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Abstract: Olfactory dysfunction (OD) is one of the most common symptoms in COVID-19 patients
and can impact patients’ lives significantly. The aim of this review was to investigate the multifaceted
impact of COVID-19 on the olfactory system and to provide an overview of magnetic resonance (MRI)
findings and neurocognitive disorders in patients with COVID-19-related OD. Extensive searches
were conducted across PubMed, Scopus, and Google Scholar until 5 December 2023. The included
articles were 12 observational studies and 1 case report that assess structural changes in olfactory
structures, highlighted through MRI, and 10 studies correlating the loss of smell with neurocognitive
disorders or mood disorders in COVID-19 patients. MRI findings consistently indicate volumetric
abnormalities, altered signal intensity of olfactory bulbs (OBs), and anomalies in the olfactory cortex
among COVID-19 patients with persistent OD. The correlation between OD and neurocognitive
deficits reveals associations with cognitive impairment, memory deficits, and persistent depressive
symptoms. Treatment approaches, including olfactory training and pharmacological interventions,
are discussed, emphasizing the need for sustained therapeutic interventions. This review points
out several limitations in the current literature while exploring the intricate effects of COVID-19
on OD and its connection to cognitive deficits and mood disorders. The lack of objective olfactory
measurements in some studies and potential validity issues in self-reports emphasize the need for
cautious interpretation. Our research highlights the critical need for extensive studies with larger
samples, proper controls, and objective measurements to deepen our understanding of COVID-19’s
long-term effects on neurological and olfactory dysfunctions.

Keywords: COVID-19; MRI; olfactory; imaging; neurocognitive; mood disorders; anosmia; olfac-
tory training

1. Introduction

SARS-CoV-2 is the virus responsible for the COVID-19 pandemic, which, as of August
2023, has caused nearly 7 million deaths worldwide, according to World Health Orga-
nization (WHO) data [1]. COVID-19 can present with a wide range of respiratory and
extra-respiratory symptoms, including a broad spectrum of acute neurological symptoms
involving both the central and peripheral nervous systems, such as headaches, dizziness,
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olfactory and gustatory deficits, polyneuropathies, and even encephalitis or strokes. Some
studies have highlighted how neurological sequelae are present in a third of patients in the
first six months following acute COVID-19 infection [2–4].

Within the context of a COVID-19 infection, acute olfactory dysfunction (OD) is
characterized by a diminished or altered sense of smell lasting 14 days or less. This
definition specifically excludes cases involving chronic rhinosinusitis, a history of head
trauma, or the use of neurotoxic medications [5].

Since the beginning of the pandemic, the loss or alteration of the sense of smell
and taste has been reported as among the most common symptoms, with an incidence
approximately 10 and 9 times higher than in other respiratory infections, respectively.
Olfactory and gustative dysfunctions can manifest in various ways among COVID-19
patients, ranging from a complete loss of perception (anosmia and ageusia) to reduced
perception (hyposmia and hypogeusia) and even distorted perception (parosmia and
parageusia). In some cases, individuals may experience sensations without external stimuli,
referred to as phantosmia and phantogeusia [2,6,7].

The olfactory deficit can also result from viral infections caused by other pathogens
and traumas or be secondary to sinus diseases. Furthermore, it can also be a part of
neurodegenerative pathological processes [8,9].

Olfactory dysfunction has shown an incidence of 30% to 75% among COVID-19
patients and exhibits a slight predominance in females [10].

It often proves to be the sole symptom in otherwise asymptomatic patients and is one
of the earliest symptoms to appear before others develop. Typically, olfactory dysfunction
arises around the third day after infection and usually resolves completely within 4–6 weeks.
However, after 4 months, these alterations can persist in 27% of cases [11] and in 21.3%
for up to a year [12]. The inability or impairment of the olfactory process can lead to a
markedly reduced quality of life. The lack of pleasure in eating and drinking can lead to
alterations in eating and social behaviors [13].

Despite the high prevalence of COVID-19-related OD, data on MR imaging findings
are limited. However, neuroimaging abnormalities related to COVID-19-associated OD
are gaining attention, especially abnormalities of the olfactory bulb (OB), olfactory sulcus
(OS), olfactory cleft, and olfactory tract (OT). These imaging results would be useful to
shed light on the still unclear mechanisms underlying the olfactory disorders associated
with SARS-CoV-2 disease, offering more information on the mechanisms of virus entry
and the involvement of anatomical structures. With the aim of clarifying the radiological
findings of persistent COVID-19-related OD, we performed a literature review focusing on
OB changes in patients with clinically confirmed post-COVID-19 OD.

In addition, our team has undertaken an in-depth investigation to explore the connec-
tion between olfactory deficits caused by COVID-19 and the emergence of neurocognitive
disorders. Through a detailed study, we sought to shed light on this complex correla-
tion, considering the multiple facets involved in the pathology. Furthermore, within this
overview, we have also examined current treatments under investigation for olfactory
deficits resulting from COVID-19 to provide a clear perspective on this crucial subject,
thereby contributing to a more profound understanding of the long-term consequences of
COVID-19 on neurocognitive health.

