2. Method
The available literature has been scanned using the following phrases: “artificial

”u

intelligence and left ventricular assist device”, “machine learning and left ventricular
assist device”, “right heart failure and machine learning”, “prediction of right heart failure
after LVAD”, “deep learning and LVAD”. Pubmed, Web of Science, and Google Scholar
databases were used in order to search for published articles. In order to achieve a better
understanding of the role of Al and ML techniques, we also reviewed studies relating to
previous risk scoring systems and summarized them all with their pros and cons. All the
published articles were analyzed by the authors of this review. We found 9 studies using
conventional risk score systems (Table 1) and 9 studies using Al systems (Table 2) for the
prediction of RHF after LVAD implantation. We believe this will provide a useful contrast
with Al-based models and allow readers to compare these different approaches and their
results to the same problem of RHF post LVAD implantation.
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Table 1. Comparison of studies using conventional risk prediction scores for RVF after LVAD implantation.

Study
(Author, Year, RVF Risk Score)

Sample

(n, Center, Device Type)

Study Design

Definition of RVF (Rate)

RVF Risk Score Component

Results

35% .
. . . . -Vasopressor requirement — 4
-Matthews et al. [49] -197 patients —Retrospgctlve analysis of a “Need for postoperative IV inotrope support -AST being >80 1U/1 — 2 -RVF developed in 80% of patients with
: prospectively collected for >14 days o O 2
-2008 -Single center LVAD database Inhaled NO for >48 h -Bilirubin being >2.0 mg/dL — 2.5 a RVFRS of >5.5
-Michigan RV risk score -Mostly pulsatile . . S -Creatinine being >2.3 mg/dL — 3 -AUC of a RVFRS was 0.73 & 0.04
-MLR -Right-sided circulatory support
Hospi . : -Renal replacement therapy — 3
-Hospital discharge on an inotrope
37% 18. (CI) + 18. (RVSWI) + 17. (creatinine)
-Fitzpatrick et al. [50] -266 patients R . -Preoperative RV dysfunction grade ) L . ’ -Score of >50 predicting the need for
. -Retrospective . +16. (previous cardiac surgery) + 16. .
-2008 -Single center MLR -None — mild — moderate — severe (RV dysfunction) + 13. (systoli BiVAD
-Penn RVAD risk score -Mostly pulsatile -As determined from the echocardiogram ystunctio - (Systolic -83% sensitivity and 80% specificity
- . . blood pressure)
performed prior to LVAD insertion.
_ 0, : .
DT =35 RVF% fog risk score:
-Drakos et al. [51] _175 patients -Retrospective analysis of a 44% -IABP — 4 5S§7%T) 1_13/;(7
o /P prospectively collected -Need for inhaled NO for >48 h -PVR of >43 WU — 4 e
-2010 -Single center - ; 8.5-12.0 = 56%
. . LVAD database -IV inotropes for >14 days -Inotropic dependency — 2.5 o
-Utah RV Risk Score -Mostly pulsatile . . >12.5=83%
-MLR RVAD implantation Beta-blocker — 2 The A £ the risk
Obesity — 2 -The AUC of the risk score was
0.743 + 0.037
20% -Survival for patients without RVF at 180
-Kormos et al. [52] -484 patients _Retrospective -Requiring a RVAD —_I(\:T\e/eI;/ fI; fV\i_Ie)OOf;gfge days: 89%
-2011 -Multicentre MLR P -IV inotropes for >14 days after implantation Ventilatorl:s)u port -Survival for patients with RVF at 180
-Kormos (HM II) RVF risk score -HM II -And/or inotropic support starting more than _BUN level OFE 39 me/dL days: 71%
14 days after implantation 8 -AUC of the risk score was 0.68
Criteria for initial BiVAD (rate 23%) -CVP of >15 mmHg — 4 -93% of patients with a score of 1 or less
-Atluri et al. [53] -218 patients _Retrospective Based upon ECHO parameters -Severe RVD — 2 underwent successful isolated LVAD
-2013 -Single center MLR P -RV contractility -Intubation preoperatively — 2.5 -80% of patients with a score of 4 or
-CRITT score -HM I, pulsatile -Tricuspid regurgitation -Severe TR — mg/dL — 3 higher required BiVAD
-Tricuspid annular motion -Tachycardia of >100 bpm — 3 -AUC of the risk score was 0.80 & 0.04
29%
-Need for inotropes for >14 days.
-Need for temporary RVAD
-Raina et al. [10] -55 patients . Criteria for initial BiVAD (rate of 23%) -LA volume index of <38 mL/m? — 3 - o
-2013 -Single center :I\Ijleglr{ospectlve -Severe RVD on TTE -RV FAC of <31% — 2 -Scorei(f)if IZt ’ h? ;18?’/8‘13;1 Sltrlvclltiyt?ri 6»;’{(3;1101
TTE Score -Mostly HMII -Severe PHT with a PVR of >5 WU or RAP of ~ -RA pressure of >8 mm Hg — 2 aspectiatty o o I predicing
>15 mmHg
-Sustained VA causing
hemodynamic compromise
-Aissaoui et al. [54] .-giznp?et lfgrtier Prospective 57% -Em/SLAT of >18.5 — 3 -ARVADE score of >3.0 was predictive of
-2015 M ‘Eﬂ HM IT. HeartWare —MLRP -Need for placement of a temporary RVAD -RVEDD of >50 mm — 2 post-LVAD RVF
-ARVADE score s . -Use of inotropic agents for 14 days -INTERMACS level 1 — 1.5 -Sensitivity of 89% and specificity of 74%

