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Abstract: Breast cancer (BC) is the leading cause of mortality among women across the world. Earlier
screening of BC can significantly reduce the mortality rate and assist the diagnostic process to increase
the survival rate. Researchers employ deep learning (DL) techniques to detect BC using mammogram
images. However, these techniques are resource-intensive, leading to implementation complexities in
real-life environments. The performance of convolutional neural network (CNN) models depends on
the quality of mammogram images. Thus, this study aimed to build a model to detect BC using a
DL technique. Image preprocessing techniques were used to enhance image quality. The authors
developed a CNN model using the EfficientNet B7 model’s weights to extract the image features.
Multi-class classification of BC images was performed using the LightGBM model. The Optuna
algorithm was used to fine-tune LightGBM for image classification. In addition, a quantization-aware
training (QAT) strategy was followed to implement the proposed model in a resource-constrained
environment. The authors generalized the proposed model using the CBIS-DDSM and CMMD
datasets. Additionally, they combined these two datasets to ensure the model’s generalizability to
diverse images. The experimental findings revealed that the suggested BC detection model produced
a promising result. The proposed BC detection model obtained an accuracy of 99.4%, 99.9%, and
97.0%, and Kappa (K) values of 96.9%, 96.9%, and 94.1% in the CBIS-DDSM, CMMD, and combined
datasets. The recommended model streamlined the BC detection process in order to achieve an
exceptional outcome. It can be deployed in a real-life environment to support physicians in making
effective decisions. Graph convolutional networks can be used to improve the performance of the
proposed model.

Keywords: breast cancer; deep learning; EfficientNet; ensemble learning; feature engineering

1. Introduction

BC is a neoplastic condition characterized by the formation of a malignant tumor
originating from the breast cells [1]. It is the most prevalent form of cancer observed in
women, with a lesser incidence in men across the globe [1,2]. In 2020, the International
Agency for Research on Cancer reported more than 2.26 million new cases and about
685,000 mortalities globally [2]. The incidence of BC has increased over time [3]. After
leukemia, BC is the leading cause of mortality in Saudi Arabia [3]. Globally, more than
100 million mammograms are performed annually to detect breast cancer [4]. Each mam-
mography necessitates a minimum of two evaluations by expert radiologists to detect
abnormalities and provide a detailed analysis of the mammographic image [4,5]. These
factors render BC screening increasingly expensive and resource-intensive.

Chemotherapy and radiation therapy can significantly affect an individual’s physical
and mental health [6]. Radiation or surgery can affect the lymphatic system, resulting in
lymphedema [7]. Advanced treatment may cause a financial burden to individuals. As a
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result, individuals may face challenges in obtaining critical medical care. Earlier detection
of BC can reduce its financial burden and BC’s mortality rate [8]. In addition, healthcare
centers can provide personalized diagnoses based on BC stages.

Healthcare centers employ various techniques to screen and diagnose BC. Sound
waves are used in ultrasound scanning techniques to represent breast tissue visually [8].
However, the expertise of the operators plays a crucial role in effective BC detection. Mag-
netic resonance imaging employs magnetic fields and radio waves to identify tumors [8].
It is widely used to detect abnormalities in advanced stages of BC. In addition, biopsy
procedures are used to extract breast tissue specimens for BC staging [8]. Nonetheless, the
invasive nature of this procedure may affect patients’ physical and mental health.

Mammography is a specialized form of medical imaging that uses low-dose X-ray
to visualize the internal organs of the breasts [8–10]. It is common practice to utilize
mammography as a screening method for women who do not exhibit any symptoms of
BC, particularly in age groups where the likelihood of acquiring BC is higher [11]. Regular
screenings have the potential to detect anomalies prior to the manifestation of symptoms.
There have been an extensive number of studies suggesting that routine mammographic
screening programs lead to a reduction in BC mortality rates [12–14]. Mammography
screening is affordable and readily accessible [14]. Advancements in imaging technologies
have facilitated the rapid development of artificial intelligence (AI) for breast imaging.
Computer-aided detection identifies potentially abnormal lesions, such as masses and
microcalcifications [15]. On the other hand, computer-aided diagnosis analyzes a lesion’s
suspicious region and estimates the likelihood of its occurrence.

The sensitivity, specificity, and capability to manage the complexity of mammogram
images present potential obstacles to conventional BC screening approaches [16]. Early-
stage BC patterns may be hidden in complex mammograms. The level of complexity
exceeds the capabilities of the current image processing methods, which could cause
diagnostic delays or false negatives (FNs) [17]. Traditional BC detection techniques are not
generalizable to the broader population. They require substantial computational resources
and expert opinions are needed to make a decision.