2. Search Strategy

For this literature review, searches on online databases (including PubMed, Scopus,
and Google Scholar) were carried out until 5 December 2023, using keywords such as
“COVID-19”, “olfactory deficit”, “anosmia”, “imaging”, “MRI”, “olfactory bulbs”, “neu-
rocognitive deficits”, “mood disorders”, “neuropsychiatric sequelae”, “treatments”, and
“SARS-CoV-2”, applying various combinations of these keywords to each of the online
databases. No restrictions were applied regarding publication date and country of pub-
lication to maximize the retrieval of relevant published studies. The included articles
are 12 observational studies and 1 case report that assess structural changes in olfactory
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structures, highlighted through MRI, and studies correlating the loss of smell with neurocog-
nitive disorders or mood disorders in COVID-19 patients, compared to control subjects,
where possible. The review also encompasses articles on available and investigational
treatments for olfactory loss caused by SARS-CoV-2. Additional articles related to this field
were also included if appropriate.

3. Results
3.1. The Structure of the Olfactory System and Pathogenesis of Olfactory Disorders in COVID-19
3.1.1. The Structure of the Olfactory System

The olfactory system is responsible for perceiving volatile chemical substances and
gases present in the air (odorants) and is phylogenetically one of the most primitive sensory
systems (Figure 1) [14,15]. The olfactory organ consists of the olfactory epithelium (OE),
OB, OT, and the piriform olfactory cortex [14]. The transformation of olfactory signals into
electrical signals occurs at the level of the olfactory epithelium that lines the apical region of
the central mucosa, where three main types of cells can be distinguished: olfactory sensory
neurons, responsible for transducing odor stimuli; support cells, similar to glial cells, which
protect the neurons and help produce the mucus in which odor molecules are trapped; and
basal cells, which are the progenitor stem cells of olfactory neurons [16]. The long and thin
dendrite of olfactory neurons is equipped with long olfactory cilia, which are nonmotile
but extend into the mucus layer and possess membrane olfactory receptors to which
dissolved odor molecules bind [17]. The axons of the OSNs pass through the cribriform
plate of the ethmoid bone to reach the OBs, where they form synaptic glomeruli. In the
glomeruli of the OB, communication occurs between afferent olfactory neurons and second-
order neurons, which transmit signals to the primary olfactory cortex [14]. The olfactory
system uses a combinatorial receptor coding scheme to discriminate and identify odor
molecules [18]. Further processing of olfactory stimulation takes place in higher cortical
regions. The orbitofrontal cortex, amygdala, and hippocampus participate in the translation
of olfactory stimulation and its incorporation into thought processes, emotional reaction
perception, memory formation, and learning processes. It is believed that the multiregional
involvement of olfactory stimuli, consisting of the amygdala, prepyriform cortex, entorhinal
cortex, and hippocampus, explains the relationship between odor, emotions, and memory
formation [14,19].
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constituting the fundamental interface for odor perception in the central nervous system to the
OB. Additionally, the figure incorporates potential pathways through which SARS-CoV-2 may
infect the olfactory bulbs, leading to inflammation. [The illustration was created using BioRender,
https://www.biorender.com/ (accessed on 6 February 2024)].

3.1.2. Pathogenesis of Olfactory Disorders in COVID-19

Due to its high affinity for the central nervous system, SARS-CoV-2 is considered
neurotropic, neuroinvasive, and neurovirulent, but some variants show a greater capacity
than others. The ancestral variant D614G stands out, followed by the Gamma variant,
Delta variant (B.1.617.2), and finally, Omicron BA1 (B.1.1.529). The latter shows lower
neurotropism in in vitro and in vivo studies [10]. In a study conducted on the golden
hamster, a relevant model for studying the pathogenesis of SARS-CoV-2 infection, 62.5% of
animals infected with SARS-CoV-2 Wuhan showed loss of smell. Only 12.5% of animals
infected with the Gamma variant had completely lost their sense of smell, while 62.5%
exhibited compromised olfactory performance. In contrast, none of the animals infected
with Delta and Omicron/BA.1 showed signs of olfactory compromise [6]. A recent study
compared the frequency of self-reported loss of smell in 63.002 symptomatic COVID-19
subjects exposed during the peak prevalence period of Delta (from 1 June to 27 November
2021) with that of the same number of COVID-19 patients exposed during the peak preva-
lence period of Omicron (from 20 December 2021 to 17 January 2022). The two groups were
grouped by gender, age, and vaccination dose. Loss of smell was less common in partic-
ipants infected during Omicron compared to the peak Delta prevalence periods (16.7 vs.
52.7%, OR: 0–17; 95% CI: 0-16-0-19, p < 0.001) [20]. Currently, the exact pathogenesis
and molecular mechanisms of OD in COVID-19 are unknown. Nevertheless, the impact
of SARS-CoV-2 infection on the brain is undeniable. However, several hypotheses have
been made to explain the emergence of OD in COVID-19 patients. One initial hypothesis
suggested conductive hypo/anosmia, which arises from mechanical obstruction and is
related to congestion and rhinitis. This can influence airflow and compromise the transport
of odorants, causing olfactory loss, despite an intact OE [21]. However, this hypothesis
can presumably be ruled out since several studies have reported that OD has a higher
prevalence than nasal congestion in COVID-19 patients and that loss of smell often outlasts
the duration of respiratory symptoms. This suggests that mechanisms other than sinonasal
obstruction may play a role [22].