HVAD, pulsatile
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Table 1. Cont.

Study Sample . N .
(Author, Year, RVF Risk Score) (n, Center, Device Type) Study Design Definition of RVF (Rate) RVF Risk Score Component Results
258 patient 550 -DT — 1 -Rate of RVF was 9% for a score of <2
-Loforte et al. [55] patients . o . -PAPi<2 —1 -Rate of RVF was 57% for a score of 2-3
-2 centers -Retrospective -Receiving short- or long-term RVAD despite . o
-2018 . 2 . . -RV/LV ratio of >0.75 — 1 -Rate of RVF was 100% for a score of 4-5
-Mostly HM II, HeartWare -MLR maximal dosage of continuous inotropic . 2 . : P
-ALMA Score HVAD. HM 3 +t and NO ventilation -RVSWi of <300 mmHg/mL/m?* — 1 -A score of 3 points provided sensitivity
’ supporta entriatio -MELD-XI score of >17 — 1 and specificity higher than 80%
EUROMACS-RHEF risk score/after
adding CPB time . o .
2988 Patients EUROMACS o Need for >3 inotropic agents — 2.5/2 slj(ljeF é}%‘_gﬁgegflrﬁjr’z}}il }/1 r(};’lfvszi‘rl; of
-Soliman et al. [56] Database -Retrospective analysis of the Re . -INTERMACS class 1-3 — 2/2 o g
. -Receiving short- or long-term RVAD support . o >4
-2018 -Multicentre EUROMACS database . . . -Severe RVD on the semiquantitative .
. . -Continuous inotropic support for >14 days -AUC of the risk score was 0.75, 0.66, and
-EUROMACS-RHF risk score -Continuous-flow HeartWare -MLR ECHO — 2/1. .
0.60 in the HM II, HeartWare HVAD,

HVAD, HM II, HM 3

-NO ventilation for >48 h

-RA/PCWP of >0.54 — 2/1
-Hemoglobin being <10 g/dL — 1/1.5
-CPB time being >100 min — -/1

and HM 3

Abbreviations: RVF: right ventricular failure; LVAD: left ventricular assist device; MLR: multivariate logistic regression analysis; IV: intravenous; NO: nitric oxide; AST: aspartate
aminotransferase; RVFRS: right ventricular failure risk score; AUC: area under the ROC curve; RVAD: right ventricular assist device; CI: cardiac index; RVSWI: right ventricular stroke
work index; BiVAD: biventricular assist device; DT: destination therapy; IABP: intra-aortic balloon pump; PVR: pulmonary vascular resistance; HM II: HeartMate II; CVP: central
venous pressure; PCWP: pulmonary capillary wedge pressure; BUN: blood urea nitrogen; ECHO: echocardiography; RVD: right ventricular dysfunction; TR: tricuspid regurgitation;
TTE: transthoracic echocardiography; PHT: pulmonary hypertension; PVR: pulmonary vascular resistance; WU: wood unit; PAP: pulmonary artery pressure; VA: ventricular arrhythmia;
LA: left atrium; RV FAC: right ventricular fractional area change; RA: right atrium; Em/SLAT: pulsed Doppler transmitral E wave/tissue Doppler lateral systolic velocity; RVEDD:
right ventricular end-diastolic diameter; INTERMACS: Interagency Registry for Mechanically Assisted Circulatory Support; HM3: HeartMate 3; PAPi: pulmonary artery pulsatility
index: MELD-XI: model for end-stage liver disease excluding the international normalized ratio; EUROMACS: European Registry for Patients with Mechanical Circulatory Support;

CPB: cardiopulmonary bypass.

Table 2. Method and performance summary of the reviewed Al publications.

Authors (et al.)

Year Title

Data Source

Findings

A Bayesian model to predict RVF following

INTERMACS data

Systolic PAP, pre-albumin, LDH, and RV EF are the

most predictive preoperative variables.