Researchers have recently employed DL models for detecting BC with optimal out-
comes [17]. The detection and diagnosis of BC can differ among radiologists due to
variances in human mammography interpretation. DL models can learn complicated
hierarchical features, potentially enhancing breast cancer detection sensitivity and speci-
ficity [18]. This facilitates an earlier identification of BC conditions and improves the
precision of diagnostic procedures. The number of highly specialized professionals can be
minimized using DL models [18]. A DL model can be integrated with edge and mobile
devices to remotely screen individuals [18]. In addition, it can identify subtle signs of abnor-
malities in mammography images. In the context of BC diagnosis, it is possible to employ
a pretrained CNN model on a substantial dataset, such as ImageNet, and subsequently
fine-tune it using a smaller dataset consisting of mammography images [19]. Transfer
learning (TL) can improve generalization using the pretrained model’s weights to identify
BC’s low- and mid-level features [19]. Physicians can employ DL-based models to detect BC
using mammography images. The models can handle a massive volume of images, which
supports healthcare centers in diagnosing large numbers of individuals [19]. The pretrained
models can extract critical features with limited resources. In addition, fine-tuning and
image preprocessing techniques can improve the feature extraction process [20].

By automating the identification of BC with DL models, healthcare providers may
process multiple mammograms in a shorter period, substantially enhancing screening effi-
ciency. A lightweight BC detection model can be implemented in edge and mobile devices.
Healthcare centers can benefit from this model and render their services in remote areas.
The proposed study aims to offer reliable and unbiased assessments in BC detection. Thus,
the authors build a DL-based BC detection model with limited computational resources.
This study’s contributions are as follows:
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i. A feature engineering technique using QAT strategy to generate critical features of BC.

The authors built a CNN model with the EfficientNet B7 model’s weights. QAT
strategy was used to improve the performance of the EfficientNet B7 model in a resource-
constrained environment.

ii. Development of a fine-tuned LightGBM-based BC detection model.

The proposed feature engineering presents valuable features and passes them to the
LightGBM model in order to detect BC from mammography images. In addition, the
authors fine-tuned the LightGBM model using the Optuna algorithm.

The remaining parts of this study are organized as follows: Section 2 offers the research
methodology for BC detection using mammography images. The experimental outcomes
are outlined in Section 3. Section 4 discusses the significance of the proposed study in
detecting BC. Lastly, Section 5 presents the features and limitations of the proposed research.

2. Materials and Methods

The authors built a DL-based BC detection model using effective image preprocessing,
augmentation, and feature extraction techniques. Image preprocessing techniques were
used to improve the quality of mammography images. In addition, image augmentation
techniques were employed to generate additional training samples and improve prediction
accuracy. DL approaches offer the integration of numerous models in order to provide a
final prediction. Improving the efficiency of CNN models can address complex problems,
improve predictive accuracy, and provide deeper insights into the relationships between
structured and unstructured data in various domains, including healthcare, finance, man-
ufacturing, and more. Additionally, overall performance of the BC detection model was
improved by utilizing a number of distinct models. Using critical features of BC images,
the DL approach can learn minor details to predict BC.

The EfficientNet B7 model can learn complex patterns from its training data [21].
Compared to traditional CNN models, EfficientNet B7 offers an impressive performance
with few parameters. It captures intricate image patterns and representations with top-tier
performance on benchmark datasets. It offers remarkable efficacy across multiple image
classification tasks, rendering it a comprehensive model suitable for medical imaging
classification. In addition, in order to achieve a high level of precision, a compound scaling
technique can be used to scale the depth and width of the model [22]. However, training
the EfficientNet B7 model can be significantly resource-intensive and time-consuming.
EfficientNet B7 may not be able to generalize effectively to completely new or unknown
data. In a real-world setting, this constraint may affect model performance. Improving
the EfficienNet B7 model’s performance can support the proposed model to generalize on
real-time data. The LightGBM model encompasses the ensemble tree approach to handle
the massive datasets [23].

The authors were motivated to construct a feature engineering model using Efficient-
Net B7 and employ the LightGBM model to predict BC using its features. Figure 1 presents
the proposed BC detection model.

2.1. Image Acquisition

In order to train the proposed BC detection model, the authors utilized the CBIS-
DDSM and CMMD datasets, which are available in repositories [24,25]. The CBIS-DDSM
dataset contains enhanced images of the DDSM dataset [26,27]. The dataset providers
addressed the limitations of the DDSM dataset. They removed low-quality images and
reannotated the images. They converted the quality of the primary images to 16-bit
grayscale TIFF images. Spurious ground-labeled images were removed from the dataset.
The interoperability and reusability of the dataset were improved by converting analog
images into digitized images.
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Figure 1. The proposed BC detection model.

The CMMD dataset includes two datasets. CMMD1 encompasses mammography
and clinical data, whereas CMMD2 covers malignant BC images. The dataset owner
obtained the images from Sun-Yat-Sen University Cancer Center in Guangzhou and Nanhai
Affiliated Hospital of Southern Medical University, Guangdong, China. The data were
collected between July 2012 and July 2016. To ensure the efficiency of the proposed BC
detection model and to use a unique dataset, the authors combined the CBIS-DDSM and
CMMD datasets. They included benign and malignant images from the MIAS [28] and
BCDR-D [29] datasets. Table 1 highlights the details of the datasets. Figure 2a,b show
sample images from the CBIS-DDSM and CMMD datasets.