Direct Damage to Olfactory Neurons

Neurosensorial hypo/anosmia occurs due to direct damage to olfactory neurons and
the OB by the virus. The hypothesis that this could be the cause of hypo/anosmia derived
from COVID-19 has been questioned by numerous studies that have highlighted the
absence of angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease
2 (TMPRSS2), the key factors for the virus’s entry into the cell [23,24]. These results have
also been supported by the study conducted by Bryche et al. [25], which demonstrated
that SARS-CoV-2 was not detected in the olfactory neurons of hamsters, suggesting that,
since olfactory neurons do not express ACE2 and TMPRSS2, the virus should use another
pathway to infect the olfactory system. However, in addition to being able to enter the
OBs and affect the brain through transcribriform or vascular pathways [26], it has been
shown that there are other receptors in the brain in addition to angiotensin-converting
enzyme 2 (ACE2) that can facilitate the neuroinvasion of SARS-CoV-2, such as Basigin
(BSG), neuropilin-1 (NRP1), transmembrane serine protease 11A (TMPRSS11A), and furin
receptors, but their quantity varies from individual to individual [27–29].

Damage to the OE

Another mechanism that could explain the olfactory deficit is damage to the OE.
Numerous studies have established the expression of ACE2 and TMPRSS in various
support cells of the OE, namely Bowman’s gland cells, horizontal basal cells, pericytes of

https://www.biorender.com/
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the OB, mitral cells, sustentacular cells, and microvillar cells [30]. Of these support cells,
sustentacular cells have gained immense attention as the initial site of SARS-CoV-2 infection
in the OE. In addition to their higher expression of ACE2 and TMPRSS2 compared to others,
sustentacular cells are located on the surface of the nasal cavity, making them vulnerable to
exposure to the external environment [31]. The loss of support cells and stem cells leads
to thinning and lack of repair of the OE, resulting in the loss of olfactory dendrites, which
likely explains prolonged OD [22,32].

Inflammation

Furthermore, persistent inflammation after invasion, resulting from the production
of proinflammatory cytokines such as interleukin-6 (IL-6), tumor necrosis factor alpha
(TNF-α), interferon-gamma (IFN-γ), and CXC chemokine ligand 10 (CXCL10), appears to
contribute to the development of post-COVID-19 OD, as it can directly damage the OE or
interfere with cell signaling processes [13,33].

In conclusion, a comprehensive understanding of the pathogenetic mechanisms of OD
following SARS-CoV-2 infection requires further research to precisely delineate the entry
pathways of the virus into the olfactory system and to fully comprehend the roles of the
various receptors involved. A detailed overview of the underlying pathogenic mechanisms
of OD associated with SARS-CoV-2 infection is illustrated in Figure 2.
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Figure 2. Comprehensive exploration of the pathogenesis of OD in SARS-CoV-2 infection. This
illustration provides a detailed overview of the underlying pathogenic mechanisms of OD associated
with SARS-CoV-2 infection. As evident, nasal congestion is systematically excluded as a predominant
factor. The figure outlines intricate processes, including direct damage to neurons, alterations in
supporting cells within the OE, and the role of inflammatory responses and cytokine damage. These
findings contribute to a multifactorial understanding of the etiology of olfactory impairment in
COVID-19. [The illustration was created using BioRender, https://www.biorender.com/ (accessed
on 6 February 2024)].
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3.2. Magnetic Resonance Imaging Olfactory System Findings
3.2.1. Correlation between Olfactory System MRI Findings and OD in COVID-19 Patients

Magnetic resonance imaging (MRI) is the gold standard in the etiological assessment
of persistent OD (>2 months) and could be indicated after a SARS-CoV-2 infection [34]. De-
scriptions of MRI findings from all available studies included the results for morphological
and volumetric abnormalities and/or increased signal intensity of the OBs, alterations in
the depth of OS, and anomalies of the olfactory cortex, as well as irregularities of neuron
filia, that were reported in patients with OD after COVID-19 infection. In the majority of
the selected papers, OD was evaluated objectively with the Sniffin’ Stick Test, the abnormal
European Test of Olfactory Capabilities (ETOC), and the University of Pennsylvania Smell
Identification Test (UPSIT). Each study used different sequences for the evaluation of MRI
parameters, which are summarized in Table 1. Few imaging studies incorporate advanced
techniques like olfactory fMRI that could be helpful to better understand the underlying
pathogenesis, and guide patient management for cases with persistent OD [35,36]. fMRI is
a method that could evaluate alterations in the olfactory structure of COVID-19 patients
suffering from OD. Yildirim et al. [35]. suggested that there was no significant difference in
orbitofrontal and entorhinal cortex activity between COVID-19-related OD and other post-
infectious OD, whereas trigeminal sensory activity was more robust in COVID-19-related
OD. These findings may reflect a better preserved central olfactory system in COVID-
19-related OD compared to other post-infectious OD. Iravani et al. [36], instead, with an
fMRI analysis, revealed significantly decreased activity in the superior frontal lobe and
basal ganglia among patients with olfactory OD when compared to the control group. The
purpose of the reported studies was to determine if there is imaging evidence of olfactory
apparatus pathology in patients with COVID-19 and neurologic symptoms. To reach this
purpose, a dedicated MRI study allows the assessment of OB morphology, volume (OBV),
and signal intensity, status of the olfactory nerve filia, and signal intensity of the primary
olfactory cortex [35,36].