Loghmanpour [57] 2016 LVAD Therapy Patients: 10,909 AUC of acute, early, and late RHF predictions is
between 0.83 and 0.90 with a sensitivity of 90%
Samura [58] 2018 Prediction of RVF after left LVAD implantation using Preoperative clinical and hemodynamic parameters Prediction accuracy is 95%, AUC is 0.85

ML for preoperative hemodynamics

Patients: 115

Bellavia [59]

Usefulness of regional RV and right atrial strain for the
2020 prediction of early and late RVF following a LVAD
implant: a ML approach

Biomarkers, echocardiography,
cath-lab measurements
Patients: 74

Significant predictors: Michigan risk score, CVP,
and systolic strain of RV free wall.

ROC AUC is 0.95
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Table 2. Cont.

Authors (et al.) Year Title Data Source Findings
Shad [60] 2021 Predicting post-operative RVF using video-based Preoperative echocardiography video ML AUC is 0.729,
deep learning Patients: 723 CRITT AUC is 0.616, Penn AUC is 0.605
o o N ) .
. Using ML to improve risk prediction about durable INTERMACS data 48'5.5 /04 anc;l 36.9% in 90 day and 1-year mortahty
Kilic [61] 2021 . - . prediction improvements using ML compared with
LVAD implantation Patients: 16,120 L. . R
usual logistic regression data analysis
. ML approaches to analyzing adverse events following ENDURANCE trials Bleeding, mf.ectlon, and RHF are the most common
Kilic [62] 2021 . . . postoperative adverse events. RHF has a strong
durable LVAD implantation Patients: 564 or . L . . .
transitive relationship with bleeding and infection
Nayak [63] 2022 ML algorithms that identify distinct phenotypes of IMACS data Four post-LVAD RHF phenotypes are identified
y - RHF after LVAD implantation Patients: 2550 Clinical outcomes are evaluated
Bahl [64] 2023 Explainable ML analysis of RHF after INTERMACS data Five best predictors are identified
LVAD implantation Patients: 19,595 Non-linear relationships are identified
Just [65] 2023 Al-based analysis of body composition that predicts the Preoperative CT scan Adipose tissue is an indicator of postoperative

outcome for patients receiving long-term MCS

Patients: 137

major complications.

Abbreviations: RVF: right ventricular failure; LVAD: left ventricular assist device; INTERMACS: Interagency Registry for Mechanically Assisted Circulatory Support; PAP: pulmonary
artery pressure; LDH: lactate dehydrogenase; RV EF: right ventricular ejection fraction; AUC: area under the ROC curve; RHF: right heart failure; ML: machine learning; CVP: central
venous pressure; ROC: receiver operating characteristic; IMACS: International Registry for Mechanically Assisted Circulatory Support; MCS; mechanical circulatory support; CT:
computed tomography.
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3. Results
3.1. Conventional Risk Prediction Scores

In order to more accurately predict the risk of developing RHF after LVAD implanta-
tion, risk scoring studies began to emerge after the 2000s. Successive studies conducted
after 2008 have aimed to guide clinical practices in this regard. A significant part of these
studies are single-center studies, and various clinical, hemodynamic, biochemical, and
echocardiographic data were evaluated together to attain the most ideal scoring system
(Table 1). The definition of RHF varies for each study. Additionally, there is no full
consensus on the variables used to create the risk score. In 2008, Matthews et al. used
multivariate logistic regression for patients who had mostly underwent pulsatile LVAD
implantation [49]. The Michigan right ventricular failure risk score (RVFRS), which was
developed by the authors, is the first model for the preoperative risk stratification of RV
failure in LVAD candidates. An elevated ALT, vasopressor requirement, as well as high
bilirubin and creatinine levels were predictors of RHF in multivariate analyses. These
variables were used to create the risk scores. This model has been found to be very effective
in predicting RHF after LVAD implantation. In the same year, the Penn RVAD risk score
was created by Fitzpatrick et al. [50]. This study established a risk score by showing that
a low preoperative cardiac index (CI) and right ventricular stroke work index (RVSWI),
severe pre-VAD RV dysfunction, a high creatinine level, previous cardiac surgery, and
hypotension all increase the risk of RHF after LVAD implantation. After analysis of this
risk scoring, it was revealed that successful LVAD support was predicted for patients with
a low score, while the probability of biventricular assist device (BiVAD) placement was
high for patients with a high score.

One previous study, which used multivariate logistic regression analysis, pointed to
three preoperative factors that seemed to be significantly associated with RVF after LVAD
implantation as follows: (1) the need for intra-aortic balloon counterpulsation before the
operation, (2) an increase in pulmonary vascular resistance, and (3) device implantation as
a destination therapy [51]. The risk score (Utah RV risk score) was calculated as the sum of
the points assigned for the existence of a certain perioperative variable (Table 1).

The developed RVF risk score effectively predicted the risk of RV failure. Additionally,
the results revealed a significant reduction in survival at days 30, 180, and 365 after LVAD
implantation using the risk score model.