Table 1. Dataset characteristics.

Datasets Year Number of Images Number of Patients Classification

CBIS-DDSM 2017 1644 2890 Benign, malignant, and normal

CMMD 2022 2214 1026 Benign and malignant

Combined Dataset - 4900 - Benign, malignant, and normal

2.2. Image Preprocessing

Noises and artifacts can reduce the performance of BC detection models in identifying
the abnormalities. Artifacts include grid lines, scratches, and distortions that can interfere
with BC identification. These may mimic features related to lesions and tumors that
may influence the BC detection model to generate false positives (FPs) and FNs. Image
preprocessing techniques can improve the performance of the CNN models [20]. For
instance, the EfficientNet model requires an image size of 224 × 224. In addition, image
normalization helps pretrained models to extract key features of BC images. Thus, image
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preprocessing is required to improve EfficientNet B7-based feature extraction. The authors
employed multiple image preprocessing techniques to overcome the shortcomings of
BC images. Contrast-limited adaptive histogram equalization (CLAHE) was employed
to enhance the local contrast of an image by preventing noise amplification. It applies
histogram equalization to the smaller regions of BC images. Equation (1) presents the
mathematical form of the image resizing process with the CLAHE method.

Ii = Resize_CLAHE(Ii, c, t), i = 1, 2, . . . n (1)

where Ii is the BC image, c is the clip limit, and t is the size of the tile grid.

Diagnostics 2024, 14, x FOR PEER REVIEW  5  of  17 
 

 

Combined Dataset  -  4900  - 
Benign, malignant, and 

normal 

  

 

Figure 2. (a) CBIS-DDSM dataset. (b) CMMD dataset. 

2.2. Image Preprocessing 

Noises and artifacts can reduce the performance of BC detection models in identify-

ing the abnormalities. Artifacts include grid lines, scratches, and distortions that can in-

terfere with BC  identification. These may mimic  features related to  lesions and  tumors 

that may influence the BC detection model to generate false positives (FPs) and FNs. Im-

age preprocessing techniques can improve the performance of the CNN models [20]. For 

instance, the EfficientNet model requires an image size of 224 × 224. In addition, image 

normalization helps pretrained models to extract key features of BC images. Thus, image 

preprocessing  is  required  to  improve EfficientNet B7-based  feature extraction. The au-

thors employed multiple image preprocessing techniques to overcome the shortcomings 

of BC images. Contrast-limited adaptive histogram equalization (CLAHE) was employed 

to enhance the local contrast of an image by preventing noise amplification. It applies his-

togram equalization to the smaller regions of BC images. Equation (1) presents the math-

ematical form of the image resizing process with the CLAHE method. 

𝐼 𝑅𝑒𝑠𝑖𝑧𝑒_𝐶𝐿𝐴𝐻𝐸 I , c, t , i = 1, 2, …, n  (1)

where  𝐼   is the BC image, c is the clip limit, and t is the size of the tile grid. 

   

Figure 2. (a) CBIS-DDSM dataset. (b) CMMD dataset.

2.3. Image Augmentation

In order to improve the training environment, the authors employed generative
adversarial networks (GANs) [21,30]. They followed previous studies [21,30] to generate
mammogram images. A Unet-based generator was used to produce synthetic images
for multiple classes. A CNN model was employed to build a discriminator model in
order to authenticate the synthetic images. Thus, extended training was not required for
image generation.

2.4. Feature Engineering

The authors constructed a CNN model with four convolutional layers, batch normal-
ization, and Leaky ReLu. Figure 3 highlights the proposed feature engineering process
for extracting crucial features. The EfficientNet B7 model’s weights were used for the
feature extraction.



Diagnostics 2024, 14, 227 6 of 17

Diagnostics 2024, 14, x FOR PEER REVIEW  6  of  17 
 

 

2.3. Image Augmentation 

In order to improve the training environment, the authors employed generative ad-

versarial networks  (GANs)  [21,30]. They  followed previous  studies  [21,30]  to generate 

mammogram images. A Unet-based generator was used to produce synthetic images for 

multiple classes. A CNN model was employed to build a discriminator model in order to 

authenticate  the synthetic  images. Thus, extended  training was not required  for  image 

generation. 

2.4. Feature Engineering 

The authors constructed a CNN model with four convolutional layers, batch normal-

ization, and Leaky ReLu. Figure 3 highlights the proposed feature engineering process for 

extracting crucial features. The EfficientNet B7 model’s weights were used for the feature 

extraction.   

 

Figure 3. Feature engineering process. 