3.2.2. OBV and OS Depth Changes

The most commonly measured parameters for the evaluation of the olfactory system
are OBV and OS depth. OBV was calculated as a summation of manually drawn sequential
regions of interest (ROIs) on consecutive coronal T2 sequences. OS depth represents the
distance between the deepest point of the OS and a line tangent to the inferior borders
of the rectus and medial orbital gyri. A recent paper [37] reported a decrease in OBV
and OS depth for both the right and left side in hospitalized COVID-19 patients (n = 31)
with anosmia and hyposmia compared with a healthy group (n = 35, age-matched), which
supports direct damage to olfactory neuronal pathways that return back to normal function.
A decrease in OBV and OS depths on MRI was shown by Gore et al. [38] who aimed to
evaluate if there may be a link between cardiac arrhythmias and olfactory anatomical
abnormalities. The study included 44 patients with cardiac arrhythmias compared to
43 healthy control patients, and 11 patients with acute COVID-19 were also compared in
those groups. Both cardiac and COVID-19 patients showed a reduction in OBV and OS
depth. The first limit of the study was that the patients were significantly older than the
controls, and the second one is that with a multivariate analysis, the significant difference
remains for smaller OS depth but not for smaller OBV [38]. The reduction in OBV was
reported by a group in two different papers [35,39]. In particular, a paper evaluated
23 patients with persistent COVID-19 OD [39], and a second paper followed 31 COVID-19
patients with persistent OD and 97 patients with other post-infectious OD (after upper
respiratory tract infection) [35]. Both papers showed a decreased OBV. In particular, the
decrease in OBV appears not as pronounced as in other post-infectious OD [35]. For the OS
depth, no significant difference was found between the two groups for Yildirim et al. [35].
Capelli et al. [2] also showed significantly lower left, right, and total OBV in COVID-19
patients (196 patients of which 78 reported olfactory loss as the only neurological symptom)
compared to 39 controls. They processed MRI images by ad hoc semi-automatic processing
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procedures. The OBV was measured on T2-weighted MRI based on manual tracing and
normalized to the brain volume. Also, the results of Seleim et al. [40] who studied anosmic
patients with paranasal sinus CT and MRI were consistent with most of the previous studies
reported. In fact, they found significant decreases in the values of both OBV and OS depth.
Instead, Abdou et al. [41], in a study that compared 110 patients with post-COVID-19 OD
and a control group of 50 normal subjects, showed significantly increased OB dimensions
(length × width × height) and volume compared with controls. They hypothesize that
the mechanism underlying COVID-related OD is sensorineural loss through virus spread
and damage to the OE and pathways. The apparent contrast result indicates a transient
inflammation of OB that occurred immediately after a negative nasopharyngeal swab,
which is reversible in most patients in a follow-up MRI examination [42,43]. Brudasca
et al. [34] evaluated the relationship between the OD severity (anosmia, severe hyposmia,
moderate hyposmia, and mild hyposmia) and OBV measured by MRI and demonstrated
no significant differences in terms of visual analysis and OBV measurement between the
groups of patients considered.

3.2.3. OBs Signal Intensity

The normal imaging appearance of the OB is well described in morphology and
demonstrates uniform T2 signal intensity. Strauss et al. [4] compared the OB and OT
signal intensity, on thin-section T2 WI and postcontrast 3D T2 FLAIR images, in 12 pa-
tients with COVID-19 and neurological symptoms (one with anosmia) and a group of
12 patients with OD that was not COVID-19 related, demonstrating a significant difference
in OB signal intensity between the two groups (greater in the patients with COVID-19
and neurologic symptoms). Kandermirli et al. [39] highlighted that 91.3% of cases with
persistent COVID-19-related OD had abnormalities in the form of a diffusely increased OB
signal intensity. Capelli et al. [2] quantified, on 3D T2 FLAIR sequences, the OT median
signal intensity, but no significant evidence was found in the COVID-19 patient group
compared with control subjects, except for a few outliers. Li et al. [44], in a case report,
reported a 21-year-old male who had presented with a loss of smell for five days without
any respiratory problems or fever and revealed hyperintensities inside bilateral olfactory
nerves, suggestive of bilateral olfactory neuropathy beyond a smaller right OB.

3.2.4. OBs Morphological Abnormalities

The shape of the OB morphology was assessed on coronal T2 images. OBs normally
have an oval or inverted-J shape. Kandemirli et al. [39], in a small group (n = 23) of COVID-
19 patients with persistent anosmia, reported a change in OB shape (normal shape n = 8;
mild irregularity with preserved J shape n = 2; contour lobulations n = 5; and rectangular
shape n = 8); the same team, in another paper [35], compared COVID-19 patients with
persistent OD and patients with other post-infectious OD and demonstrated no significant
difference in the two groups.