In 2011, Kormos et al. evaluated the incidence, risk factors, and effect of the out-
comes of right ventricular failure for patients who had been implanted with a continuous-
flow LVAD (HeartMate II) [52]. Multivariate analysis showed that a central venous pres-
sure/pulmonary capillary wedge pressure ratio (CVP/PCWP) higher than 0.63, the need
for preoperative ventilator support, and a BUN level higher than 39 mg/dL were indepen-
dent predictors of right ventricular failure after HeartMate II implantation. The authors
also concluded that the rates of RVF and RVAD need that were observed for patients with
the HeartMate II are low relative to the previous results with pulsatile LVADs and support
the use of new-generation continuous-flow devices for end-stage heart failure.

In another study, Atluri et al. defined severe right ventricular dysfunction based on
echocardiographic parameters, taking into account right ventricular contractility, tricuspid
regurgitation, and tricuspid annular motion [53]. In multivariate logistic regression analysis,
a CVP of > 15 mmHg, severe RV dysfunction, preoperative intubation, severe tricuspid
regurgitation, and tachycardia were determined to be major criteria predicting the need
for biventricular support. Based on this analysis, they established the CRITT score as a
predictor of RVE. The ability to quickly calculate the CRITT score at the bedside without
the need for complex calculations is an advantage that increases its applicability.

Many of the RV risk scoring systems that were first proposed did not use detailed
imaging parameters to aid risk stratification. Raina et al. combined echocardiographic
variables, such as right ventricular fractional area change (RV FAC), the left atrial (LA)
volume index, and the estimated right atrial (RA) pressure with an echocardiographic
scoring system to estimate RVF [10]. They concluded that combining the echocardiographic
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variables with a simple, easily interpreted echocardiographic scoring system significantly
improved the prediction of RVF versus any one echocardiographic variable used to carry
this out alone.

Afterwards, a study from Germany proposed the ARVADE score, which consists
of echocardiographic parameters [54]. In this study, multivariable analysis identified an
INTERMACS level 1, an Em/SLAT ratio of >18.5 (Em: pulsed Doppler transmitral E
wave; SLAT: tissue Doppler lateral systolic velocity), and the basal a RVEDD of >50 mm
(right ventricular end-diastolic diameter) as independent predictors. Authors concluded
that the ARVADE score, when calculated as the sum of scores for one clinical and three
echocardiographic measures reflecting LV global systolic and diastolic dysfunction and RV
congestion, may estimate suitability for LVAD implantation.

In 2018, Loforte et al. introduced a simple and easily memorized risk stratification
tool (ALMA score) to determine whether an isolated LVAD (continuous-flow device)
implantation could be tolerated [55]. A five-point risk score was developed based on the
clinical variables identified in the multivariate logistic regression analysis as follows: the
destination therapy (DT) intention, a pulmonary artery pulsatility index (PAPi) of <2, a
right ventricular stroke work index (RVSWi) of <300 mm of Hg/mL/m?, a RV/LV ratio
of >0.75, and a model for end-stage liver disease excluding international normalized ratio
(MELD-XI) score of >17. Based on this model, the authors recommended BiVAD for patients
with a score of 4 or 5.

Historically, older RVF risk scores were developed in the era of pulsatile-flow LVADs.
The lack of validation studies has made it difficult for these models to accurately predict
RVF in the current continuous-flow LVAD population. To more accurately predict RVF,
models that use retrospective, predominantly single-center, primarily continuous-flow
LVAD data have been developed. However, a common shortcoming in both the old and
new risk scoring models is that they are subject to limited external validation and have a
modest predictive value.

In 2018, Soliman et al. developed and validated a simple score to predict early RHF
after continuous-flow LVAD implantation in a large population from the EUROMACS
database [56]. The EUROMACS-RHEF risk score is composed of severe RV dysfunction, a
ratio of RA/PCWP of >0.54, advanced INTERMACS classes of 1-3, a need for >3 intra-
venous inotropes, and hemoglobin of <10 g/dL. A composite 5-point score predicted early
RHF after LVAD implantation; moreover, as the score increased, the risk of both RHF and
mortality increased. They claimed that the EUROMACS-RHEF risk score outperformed the
previously published scores and the known individual echocardiographic and hemody-
namic markers of RHE. Finally, they validated the risk model in the validation cohort. The
c index was 0.70 in the derivation versus 0.67 in the validation cohort.

Early studies examining the risk factors associated with RVF and developing various
risk scores were generally based on the weighted sum of 4-7 risk factors contributing
modest sensitivity or specificity. In addition, accurate predictions for patients who are
at risk of RVF after LVAD implantation depend on the multidimensional and variable
interactions of many perioperative variables that cannot be adequately captured using
traditional multivariate modeling techniques. As a result, generalized recommendations
for patient selection that are obtained from relatively small single-center patient groups
have limited usefulness in practice.