EfficientNet B7’s  architecture  relies heavily  on  inverted  residuals.  It uses  a  light-

weight depth-wise  separable convolution,  succeeded by a  linear bottleneck and a skip 

connection. This architecture facilitates the efficient capturing of intricate patterns. Com-

pound scaling scales the model in depth, width, and resolution. It ensures that the model’s 

power increases with its size while retaining its efficiency. Mobile inverted convolution is 

a composite operation that integrates the principles of depth-wise separable convolution 

and linear bottleneck. This procedure possesses high computational efficiency and con-

tributes to reducing the number of parameters while preserving meaningful patterns.   

The EfficientNet models were trained using the larger datasets. The authors froze the 

lower-level layers of the EfficientNet B7 model to prevent overfitting and promote better 

generalization. The QAT strategy was used to improve the efficiency of the proposed BC 

detection model [31]. This prepares the proposed model for deployment in resource-con-

strained environments.  In addition,  it  reduces  the computational cost and memory  re-

quirements of the proposed model. The authors applied dropout layers to address over-

Figure 3. Feature engineering process.

EfficientNet B7’s architecture relies heavily on inverted residuals. It uses a lightweight
depth-wise separable convolution, succeeded by a linear bottleneck and a skip connection.
This architecture facilitates the efficient capturing of intricate patterns. Compound scaling
scales the model in depth, width, and resolution. It ensures that the model’s power
increases with its size while retaining its efficiency. Mobile inverted convolution is a
composite operation that integrates the principles of depth-wise separable convolution and
linear bottleneck. This procedure possesses high computational efficiency and contributes
to reducing the number of parameters while preserving meaningful patterns.

The EfficientNet models were trained using the larger datasets. The authors froze
the lower-level layers of the EfficientNet B7 model to prevent overfitting and promote
better generalization. The QAT strategy was used to improve the efficiency of the proposed
BC detection model [31]. This prepares the proposed model for deployment in resource-
constrained environments. In addition, it reduces the computational cost and memory
requirements of the proposed model. The authors applied dropout layers to address
overfitting by using assigned probabilities. The extracted features were flattened and
forwarded to fully connected (FCN) layers. The authors integrated the FCN layers to collect
the outcomes for each class.

2.5. BC Classification

LightGBM is an ensemble learning-based gradient-boosting or tree-based learning
model. It improves prediction efficiency, manages extensive datasets, and minimizes
training time. It is commonly suggested for the analysis of tabular datasets. LightGBM
uses leaf-wise splits to generate more complex trees, reducing loss while strengthening
accuracy. The partitioning process uses a unique sampling technique called gradient-
based one-side sampling (GOSS). This method involves excluding data points with tiny
gradients and utilizing the rest of the data for estimating information gain and facilitating
tree development. Equation (2) shows the mathematical form of computing the gradients
of the loss function.

|gbc| = |gbc|+ λ×max(|gbc|, γ) (2)

where |gbc| is the gradient of the loss function in classifying BC, λ is the variable to control
the number of one-side sampling, and γ is the gradient threshold.
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After the training phase, the FCN layer was replaced with LightGBM to achieve
optimal accuracy. The authors utilized the GOSS technique to classify features. The
proposed technique excludes smaller gradients and considers the remaining features to
generate an outcome. It can produce significant information gain in resource-constrained
environments. In addition, it requires less training time and low memory and is compatible
with smaller and larger datasets. Figure 4 highlights multi-class classification using the
LightGBM model. Equation (3) shows the LightGBM-based BC detection model.

Classi f ication = LightGBM (Xi, L, N, M), i = 1, 2, . . . n (3)

where X is the BC image feature, L is the learning rate, n is the number of estimators, and
M is the maximum depth.
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To fine-tune the performance of the proposed BC model, the authors applied Optuna
hyperparameter optimization. Optuna is an open-source framework that can be imple-
mented in the TensorFlow and PyTorch frameworks. It employs tree-structured parzen
estimators to determine the hyperparameters of the LightGBM model. Equation (4) outlines
Optuna hyperparameter optimization.

Best_Parameters = Optuna(LightGBM(Parameters)) (4)

where Best_Parameters is the optimized hyperparameters of the LightGBM model, Optuna
is the hyperparameter optimization function, and LightGBM is the BC classification model.

2.6. Performance Evaluation

The authors employed multiple evaluation metrics to measure the performance of the
BC detection model. The accuracy (Accy) metric identifies the model’s capability to detect
BC. Table 2 describes the notations of true positives (TPs), true negatives (TNs), FPs, and
FNs. Equation (5) presents the mathematical form of the accuracy metric.

Accuracy =
BTP + BTN

BTP + BTN + BFP + BFN
(5)

Table 2. Notations and definitions.

Notations Definition

BTP Correctly identified BC images

BTN Correctly identified normal or benign images

BFP Incorrectly identified BC images

BFN Incorrectly identified normal or benign images
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The precision (Pren) metric determines the number of FPs in the outcome, whereas
the recall (Recl) metric measures the model’s ability to find TPs. F1-Score (F1) is used to
ensure that there is no uneven class distribution in the outcome. Equations (6)–(8) outline
the computational forms of Pren, Recl, and F1.