3.2.5. Olfactory Neuron Filia Abnormalities

Normally olfactory nerve filia show a fine architecture with uniform distribution of
the filia at regular intervals. Focal thickening of the filia with nonuniform distribution
was considered abnormal clumping. Yildirim et al. [35] demonstrated that there was
a significantly higher rate of olfactory nerve clumping in COVID-19-related OD than
post-infectious OD. Furthermore, Kandermirli et al. [39] reported an evident clumping of
olfactory filia (in 34.8% of cases studied in the paper; thinning with scarcity of filia was
reported in 17.4% of the cases).

3.2.6. Olfactory Cortex and White Matter Olfactory Region Abnormalities

Different papers reported structural brain changes in patients with persistent OD after
coronavirus disease [35,37,45,46]. In post-COVID-19 patients with persistent OD, Yildirim
et al. [35] used diffusion tensor imaging (DTI) data to study white matter (WM) integrity.
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The authors found that the white matter tract integrity of olfactory regions was better
preserved in COVID-19 anosmia compared to other post-infectious OD [35]. A recent work
investigates whether COVID-19 patients with prolonged OD have structural brain changes
compared to COVID-19 patients without OD [45]. The authors demonstrated with a voxel-
based morphometry analysis that GM volume (in the involved regions: left amygdala,
insular cortex, parahippocampal gyrus, frontal superior and inferior orbital gyri, gyrus
rectus, olfactory cortex, caudate, and putamen) decreases in COVID-19 patients with OD
compared to patients without OD; in the DTI analyses, MD increased in the olfactory system.
These findings might explain why some COVID-19 patients have not recovered their sense
of smell [45]. The chronic effects of COVID-19 on gray matter were investigated by Perlaki
et al. [46], measuring the cortical thickness and subcortical volume on the 3D T1 images
using Freesurfer 6.0 image analysis software in a group of 38 patients who recovered from
mild COVID infection without a history of clinical long COVID and 37 healthy control
subjects. Parlak [37] showed significantly lower bilateral mean global cortical thickness,
lower subcortical gray matter, and lower right OBV in COVID-19 patients.

Table 1. This table provides a consolidated overview of MRI studies, integrating details on scanner
specifications and imaging sequences with participant information, and key findings. This compre-
hensive table serves as a valuable reference for understanding the technical methodologies employed
across various investigations and their corresponding clinical outcomes.

Authors Scanner Field Sequence Patients Controls Findings

Strauss
S.B. et al.
(2020) [4]

3T (Signa Architect and
Discovery 750W, GE

Healthcare Waukesha,
WI, USA)

3T (Skyra, Siemens
Healthineers,

Erlangen, Germany)

• 2D Cor T2-WI
• 3D T2 FLAIR

Patients with
COVID-19 and

neurological
symptoms

(n = 12 including
1 with OD)

Patients with
non-COVID-19

OD (n = 12)

Increase signal
intensity in OB

Kandemirli
S.D. et al.

(2021) [39]

3T (Magnetom,
SiemensHealthineers,
Erlangen, Germany)

• 2D Cor T2-WI
• Ultra-high-

resolution
T2-SPACE

Patients with
persistent

COVID-19-related
OD (n = 23)

NO

Decrease in OBV;
Abnormality in OB

signal intensity;
Clumping of
olfactory filia

Yildirim
D. et al.

(2021) [35]

3T (Magnetom, Siemens
Healthineers,

Erlangen, Germany)

• 2D Cor T2-WI
• 3D T2 FLAIR
• Ultra-high-

resolution
T2-SPACE

• DTI
• fMRI (EPI)

Patients with
persistent related

COVID-19 OD
(n = 31)

Patients with
post-infectious
OD other than

COVID-19
(n = 97)

Decrease in OBV;
Increased OB

signal intensity;
Clumping of
olfactory filia

Li et al.
(2021) [44] Not reported

• 2D Cor T2-WI
• 3D TSE

Patient with
COVID-19 and OD

(n = 1)
NO

Decrease in
right OBV;

Hyperintensities in
bilateral olfactory

nerves

Brudasca
I. (2022) [34] Not reported • 2D Cor T2-WI

Patients with related
COVID-19 OD

(n = 67)
NO

No OBV significant
differences in

between
subgroups with

mild, moderate, or
severe hyposmia
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Table 1. Cont.

Authors Scanner Field Sequence Patients Controls Findings

Gore M.R.
(2022) [38] Not reported • 3D T2-WI

Patients with cardiac
arrhythmia (n = 44),

Patients with
COVID-19 (n = 11)

Healthy control
(n = 43)

Decrease in OBV
and OS depths

Abdou
E.H.E. et al.
(2023) [41]

1.5T (Ingenia, Philips
Medical Systems,

Eindhoven,
The Netherland)

• 3D T1 FLAIR
Patients with related

COVID-19 OD
(n = 110)

Healthy control
(n= 50)

Increased OBV and
OB dimensions

(length × width ×
height)

Capelli S.
(2023) [2]

3T (Discovery 750W, GE
Healthcare Waukesha,

WI, USA)

• 2D Cor T2-WI
• 2D Sag

T2 FLAIR
• 3D T2 FLAIR

Patients with
COVID-19 (n = 196,
n = 78 of them with

OD)

Healthy control
(n= 39)

Decrease in OBV;
No significant

differences in OT
signal intensity

Iravani K.
et al.