Prediction models that we have summarized so far were the conventional statisti-
cal analysis methods. As Al began proving itself more within healthcare, heart failure
subgroup-specific research increased as well, where the considerable LVAD- and heart
transplant subject-related Al literature began populating journals more and more. Al-
though the studies that are mentioned above evaluated risk factors regarding post-LVAD
RHEF, the fact that this is a multifactorial problem makes it especially hard to effectively
investigate this issue properly through conventional means. Due to this reason, Al and ML
enable a more comprehensive avenue of research on this topic.
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3.2. AI-Based Studies/Risk Scores

The use of Bayesian statistical modeling was proposed by Loghmanpour et al. to
overcome the limited predictive capacity of risk scores obtained from existing multivariate
analyses [57]. This recommendation of the authors is based on the hypothesis that it is
essential to consider the relationships and conditional probabilities between independent
variables to achieve satisfactory statistical accuracy. In this context, Bayesian network (BN)
algorithms can account for the nonlinear interactions between variables by identifying
groups of risk factors and their conditional interdependencies. The Bayesian models
reported in this study are particularly suitable for combining large sets of risk factors
because they are based on the conditional probabilities of the likelihood of RVF for a
given combination of interrelated variables. The authors suggested that these algorithms
better reflect the prioritization of dynamic clinical information when using data provided
by the INTERMACS database. To the authors” knowledge, this was the first report of a
prognostic RVF model following continuous-flow LVADs using the INTERMACS database
and adopting ML methods for statistical analysis. They extracted 34 preoperative variables
from the INTERMACS database of 10,909 patients from 2006 to 2014 in order to predict
RVF after LVAD implantation. The definition of RVF was based on the INTERMACS
definition prior to 2014. Overall, 2024 patients were diagnosed with RVF (18.5%), 293 with
acute (<48 h after implant) RVF (2.7%), 1036 with early (from 48 h to 14 days) RVF (9.5%),
and n = 695 with late onset (>14 days) RVF (6.4%). Systolic PAP, pre-albumin, LDH, and
RVEF parameters were found to have the most predictive value among all the preoperative
variables. The authors acknowledged that a retrospective study with incomplete data was
not ideal for a more detailed analysis where RVF severity could also be considered. Patients
already who were considered too risky for LVAD implantation due to the possibility of
RVF and who thus never received a LVAD were unavoidably omitted from the dataset,
perhaps skewing results. The authors analyzed accuracy, the area under the ROC curve
(AUC), sensitivity, and specificity, respectively. According to their findings, the AUC of the
Bayesian model was 0.90 for acute RV failure, 0.84 for early RV failure, and 0.88 for late
RV failure after LVAD implantation, which significantly outperformed all the previously
published risk scores.

In a 2018 study, Samura et al. utilized a supervised ML model in order to predict
right ventricular assist device (RVAD) requirements for patients that will undergo LVAD
implantation [58]. They used 42 preoperative clinical and hemodynamic parameters of
115 patients that proceeded to be implanted with a continuous-flow LVAD between the
years of 2013 and 2017. As a result of their study, five parameters were highlighted as
having the highest predictive value as follows: the left ventricular end-diastolic dimension,
the left ventricular end-systolic dimension, the left ventricular ejection fraction, the etiology
of the dilated phase of hypertrophic cardiomyopathy, and the less-distensible right ventricle.
Eight different ML algorithms were tested in order to obtain the best results, and they
declared that a derived naive Bayes model achieved a high level of accuracy of 95% and
an area under the curve (AUC) value of 0.85. The researchers concluded that this method
was useful and feasible in order to preoperatively predict which patients would likely need
RVAD implantation.

Bellavia et al. used the ML approach to find out the association between the regional
right ventricular and right atrial strains for the prediction of right ventricular failure in both
the early and late postoperative period [59]. The Michigan risk score along with CVP and
the apical longitudinal systolic strain of the right ventricular free wall were found to be the
most important predictors of acute RHE. For chronic RHEF, the most prominent predictors
were those of right ventricular free wall systolic strain of the middle segment, right atrial
strain, and tricuspid annular plane systolic excursion.

Shad et al. used a combination of greyscale video data and optical flow streams from
the video data with a three-dimensional 152-layer deep learning ML algorithm. A total
of 1909 scans from 723 patients were evaluated in order to predict RHF development in
LVAD patients [60]. The researchers used two clinical risk score systems, which were
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those of the CRITT and PENN scores, to identify patients who were potentially at risk of
RHF after LVAD implantation. Subsequently, they compared the deep learning and ML
system performance to the risk scores. The study included 941 LVAD patients who were
separated into two groups as follows: group one (n:182) with RHF and group two (1:541)
without RHF. Researchers found that the calculated area under the curve (AUC) using the
CRITT and PENN scores were 0.616 and 0.605, respectively. The AUC of their Al system
was reported to be 0.729, which means that the newly developed deep learning system
performed with a higher level of accuracy in predicting RHF. Although they worked
with a small and limited dataset, the results were challenging; they believed that Al
would find a wider working place in relation to cardiovascular disease on account of this,
especially when carrying out prediction studies. They further argued that when RVAD
implantation is planned beforehand, which may perhaps be planned concurrently with
LVAD implantation as opposed to using emergent RVAD implantation after the patient’s
condition deteriorates, being able to predict the eventual development of RHF in patients
before LVAD implantation may improve patient survivability as a result.