Pren =
BTP

BTP + BFP
(6)

Recn =
BTP

BTP + BFN
(7)

F1 =
2× Pren × Recn

(Pren + Recn)
(8)

Furthermore, the authors used Cohen’s Kappa (K) and Matthew correlation coefficient
(MCC) to evaluate the multi-class classification performance of the proposed model. The
confidence interval (CI), SD, and computational loss were calculated to measure the uncer-
tainties of the proposed model. Equations (9) and (10) present the mathematical forms of K
and MCC.

K =
2× (BTP × BTN − BFN × BFP)

(BTP + BFP) + (BFP + BTN) + (BTP + BFN) + (BFN + BTN)
(9)

MCC =
BTN × BFP − BFN × BFP√

(BTP + BFP) + (BTP + BFN) + (BTN + BFP) + (BTN + BFN)
(10)

3. Results

The authors employed Windows 10 Professional, Intel i7 with 16 GB RAM, and
NVIDIA GeForce RTX 3050 to implement the proposed BC detection model. The source
codes of the EfficientNet B7 and LightGBM models were extracted from the Github repos-
itories [32,33]. The Optuna algorithm was used to fine-tune the hyperparameters of the
LightGBM model. The PyTorch 2.0 and TensorFlow v2.15.0 libraries were used to imple-
ment the proposed model. The computational settings for the model implementation are
presented in Table 3.

Table 3. Computational settings.

Parameters Values

BC image size 224 × 224

Strides 3

Number of convolutional layers 6

Learning rate 1 × 10−4

Decay rate 0.97 per 2 Epochs

Batch size 128

Fully connected layer 1

Activation function Softmax

Table 4 outlines the findings of the proposed model’s performance in the analysis of
the CBIS-DDSM dataset. The suggested QAT strategy supported the proposed feature
extraction to extract meaningful features. The model produced an optimal outcome for
each class.

Table 5 reveals a significant improvement in the multi-class classification ability of the
proposed model. The recommended image preprocessing and augmentation techniques as-
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sisted the EfficientNet B7 model in extracting key features. In addition, the suggested hyper-
parameter optimization technique improved the proposed model’s classification accuracy.

Table 4. Performance analysis outcomes—CBIS-DDSM.

Classes Accy Pren Recl F1 K MCC

Benign 99.2 99.1 99.3 99.2 96.8 96.7

Malignant 99.5 99.3 99.3 99.3 97.1 96.5

Normal 99.5 98.7 98.8 98.7 96.9 96.7

Average 99.4 99.0 99.1 99.1 96.9 96.6

Table 5. Performance analysis outcomes—CMMD.

Classes Accy Pren Recl F1 K MCC

Benign 99.9 98.8 99.6 99.6 96.7 97.4

Malignant 99.9 99.4 99.1 99.1 97.2 97.3

Average 99.9 99.1 99.3 99.2 96.9 97.3

The outcomes of the model’s performance using the combined dataset are presented
in Table 6. The QAT strategy assisted the recommended model in achieving a better
outcome in the combined dataset. In addition, the proposed feature extraction improved
the BC detection model’s efficiency. Figure 5 highlights the performance outcomes of the
proposed model.

Table 6. Performance analysis outcomes—combined dataset.

Classes Accy Pren Recl F1 K MCC

Benign 96.8 95.8 95.9 95.8 94.2 93.8

Malignant 97.5 96.1 96.3 96.2 93.8 94.1

Normal 96.9 97.4 97.1 97.2 94.3 93.4

Average 97.0 96.4 96.4 96.4 94.1 93.7

Table 7 highlights the batch-wise performance of the suggested BC detection model
on the CBIS-DDSM dataset. The recommended EL approach improved the performance of
the proposed model in addressing the existing limitations of BC detection.

Table 7. Batch-wise performance analysis—CBIS-DDSM.

Batches Accy Pren Recl F1 K MCC

4 97.1 97.8 97.6 97.7 92.5 91.8

8 97.8 98.1 98.5 98.3 93.4 92.8

12 98.1 98.6 98.3 98.4 94.6 93.7

16 98.4 98.9 98.8 98.8 94.8 95.1

18 99.4 99.0 99.1 99.1 96.9 96.6

Table 8 reveals the batch-wise performance of the proposed BC detection model. The
model achieved reasonable results in a batch size of 12. However, the authors extended
the analysis to a batch size of 16. The QAT strategy helped the proposed model to produce
better results by addressing data imbalance.
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Table 8. Batch-wise performance analysis—CMMD.

Batches Accy Pren Recl F1 K MCC

4 97.5 97.5 97.2 97.3 93.4 94.1

8 97.9 96.9 98.2 97.5 94.7 95.1

12 98.8 98.6 98.6 98.6 95.3 96.4

16 99.9 99.1 99.3 99.2 96.9 97.3
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The suggested model’s batch-wise performance is listed in Table 9. It achieved a
significant improvement at batch 16. The fine-tuned LightGBM model classified the BC
images with an optimal accuracy.