(2023) [36]

1.5T (Magnetom Avento,
SiemensHealthineers,
Erlangen, Germany)

• Ultra-high-
resolution
T2-SPACE

• fMRI (EPI)

Patients with related
COVID-19 OD

(n = 15)

Healthy control
(n= 5)

Decreased activity
in the superior

frontal lobe and
basal ganglia

Parlak A.E.
et al.

(2023) [37]

3T (Ingenia, Philips
Medical Systems,
Eindhoven, The

Netherland)

• 2D Ax, Sag
T2-WI

• 3D T1-WI

Patients with
COVID-19, anosmia,

and hyposmia
(n = 31)

Healthy control
(n= 35)

Decrease in OBV
and OS depth

Perlaki G.
(2023) [46]

3T (Magnetom
PrismaFit,

SiemensHealthineers,
Erlangen, Germany)

• 2D Cor T2-WI
• 3D T1-WI

Patients who
recovered from mild

COVID infection
(n = 38)

Healthy control
(n = 37)

Lower bilateral
mean cortical

thickness, lower
subcortical gray

matter, and lower
right OBV

Seleim
A.M.A

(2023) [40]

1.5T (Achieva, Philips
Medical Systems,
Eindhoven, The

Netherland)

Not reported
Patients with related
COVID-19 anosmia

(n = 20)
NO Decreases in OBV

and OS depth

Campabadal
A. (2023) [45]

3T (Magnetom Prisma,
Siemens Healthineers,
Erlangen, Germany)

• 2D SAG
T1-WI

• 2D AX FLAIR
• DTI

Patient with
COVID-19 and OD

(n = 23)

Patient with
COVID-19

without OD
(n = 25)

Decrease in GM
volume (areas
reported in the

main text);
Increase MD in

olfactory system

3.3. Correlation between OD and Neurocognitive Deficits

Up to a third of those recovered from COVID-19 complain of a broad spectrum of
acute and chronic neurological disorders, such as cognitive deficit, “brain fog”, insomnia,
headache, depression, anxiety, and mental fatigue, which interfere with full functional
recovery (Figure 3) [47,48]. Among the cognitive disorders in the post-COVID phase,
patients usually reported mental slowness, difficulties in paying attention, finding words,
memory deficits, and planning daily activities [47–49]. Consequently, considering OD as an
early biomarker of cognitive dysfunction in neurodegenerative diseases may also indicate
the severe cognitive consequences of prolonged OD in COVID-19-infected patients [50–53].
Indeed, ODs have long been associated with mental disorders, but this connection has been
further emphasized by the COVID-19 pandemic [51]. Mood disorders, such as anxiety,
depression, and post-traumatic stress disorder, are also highly prevalent in the months
following acute infection, especially among hospitalized patients. Anxiety disorders and
depressive disorders are diagnosed in 11–19.5% and 13–15.9% of patients, respectively,
following acute COVID-19 infection [3,54,55]. Different brain areas associated with emotion
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processing and cognitive functions overlap with the olfactory pathway [56,57]. Although
the underlying pathogenesis of the relationship between OD and neurological deficits is
still unclear, various processes may be involved, such as inflammation, alterations in the
neurogenesis of peripheral and central structures of the olfactory system, and functional
changes in brain structures [58–60]. Therefore, the link between the loss of smell and
neurological deficits could be attributed to the effects of COVID-19 on common anatomical
structures [56,57,61].
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Figure 3. Interconnections between COVID, cognitive functions, and mood disorders. The figure
presents a list of cognitive domains and mood disorders that have emerged as correlated with
post-COVID ODs. Among cognitive domains, aspects such as memory and attention are included.
Psychological disorders such as anxiety, stress, and depression are also represented, highlighting the
connections between olfactory impairment and psychological impacts. This visual representation
aims to underscore the complexity of interactions between ODs and associated cognitive and psycho-
logical phenomena. [The figure was created with BioRender, https://www.biorender.com/ (accessed
on 6 February 2024)].

3.3.1. Cognitive Impairment

Several studies have examined post-COVID cognitive impairments through global
cognitive screening tests or more detailed neuropsychological assessments, revealing vari-
able numbers of patients with impairment in one or more cognitive domains [3,55,61–66]. In
a prospective study by Muccioli et al. [62], 23 individuals with persistent COVID-19-related
OD and 26 age- and sex-matched healthy controls underwent olfactory and neuropsycho-
logical assessments. Memory and executive functions were the most affected cognitive
domains, with 9% and 13% impairment in short-term and long-term verbal memory. Sig-
nificant correlations were found between odor discrimination and executive functions.
Anosmia emerged as a reliable predictor of mnemonic performance, aligning with findings
in other studies. The study by Ruggeri et al. [55] demonstrated a positive correlation be-
tween transient anosmia during COVID-19 and memory impairments. Similar results were
found in the study by Llana et al. [63] involving 60 patients, where participants reporting
OD only during the acute phase of the disease scored lower on the Montreal Cognitive
Assessment (MoCA) in overall cognition compared to those without ODs. In the study
by Cecchetti et al. [64], 53% of patients exhibited impairments in at least one cognitive
domain two months after COVID-19 resolution. At a 10-month follow-up, patients who re-
ported hyposmia during the acute illness exhibited significantly less improvement in verbal
memory tests compared to those without ODs, despite a noteworthy enhancement in mem-
ory and executive performance across all groups [64]. Persistent anosmia, even months
after the infection, is also correlated with global cognitive dysfunction [63]. Clemente
et al. [65] compared 32 post-COVID-19 patients with mild persistent hyposmia with a
group of healthy controls. The investigation included Sniffin’ Sticks olfactory tests and
cognitive assessments, along with EEG and functional near-infrared spectroscopy (fNIRS)
during a Stroop test administered four months after infection. The results showed that
post-COVID-19 subjects performed worse on the MoCA screening test and olfactory test