In 2021, Kilic et al. utilized extreme gradient boosting, which is an ensemble ML
algorithm, in order to investigate the preoperative data’s association with postoperative
adverse events, which translates into 90-day and 1-year survival rates [61]. This study
involved 16,120 patients from 170 centers, with the dataset being acquired from the INTER-
MACS database. It includes patient demographics, comorbidities, laboratory parameters,
clinic visit measurements, interval events during hospitalization prior to LVAD insertion,
and concomitant operative procedures. Post-LVAD data collected in the INTERMACS
database include those relating to adverse events and survival. Examples of these adverse
events include thrombosis, RHEF, infection, and bleeding. Reportedly, the end result of this
study found that there was an improvement of 48.8% (p < 0.001) in the 90-day mortality
prediction and an improvement of 36.9% (p < 0.001) in the 1-year mortality prediction
through ML compared with usual logistic regression data analysis. ML models derived
using the XGBoost algorithm were well calibrated and had an improved level of discrimi-
nation over logistic regression. Based on these findings, they concluded that ML may have
an important role in risk prediction in LVAD treatment both independently and in addition
to traditional modeling approaches such as logistic regression. Further study that focuses
on specific adverse event prediction, such as RHF, may be conducted in order to better
understand the underlying mechanisms of these clinical outcomes, which would translate
into creating a better patient treatment plan accordingly.

Using the statistical computing tool called “R”, Kilic et al. evaluated data from EN-
DURANCE trials in 2020, which included 564 patients [62]. This study aimed to analyze
the risk of major adverse events after LVAD implantation and how they transitioned
into each other. These events were device malfunction, bleeding, infection, neurologi-
cal/renal/respiratory dysfunction, and RHF. They identified that the most common ad-
verse events were bleeding and infection. Interestingly, they found that RHF is one of the
top three adverse events that leads to further adverse events most often, with bleeding
and infection being the other two. The highest transition probabilities were found to be
those of infection to infection (0.34), bleeding to bleeding (0.31), RHF to bleeding (0.31),
RHEF to infection (0.28), and bleeding to infection (0.26). Additionally, they found that RHF
had the lowest median time to the first adverse event, which was 3.5 days. Highlighting
the importance of RHF for overall mortality rates post-LVAD implantation, patients with
RHF were shown to have 50% mortality rates. RHF was also identified to be significantly
linked with bleeding and infections, and it then follows that RHF prediction is vital for the
successful survivability of long-term LVAD patients.

A total of 2550 patient data from the International Registry for Mechanically Assisted
Circulatory Support (IMACS) database were utilized by Nayak et al. in 2022 in order
to analyze 41 pre-implant variables of patients with acute post-LVAD RHF [63]. An un-
supervised ML model was used in their work, identifying four RHF phenotypes, with
the severe shock phenotype having the worst clinical outcomes. Ischemic cardiomyopa-
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thy (ICM) with a low-grade shock and non-ICM without any shocks were the two other
phenotypes identified. The best clinical outcomes were observed for ICM without any
shock phenotypes. The notion of classifying patients into phenotypes may prove useful
for future research as applying separate ML-based prediction or analysis models to the
significantly differing pathophysiologies of RHF could improve the predictive capabilities
of pre-implant evaluations overall.

The study that was designed by Bahl et al. was one of the newest studies that focused
on ML and RHEF [64]. They preferred an “explainable” ML method called boosted deci-
sion trees in order to analyze the preimplant patient factors in nonlinear interactions with
RHEF after LVAD implantation. The study includes patients in the INTERMACS database
who were implanted with their first durable LVAD between 2008 and 2017. A total of
186 potential risk factors were analyzed from 19,595 patients as unbiasedly and as com-
prehensively as possible. This study was aimed at better quantifying and understanding
how different clinical variables both impact each other and the complex mechanism that
leads to RHF after LVAD implantation. The study showed that in 19.1% of patients, severe
RHF developed within the first 30 days. Thirty top predictors of RHF were identified. The
INTERMACS profile, model for end-stage liver disease score, number of inotropic infusions,
hemoglobin, and race were the first five top factors. Additionally, many of these top factors
showed nonlinear relationships with key risk inflection points such as an INTERMACS
profile of 2-3, right atrial pressure of 15 mmHg, pulmonary artery pressure index of 3, and
prealbumin level of 23 mg/dL. They claimed that ML offers a number of algorithms that
are far more flexible and are well equipped for high-dimensional, nonlinear, interacting
relationships. They also believed that this study could open a new era for researchers to
formulate patient optimization strategies before LVAD implantation.