Table 9. Batch-wise performance analysis—combined dataset.

Batches Accy Pren Recl F1 K MCC

4 95.2 94.2 94.5 94.3 93.1 93.4

8 95.8 94.9 94.7 94.8 92.8 92.1

12 96.4 95.6 95.3 95.4 93.5 92.6

16 97.0 96.4 96.4 96.4 94.1 93.7
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The generalization of the BC detection model to the CBIS-DDSM dataset is presented
in Table 10. The proposed model outperformed the existing models, obtaining a promising
result. The fine-tuned LightGBM model classified the images with optimal accuracy.

Table 10. Findings of comparative analysis—CBIS-DDSM.

Models/Metrics Accy Pren Recl F1 K MCC

Proposed BC detection model 99.4 99.0 99.1 99.1 96.9 96.6

Falconi et al., model [22] 95.8 95.5 95.7 95.6 89.1 88.5

Agarwal et al., model [34] 96.7 96.9 96.9 96.9 91.2 89.4

Zahoor et al., model [35] 96.7 95.7 94.9 95.3 90.7 90.4

EfficientNet B7 97.1 96.8 97.3 97.0 92.3 91.7

Table 11 presents the outcome of generalizing the proposed BC model to the CMMD
dataset. The number of images in the CMDD dataset is larger compared to the CBIS-
DDSM dataset. However, the proposed model obtained a superior outcome compared to
existing models.

Table 11. Findings of comparative analysis—CMMD.

Models/Metrics Accy Pren Recl F1 K MCC

Proposed BC detection model 99.9 99.1 99.3 99.2 96.9 97.3

Boudouh et al., model [36] 99.8 99.4 99.6 99.5 90.5 89.4

Bai et al., model [37] 98.4 98.2 98.2 98.2 90.8 88.7

Inception V3 96.7 97.5 96.8 97.1 91.1 90.3

Bobowicz et al., model [38] 97.1 97.2 97.1 97.1 91.3 90.6

EfficientNet B7 97.5 97.4 97.3 97.3 92.1 90.8

The outcomes of comparative analysis using the combined dataset are revealed in
Table 12. The proposed BC detection model addresses the challenges in detecting BC using
BC images using the fine-tuned EfficientNet B7 and LightGBM models.

Table 12. Findings of comparative analysis—combined dataset.

Models/Metrics Accy Pren Recl F1 K MCC

Proposed BC detection model 97.0 96.4 96.4 96.4 94.1 93.7

Yolo—V8 model 92.4 90.5 90.7 90.6 89.2 90.4

El Houby and Yassin, model [9] 96.2 95.2 95.2 95.2 93.7 91.3

Singh et al., [13] 84.3 81.6 82.2 81.9 79.8 75.8

CatBoost model 95.1 94.9 94.6 94.7 92.8 89.9

ShuffleNet V2 model 91.3 90.8 91.2 91.0 90.2 88.5

Table 13 highlights the computational complexities of BC detection models. The
proposed BC model requires fewer parameters and floating-point operations (FLOPs) for
image classification. Inception V3 and EfficientNet B7 needed additional parameters to
achieve a reasonable outcome.

Lastly, Table 14 shows the statistical significance of BC detection models. The findings
highlight the reliability and trustworthiness of the proposed model. Based on the outcomes,
the proposed model can handle out-of-distribution samples and produce reliable results in
a real-life environment. In addition, healthcare practitioners can make effective decisions
using the proposed BC detection model.
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Table 13. Computational strategies.

Models
CBIS-DDSM CMMD Combined Dataset

Learning Rate Parameters
(in Millions (m))

FLOPs
(in Giga (G)) Learning Rate Parameters

(in Millions (m))
FLOPs

(in Giga (G)) Learning Rate Parameters
(in Millions (m))

FLOPs
(in Giga (G))

Proposed BC detection model 1 × 10−4 21 1.8 1 × 10−4 18 1.4 1 × 10−4 27 2.3

Falconi et al., model [22] 1 × 10−2 48 4.1 - - - - - -

Agarwal et al., model [34] 1 × 10−2 34 3.4 - - - - - -

Zahoor et al., model [35] 1 × 10−4 71 3.2 - - - - - -

EfficientNet B7 1 × 10−3 31 2.2 1 × 10−4 27 1.9 - - -

Boudouh et al., model [36] - - - 1 × 10−3 56 5.1 - - -

Bai et al., model [37] - - - 1 × 10−3 65 3.8 - - -

Inception V3 1 × 10−3 75 3.7 1 × 10−3 58 4.1 - - -

Bobowicz et al., model [38] - - - 1 × 10−3 69 5.2 - - -

Yolo—V8 model - - - - - - 1 × 10−4 38 4.2

El Houby and Yassin, model [9] - - - - - - 1 × 10−3 43 3.7

Singh et al., [13] - - - - - - 1 × 10−3 48 4.1

CatBoost Model - - - - - - 1 × 10−4 31 2.7

ShuffleNet V2 model - - - - - - 1 × 10−4 52 3.9
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Table 14. Findings of uncertainty analysis.