https://www.biorender.com/
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and exhibited increased response latency in the Stroop test. These findings demonstrated
that post-COVID-19 patients with persistent hyposmia exhibit mild prefrontal function
deficits, with weaker prefrontal activation. Mental clouding, headaches, or a combination
of the two symptoms were found to be strongly correlated with greater severity of olfactory
impairments. Headaches and fogginess, in fact, could in turn reduce attention and concen-
tration, reducing the accuracy of odor identification, suggesting a complex interconnection
between olfactory and cognitive symptoms [66].

3.3.2. Mood Disorders

In the current scientific context, there is a growing interest in exploring the correlation
between mood disorders (including anxiety, post-traumatic stress, and depression) and
ODs post-SARS-CoV-2 infection. This trend reflects an increasing awareness of the need
to thoroughly investigate the connections between neuropsychiatric manifestations and
the consequences of SARS-CoV-2 infection, aiming to advance the understanding and
treatment of such conditions [54,61,63,67]. The study by Dudine et al. [67] investigated
the psychological effects of taste and smell dysfunctions in 104 subjects affected by or
recovering from COVID-19. Participants underwent a semistructured interview regard-
ing clinical symptoms, including taste and smell problems, and were assessed using the
Distress Thermometer and the Hospital Anxiety and Depression Scale (HADS). The find-
ings indicated that mild to moderate taste and smell dysfunctions are associated with
higher levels of psychological distress. Similarly, Giordano Cecchetti’s work [64] explored
cognitive impairments in 49 post-COVID-19 patients and found that the presence of hy-
posmia/anosmia during acute illness is associated with persistent depressive symptoms
even 2 months after resolution, suggesting that sensory manifestations during infection
may have lasting impacts on mental health. Faulet et al. [54] analyzed patients four months
after hospitalization for acute COVID-19 infection. Those who had anosmia during acute
infection also exhibited more pronounced depressive symptoms and PTSD. In contrast
to the aforementioned studies, the study coordinated by Tania Llana [63] examining long
COVID patients, despite demonstrating that these patients exhibit symptoms of anxiety
and depression, did not find significant differences in mood disorders between groups with
and without OD, suggesting complexity in the relationships between these variables.

3.4. Treatment Approaches for COVID-19-Related OD

The high incidence of hypo/anosmia resulting from COVID-19 has drawn attention to
potential treatments for olfactory deficits. While spontaneous resolution occurs in most
COVID-19-related cases of hypo/anosmia, therapeutic intervention may be considered if
the loss persists beyond two weeks [68,69]. The efficacy of available treatments for COVID-
19-related hypo/anosmia remains uncertain, encompassing pharmacological, supplement-
based, and olfactory training-based therapies [69–74]. Research provides evidence of its
effectiveness in enhancing olfactory function, especially with essential oils such as rose,
lemon, clove, and eucalyptus, commonly selected according to the classification of primary
odors, demonstrating a positive impact [75]. However, to integrate it into a clinical setting,
a sustained and prolonged therapeutic intervention is necessary [76]. Other treatments,
such as oral or intranasal corticosteroids, intranasal insulin, and integration with vitamin
A, omega-3, zinc, and alpha-lipoic acid, have been explored, each with varying degrees of
supporting evidence and associated risks [77–94]. There is a growing interest in evaluating
how such approaches can be combined synergistically, aiming to maximize effectiveness
in restoring olfactory function [95,96]. In particular, a combined therapy based on corti-
costeroids and olfactory training has shown potential benefits in some studies [73,97–99].
Other promising treatments for post-COVID OD include cerebrolysin and theophylline,
each with distinct mechanisms and potential benefits [100–104]. Despite the array of thera-
peutic options, uncertainties persist regarding their overall effectiveness for post-COVID-19
OD, necessitating further research to elucidate their safety and efficacy [102].
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4. Discussion and Future Directions