Using a convolutional neural network (U-Net), Just et al. evaluated the preoperative
CT scan data of 137 patients in order to assess their body composition and then predict major
postoperative complications after LVAD implantation [65]. Body composition evaluation
included the visceral and subcutaneous adipose tissue areas, psoas, total abdominal muscle
areas, and sarcopenia. The body composition parameters were correlated with the major
postoperative complication rates, such as postoperative infections, in-hospital mortality,
and overall quality of life. They found that the adipose tissue distribution/concentration
was an effective predictor of postoperative infections, in-hospital mortality, an impaired
6 min walking distance, and quality of life within 6 months postoperatively. While the
study focused on all the causes related to the outcome prediction, RHF was one of the poor
outcome classes present in the dataset. Therefore, a focus study on the usefulness of Al in
RHEF prediction using a similar dataset might be warranted. The method and performance
summary of the reviewed publications are presented in Table 2.

4. Discussion

Due to the high morbidity and mortality of RHF after LVAD implantation, effective
treatment methods are quite comprehensive and depend on center experiences and op-
portunities. The initial therapy after post-LVAD RHF starts is that using pharmaceutical
treatment (inotropic support, NO inhalation, and forced diuresis). If RHF still remains after
efficient medical treatment, mechanical device support comes into consideration even with
the accompanying high mortality rates [66-72].

Therefore, it is critical to decide whether the patient needs BVAD before or during
surgery at the latest. However, despite the preparations and precautions taken by evalu-
ating many clinical, hemodynamic, biochemical, and echocardiographic criteria, it is not
always possible to make the right choice between LVAD and BVAD. In order to make the
right decision, it is important to thoroughly evaluate the right ventricular anatomy and
functions before surgery [73-100].

Previously published prediction models were used to find out the link between post-
LVAD RHF and the possible risk factors such as those in linear interactions.
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However, just like RHF does, certain clinical situations usually present complex clinical
aspects that may force the clinicians to think in a versatile manner to improve the outcomes.
ML is a new, challenging method that has started to be used for cardiovascular diseases,
especially for decision making, prediction scores, and prognostication. Compared with
conventional statistical methods that work to find out the correlations between risk factors
and the outcomes through mathematical equations, ML aims to discover the association
between multiple variables and outcomes using observations for linear and nonlinear
interactions. The advantages of the technique have covered most of the gaps in the research
field and provide more opinions for future studies.

In this comprehensive review, we analyzed and summarized published studies that
had already taken place in the literature and aimed to report the prediction of RHF after
LVAD implantation using ML.

As per the details of the abovementioned studies that we have summarized, there are
certain points that should be emphasized in order to clarify the aims of ML approaches.
For instance, the design of the studies is the most important checkpoint that increases
their value. The results of the multi-centered planned studies appear to be stronger for the
researchers. For this purpose, Kili¢ et al. conducted multi-centered research that included
more than 15,000 patients” data that had been acquired from the INTERMACS database [61].
It is not easy for statistical methods to compare very highly variable factors with each other
in an unbiased way in order to find the ones with the most predictive value. Another
favorable feature of Al studies is determined using echocardiographic scans. Shad et al.
reported that the data obtained with the help of Al performed better compared with the
manually obtained echocardiographic measurements and clinical risk scores (CRITT and
Penn) [60]. An Al-based system directly analyses the spatiotemporal information from
the cardiac walls and valves instead of carrying out a segmental evaluation of the cardiac
chambers. Consequently, the misleading results that were obtained through manually
calculating cardiac functions were eliminated. While they used the largest dataset of
echocardiography, they also noted certain limitations. Because the study was planned
retrospectively, the acquisition of the echocardiography dataset remains unstandardized.
Additionally, the timing of the last echocardiographic scans was not carried out following
the same timeline for all the patients. Although the key point of the study was the focus that
was paid to the pre-training large video dataset, it was noted that prospective evaluations
and timeline standardization would result in much better estimations.

In addition to the echocardiographic images that were used in making predictions
for LVAD patients, the Berlin Heart Center researchers reported an interesting study
designed to find out the relationship between body composition and postoperative LVAD
complications using Al techniques. A total of 137 patients were included in the study
who had underwent a CT scan before surgery. The Al-based evaluation of their body
composition demonstrated that a higher number of patients with higher levels of visceral
adipose tissue and subcutaneous adipose tissue suffer worse postoperative outcomes. This
study provided the opinion of using CT scan images for carrying out prediction analysis of
LVAD patients [65].

As we have analyzed in this review, ML models showed a promising level of dis-
crimination in predicting RHF after LVAD implantation. The majority of the Al studies
achieved AUC rates that were above 0.6 when compared to contemporary clinical risk
scores. ML-based Al prediction models allow clinicians to make more efficient assessments
and gain more predictive insight into whether a patient will suffer from RHE.