Models
CBIS-DDSM CMMD Combined Dataset

Loss CI SD Loss CI SD Loss CI SD

Proposed BC detection model 0.4 [98.1–98.5] 0.0003 0.3 [97.6–98.2] 0.0002 0.3 [98.1–98.4] 0.0003

Falconi et al., model [22] 0.8 [96.1–96.7] 0.0004 - - - - - -

Agarwal et al., model [34] 1.2 [95.8–96.2] 0.0005 - - - - - -

Zahoor et al., model [35] 0.9 [95.9–96.4] 0.0005 - - - - - -

EfficientNet B7 0.7 [97.1–97.6] 0.0003 0.8 [97.5–98.3] 0.0003 - - -

Boudouh et al., model [36] - - - 1.4 [96.1–96.7] 0.0005 - - -

Bai et al., model [37] - - - 1.1 [96.8–97.7] 0.0002 - - -

Inception V3 0.7 [97.3–98.2] 0.0003 0.7 [95.7–96.6] 0.0002 - - -

Bobowicz et al., model [38] - - - 0.9 [97.1–97.8] 0.0004 - - -

Yolo—V8 model - - - - - - 0.9 [95.3–96.4] 0.0003

El Houby and Yassin, model [9] - - - - - - 1.2 [96.1–96.5] 0.0007

Singh et al., [13] - - - - - - 1.4 [95.8–96.3] 0.0005

CatBoost Model - - - - - - 0.5 [95.3–96.1] 0.0003

ShuffleNet V2 model - - - - - - 0.7 [95.4–96.2] 0.0004

4. Discussions

The authors built a BC detection model to identify BC in resource-constrained environ-
ments. The proposed model includes image preprocessing and augmentation techniques,
feature engineering, and classifier models. Using the image preprocessing technique, the
authors enhanced image quality. An image augmentation technique was used to improve
the prediction accuracy of the proposed model. CNN-based feature engineering was used
to extract the key features of BC images. The authors used the weights of the EfficientNet
B7 model for feature extraction. The Optuna algorithm was employed to fine-tune the
hyperparameters of the LightGBM model.

Batch-wise performance analysis outcomes suggest that the model effectively ad-
dresses overfitting and class imbalance. Tables 10–12 highlight the findings of generalizing
the BC model to the CBIS-DDSM, CMMD, and Combined datasets. It is evident that
the proposed model obtained a superior outcome. The suggested image preprocessing
and feature extraction techniques significantly improved the proposed model’s classifica-
tion performance. Table 13 reveals the computational complexities of implementing BC
detection models. In all three datasets, the proposed model demanded few parameters
and FLOPs to achieve an accuracy of 99.4%, 99.9%, and 97.0% and a K value of 96.9%,
96.9%, and 94.1%. In contrast, existing models required a higher number of parameters for
feature extraction. The authors employed the Optuna algorithm to fine-tune the LightGBM
model’s hyperparameters to classify BC images in a resource-constrained environment.
Table 14 discusses the statistical significance of BC detection models. The proposed model
generated outcomes with minimal losses of 0.4, 0.3, and 0.3, SD of 0.0003, 0.0002, and
0.0003, and CI range of [98.1–98.5], [97.6–98.2], and [98.1–98.4] using the three datasets. The
minimal computational loss and optimal accuracy revealed that there is no overfitting in
the proposed model.

The findings reveal that the model is reliable and can handle variations in BC im-
ages. The proposed model can seamlessly integrate into the clinical workflow and support
healthcare professionals in making effective decisions. The suggested approach can reduce
the risk of errors and improve the overall outcome of the proposed BC detection model.
The fine-tuned LightGBM model reduced the number of FPs and FNs and accurately iden-
tified normal, malignant, and benign images. The BC detection model enables healthcare
providers to prioritize patient care, consultation, and complex decision-making while effec-
tively managing routine assessments. It achieves a high performance level and contributes
to BC’s reliable and standardized identification. Its few requirements for retesting, greater
efficiency, and the possibility of earlier intervention can lead to overall cost-effectiveness.
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To improve BC screening services, the suggested BC detection model can be a valuable tool
to supplement existing expertise. By facilitating prompt treatment with the potential for
improved outcomes, early and precise detection can empower patients.

The authors generalized the model using three datasets. The generalization findings
highlighted the significance of the suggested BC detection model in detecting benign, ma-
lignant, and normal images. Feature extraction assisted the LightGBM model in producing
a superior outcome. Integrating diverse images into the combined dataset reinforced the
model’s ability to identify BC’s intricate patterns. The inherent features of QAT strategies
contributed to a significant performance improvement. The suggested feature extraction
technique enabled the LightGBM model to overcome class imbalances. The regulariza-
tion features of the LightGBM model supported the proposed model in generalizing to
unseen images.