OD has emerged as a prominent symptom associated with COVID-19, and its impact
extends beyond the acute phase of the infection. This review synthesizes the findings of
magnetic resonance imaging (MRI) studies, highlighting morphological, volumetric, and
functional alterations in the olfactory system among individuals experiencing persistent
OD after SARS-CoV-2 infection. Additionally, we have investigated cognitive and mood
deficits associated with post-COVID OD and possible available treatments. The MRI stud-
ies for COVID-19-related OD employed various methodologies, assessing structural and
functional aspects of the olfactory system through various parameters [2,4,34–41,44–46].
Evaluation of OBV and the OS depth, common parameters in different studies, revealed a
consistent reduction in OBV and OS depth in post-COVID-19 patients with OD, suggest-
ing direct damage to olfactory neural pathways [2,35,37–40,44,46]. Only one, among the
selected studies, the study by Abdou et al. [41], presented a new perspective, reporting
an OBV and OB dimensions increase, emphasizing a potential variety in the pathophys-
iological mechanisms underlying COVID-related OD. A plausible hypothesis to explain
the observed heterogeneity in study results may lie in the temporal dynamics of COVID-
19 infection and its consequences on the olfactory system. It is possible that during an
acute or post-acute phase of the infection, the OBV increases in response to inflamma-
tion, an immediate reaction mechanism of the central nervous system to viral aggression.
However, persistent OD could reflect alterations in neurological structures, including the
downregulation of olfactory receptors. Substantial damage to olfactory neurons could
lead to progressive atrophy of OBs and other structures involved in the olfactory pro-
cess, thus being responsible for the observed decrease in OBV and OS depth. In other
words, while the initial phase of infection may be characterized by an increase in volume
due to inflammation, the subsequent phase, marked by persistent neural damage, may
manifest with progressive structural thinning [20]. If confirmed, this theory could con-
tribute to explaining variations in OB measurements observed among different studies and
underscores the importance of considering the time elapsed since infection in assessing
the neurological conditions of COVID-19 patients with OD. The comprehensive overview
of the literature provided emphasizes the multifaceted nature of OD in post-COVID-19
patients. A detailed understanding of the different radiological manifestations associated
with COVID-19-related OD is essential in light of these results. We highlighted the growing
interest in assessing post-COVID cognitive disorders through general screening methods
and more in-depth neuropsychological evaluations [55,62–66]. Short- and long-term verbal
memory emerged as one of the most affected cognitive domains, with significant correla-
tions between olfactory discrimination and executive functions [62]. Consistent results were
also found in other studies, where anosmia emerged as a reliable predictor of mnemonic
performance [55,63,64]. The complex association between olfactory and cognitive symp-
toms becomes clear when considering that mental fog, headache, or their combination
are strongly linked to the increased severity of olfactory alterations. These symptoms, in
fact, could negatively impact attention and concentration, leading to decreased accuracy
in odor identification and therefore poorer results in olfactory tests, as highlighted by
Arianna di Stadio et al. [66]. Future research should delve into the underlying mechanisms
connecting OD to cognitive decline and mood disorders, providing insight into potential
therapeutic interventions and holistic care strategies for patients [3,61]. In this review, we
also evaluated the therapies currently under study for COVID-19-related hypo/anosmia,
and crucial considerations emerged outlining the complexity and challenges in managing
this post-infectious condition. The therapeutic approach is diverse, ranging from pharma-
cological treatments such as corticosteroids and intranasal insulin to the intake of dietary
supplements and strategies like olfactory training [82]. This diversity reflects the lack of a
universal therapy and emphasizes the need to personalize interventions based on patient
specificities. Current evidence suggests that managing post-COVID-19 hypo/anosmia
through medications like corticosteroids requires careful consideration of the associated
risks and benefits. The effectiveness of this treatment is uncertain, and this uncertainty
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is accompanied by concerns about potential risks associated with prolonged use or high
dosages [93]. Particularly promising, however, is the olfactory training regimen, which has
shown positive results in various clinical contexts [70,72]. Its effectiveness in improving
olfactory function, especially in the domains of odor discrimination and identification, sug-
gests a crucial role in managing post-COVID-19 hypo/anosmia [71,74,75]. In conclusion,
despite the promises offered by some therapies, there remains a critical need for further
large-scale clinical research to consolidate the validity of therapeutic options and delineate
definitive guidelines for managing post-COVID-19 hypo/anosmia [105].

5. Limitations

While this review sheds light on the complex impact of COVID-19 on OD and asso-
ciated cognitive disorders, it underscores several limitations across the current literature.
Common constraints include small sample sizes, the absence of healthy control groups, and
the use of cross-sectional designs, hindering the establishment of causation. Additionally,
the lack of objective olfactory measurements and potential discrepancies in self-reported
symptoms raise validity concerns. Overall, these limitations underscore the need to inter-
pret the results with caution. While acknowledging that a systematic review could have
mitigated some of the limitations we reported in our study and would have provided a
more comprehensive and objective analysis, our review was intentionally designed to serve
as a critical reflection on the constraints within the current literature on this topic. We aimed
to emphasize the need for further research, with particular attention to larger samples,
appropriate controls, objective measurements, and comparable examination timeframes.

6. Conclusions

In conclusion, in our review, we synthesized the MRI abnormality findings associated
with COVID-19 infection. In particular, we analyzed the olfactory system’s morphological,
volumetric, and functional alterations. Additionally, we investigated cognitive and mood
deficits associated with post-COVID OD. The findings could provide valuable insights
for predicting outcomes and exploring potential treatments for OD. Further research is
essential to deepen the understanding of the long-term effects of COVID-19 on various
aspects of health.
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