Despite all of this, there still needs to be a discussion about a few glaring issues
that were common in most of the evaluated publications. For example, despite their
accomplishments, the resulting AUC scores were far from ideal in order for these methods
to be considered sufficient. We are aware that this is due to a number of results, one of
which is that this type of research can still be considered to be in its infancy; the performance
of these models will improve over time with each attempt and iteration.
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Another reason for this performance issue could be that although a lot of the reviewed
studies agree on one thing, neither the methods nor the time frames of the obtained data
are standardized across institutions nor is the availability of data variation sufficient. As is
stated ad nauseam across different studies on Al, data availability and standardization are
vital for any future model to be successful. Therefore, further steps towards this end must
be very seriously considered.

Perhaps one last statement could be made about the lack of prospective studies.
Almost all the currently available studies were carried out retrospectively. Although they
are very valuable in their own right, it might be the case that carrying out more prospective
studies could lead to better standardized data collection methods and the eventual data
richness that is sought after by many more scientists who are working in this field. These
are outcomes that may be accomplished alongside showcasing the predictive powers
achievable through Al

However, by relying on all the reviewed studies, it is more than safe to say that ML
techniques have the potential to improve clinical decision making and patient selection in
order to achieve much better clinical outcomes.

5. Limitations

Our review has certain limitations. One of these limitations is that this review is not
systematic and was intended to be a literature review of this topic. Our research only
included the medical databases that are mentioned above. Therefore, we understand that
there are many other databases, and it is probable that paramedical publications in other
scientific fields like biomedical engineering and bioinformatics may exist.

6. Conclusions

RHF is a severe problem that can occur after LVAD implantation. Being able to make
accurate predictions for potential LVAD patients will surely help to decrease the incidence
rate of RHF and reach better clinical outcomes for these patients. Nowadays, classical
statistical methods have started to give way to Al techniques, which are better suited for
multivariable analysis instead of linear evaluation studies.

As we can conclude from this review, Al techniques have begun to find their place
in many different healthcare fields as well as in more specific subjects of medicine. We
believe that it would be beneficial for clinicians to not ignore these developments, despite
the current research indicating that it more time is needed for Al-based prediction models
to achieve a better performance and become truly game changing.

There are certain interesting and innovative approaches used for RHF prediction
among the reviewed studies. Shad et al. used echocardiography video data in order
to predict RHF and Just et al. used CT scans to detect adipose tissue within the body;,
which was reportedly a useful indicator of major complications [60,65]. Another interesting
approach was the one undertaken by Bellavia et al. where they combined a more limited
set of preoperative parameters through both cathlab measurements and echocardiography
measurements [59]. Far from discounting more conventional approaches, the reviewed
studies identified certain important predictive clinical parameters with positive results. For
example, Loghmanpour et al. found that the systolic PAP, pre-albumin, LDH, and RV EF
were most important predictive parameters, and they achieved an impressive AUC rate in
their study [57]. Similarly, Kilic et al. and Bahl et al. identified more predictive parameters
and non-linear relationships between preoperative clinical parameters, which is one of the
main strengths of Al-based investigations as it is very difficult to infer these relationships
through statistical analysis [61,62,64].

Looking at all of the different approaches of the mentioned studies, they seem to
indicate that an ideal hypothetical Al system should be utilizing all sorts of data types in
order to be able to converge on the correct answer and make the most accurate predictions.

Although they currently have certain obvious limitations at this point in time, we
believe that ML procedures will also improve alongside advances in Al and computational
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science. We should not, however, ignore the fact that a striking portion of the current
difficulties on this subject seemingly lies in the lack of prospective studies that would
generate a standardized methodological set of conventional preoperative data as well as
more specific data types for novel ideas.

It might be also true to say that although similar clinical measurements are taken
across most institutions for LVAD recipient patients, each institution follows their own
“best” time frames and techniques for obtaining these data, which makes it much more
difficult for Al-based models to function with the highest accuracy possible. We imagine
that a multi-centered agreement on a set of guidelines for data collection purposes would
be highly beneficial for researchers and patients alike.

One last point of consideration must also be highlighted, which is that of the issue
of the ethical and legal responsibility of using Al in healthcare. As Al becomes more and
more capable, instead of asking if something is possible, we need to start considering how
such a tool should be utilized. What should be undertaken if Al predictions and risk score
predictions do not align? Which one should be followed? We know that it is very difficult
to know how the system works with certain forms of ML methods. What steps should be
taken to ensure transparency for the sake of being able to trust the prediction system? How
can we know what to undertake if Al predictions eventually make a mistake? As is widely
known, medical malpractice issues are taken very seriously by all the parties involved.
Therefore, who should be held responsible? It may seem very early to ask these questions,
but we believe that asking them now and coming up with solutions will prove to be much
better than waiting for these issues to show up in real-world cases.

The current number of published studies seems to indicate that this topic is just starting
to capture the interest of researchers, and, in our opinion, more studies will be designed
using Al techniques in the near future, eventually providing doctors with a valuable tool to
tackle a significant problem with LVAD implantation.
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