El Houby and Yassin [9] classified malignant and nonmalignant breast lesions using
a CNN model. The model required a larger number of parameters and FLOPs to classify
the images. Umer et al. [12] built a BC detection model using convoluted features. Falconi
et al. [22] fine-tuned pretrained models for classifying BC images. Pretrained models are
designed for a specific set of classes. They may face challenges in handling multiple classes
of BC. Agarwal et al. [34] used the Inception V3 and ResNet 50 models for BC detection. The
complex architecture of these CNN models required additional training time and a larger
number of parameters for BC detection. In addition, the ResNet 50 model demands huge
computational resources to store and process the parameters. Zahoor et al. [35] applied
a deep neural network and entropy-controlled whale optimization algorithms to classify
BC images. They used Whale optimization for feature extraction. The MobileNet V2 and
NasNet models were used for classification. The integration of CNN models and the
implementation of Whale optimization required additional memory resources. Boudouh
et al. [36] employed a TL technique to detect abnormalities in BC images. Bai et al. [37]
developed a BC detection model using a feature fusion Siamese network. Their model
faced challenges in capturing minor details of BC. The limitations of CNN models reduced
their performance in BC detection.

Furthermore, Bobowicz et al. [38] employed an attention-based DL system for BC
classification. Levy and Jain [39] used the CBIS-DDSM dataset to train the VGG-16, ResNet
50, and Inception V3 models. They achieved an average accuracy of 84.16%. Ahmed
et al. [40] proposed semantic and instance segmentation techniques for classifying BC
images. Hameed et al. [41] proposed a BC detection model using histopathology images.
In addition, the authors employed recent models, including Yolo-V8, CatBoost, and Shuf-
fleNet V2, for comparison analysis using combined datasets. The current models required
additional computational resources, restricting them from producing an exceptional out-
come. Compared to our proposed BC detection model, the architecture of Inception v3 is
complex, which may affect the interpretation of the outcomes. Implementing a BC detection
model based on Inception V3 may demand substantial computational resources. Extended
training is required for the Inception V3 model to produce a reasonable outcome. The
EfficientNet B7 model demands considerable computation time for image classification.
Training and deploying the model may require significant computer power and memory,
which can be resource-intensive. In order to maintain the configurations of EfficientNet
B7, a considerable amount of memory is required. This can make its implementation less
straightforward on devices with limited memory capacity. In contrast, the recommended
BC detection model requires limited computational resources for BC detection. It achieved
an extraordinary outcome by addressing the existing limitations using effective image
preprocessing and augmentation techniques.

To deploy the proposed BC detection model, healthcare centers require DL profession-
als. The proposed BC detection model may demand additional training to streamline the
detection process in a real-life environment. In real-time data, mammography images may
include unique sizes, noises, and artifacts. A substantial image preprocessing technique
is needed to improve EfficientNet B7-based feature extraction. Fine-tuning processes are
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required to implement the recommended model in resource-constrained environments. In
addition, healthcare centers should integrate an application into the proposed model to
maintain patient data privacy and security.

The proposed model produced promising results in detecting BC. However, it has
certain limitations. Massive volumes of labeled data may be essential in order to train the
suggested model to generalize effectively to novel and unseen cases. An imbalance in class
distribution can impact the model’s accuracy. The model’s efficacy may vary depending
on the population, ethnicity, or imaging modalities. Continuous monitoring is required
to generalize the proposed BC detection model to a broader population. It is necessary to
update the proposed model to handle new information as healthcare data evolve over time.
In order to promote its smooth adoption, the proposed model should align with healthcare
practitioners’ specific requirements. In the future, the performance of the proposed BC
model can be improved using a graph convolutional network.

5. Conclusions

The proposed study addressed the existing limitations in detecting BC using mammog-
raphy images. Early detection of BC can reduce the mortality rate and support physicians
to provide effective treatments. The authors followed an image preprocessing technique
to enhance image quality. Key features were generated using the EfficientNet B7 model.
The fine-tuned LightGBM detected BC with limited computational resources. The authors
generalized the proposed model using the CBIS-DDSM and CMMD datasets. The experi-
mental outcome revealed a significant improvement in the performance of the proposed
model. The proposed model obtained an exceptional result compared to other recent mod-
els. The findings highlighted that the model can be implemented in healthcare centers to
identify BC in earlier stages. The authors faced a few challenges in deploying the proposed
model. Substantial training is required to overcome the shortcomings of mammography
images. The complexity of EfficientNet B7 may reduce the performance of the feature
extraction process. Generalizing the proposed model using diverse datasets can minimize
the limitations in identifying crucial patterns of BC. However, the authors improved the
training process using the QAT approach. The proposed model can be extended using
graph convolutional networks.
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