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Abstract: Ultra-wide-field fundus imaging (UFI) provides comprehensive visualization of crucial
eye components, including the optic disk, fovea, and macula. This in-depth view facilitates doctors
in accurately diagnosing diseases and recommending suitable treatments. This study investigated
the application of various deep learning models for detecting eye diseases using UFI. We developed
an automated system that processes and enhances a dataset of 4697 images. Our approach involves
brightness and contrast enhancement, followed by applying feature extraction, data augmentation
and image classification, integrated with convolutional neural networks. These networks utilize layer-
wise feature extraction and transfer learning from pre-trained models to accurately represent and
analyze medical images. Among the five evaluated models, including ResNet152, Vision Transformer,
InceptionResNetV2, RegNet and ConVNext, ResNet152 is the most effective, achieving a testing
area under the curve (AUC) score of 96.47% (with a 95% confidence interval (CI) of 0.931–0.974).
Additionally, the paper presents visualizations of the model’s predictions, including confidence
scores and heatmaps that highlight the model’s focal points—particularly where lesions due to
damage are evident. By streamlining the diagnosis process and providing intricate prediction details
without human intervention, our system serves as a pivotal tool for ophthalmologists. This research
underscores the compatibility and potential of utilizing ultra-wide-field images in conjunction with
deep learning.

Keywords: medical image processing; deep learning; fundus image; convolutional neural network;
vision transformer

1. Introduction

Deep learning methodologies have become instrumental in reshaping diagnostic ap-
proaches in ophthalmology, heralding a paradigm where timely diagnosis and specialized
treatment are prioritized. By automating complex diagnostic processes, these sophisti-
cated models provide remarkably accurate predictions, reducing the reliance on human
intervention. The fusion of deep learning techniques with ophthalmological diagnostics
has garnered significant academic attention in recent years. Multiple investigations have
assessed the efficacy of fundus images in detecting ocular anomalies, leveraging the ca-
pabilities of deep learning frameworks [1–4]. The synergy between these two domains
underscores the transformative and far-reaching impact of such technological innovations.
Beyond the scope of ophthalmology, fundus images also offer insights into systemic health
conditions, including but not limited to diabetes, oncological disorders, and cerebrovascular
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events. This broader application is attributed to the unique anatomical characteristics of the
eye, particularly the retina, which can be meticulously examined through fundus imaging,
revealing critical information about blood vessels, neural structures, and connective tissues.
Among the various imaging techniques, ultra-wide-field fundus imaging (UFI) is particu-
larly noteworthy as shown in Figure 1. UFIs provide an encompassing view of the retina in
a manner that is both noninvasive and user friendly. In addition, their ease of operation
ensures that even individuals with basic training can proficiently acquire high-quality
ocular images. Therefore, UFIs could play a significant role in telemedicine applications,
proving invaluable in regions with limited access to specialized ophthalmological care,
thereby facilitating remote diagnostics and prompt medical interventions.

Figure 1. Comparative view of ultra-wide-field fundus imaging (UFI, left) versus conventional fundus
imaging (CFI, right), showcasing the extent of retinal coverage and detail resolution. UFI captures a
comprehensive field of view, revealing the fovea, macula, and optic disk alongside peripheral retinal
details that are not visible in the narrower field of CFI, which focuses on central retinal structures
with greater detail. This contrast highlights the diagnostic advantages of UFI in assessing peripheral
retinal pathology and the detailed visualization of central retinal features by CFI.

While UFIs typically involve a higher initial investment compared to CFIs due to more
sophisticated technology, they may prove more cost effective in the long term, especially
in telemedicine applications. The comprehensive view offered by UFI can lead to earlier
and more accurate diagnoses of peripheral retinal diseases, which can be missed by CFI.
This improved diagnostic capability can potentially reduce the frequency of follow-up
visits and additional testing required, resulting in lower overall costs for healthcare sys-
tems. Additionally, the ability to capture extensive retinal images in a single, noninvasive
photograph makes UFI particularly suitable for remote areas, where such capabilities can
drastically reduce the need for patients to travel to specialized centers. By facilitating early
and accurate diagnoses, UFI can contribute to better patient outcomes and lower healthcare
expenditures associated with advanced stages of ocular diseases.

Conventional fundus cameras, designed to capture the ocular surface, are limited in
their scope, often capturing only between 30 to 60 degrees of the posterior pole. However,
recent technological advancements have led to the development of the UFI technique,
in which images can capture up to 200 degrees of the pole. A prime example of this
advancement is the Optos camera, an innovative creation from Dunfermline, the United
Kingdom. This camera utilizes an ellipsoidal mirror, allowing it to image the retina in
various modalities, encompassing pseudocolor images, fundus autofluorescence (FAF),
fluorescein angiography (FA), optical coherence tomography (OCT), and, notably, UFI.
The adoption of UFI overcomes the constraints associated with conventional cameras.
The advantage of UFI are twofold: (i) it extracts abundant details from scans, offering a
holistic view of the retina; and (ii) the imaging procedure is notably more streamlined,
for instance, it does not necessitate eye dilation, which is a standard procedure in conven-
tional methods. The expansive practical applications of UFI are particularly noteworthy
in telemedicine, offering significant benefits in clinical settings as well as remote areas
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with limited access to specialized ophthalmological care. In particular, UFI is crucial for
diagnosing diseases such as diabetic retinopathy and retinal vascular occlusion.

The use of UFI combined with deep learning has increasingly become a focal point in
ophthalmic diagnostics, with many studies validating its efficiency. In 2017, researchers
began demonstrating the accuracy of machine learning models using UFI fundus oph-
thalmoscopy to detect rhegmatogenous retinal detachment [5], highlighting the potential
for automated, high-speed diagnostics. Following this, the capability of deep learning to
discern idiopathic macular holes using similar UFI imaging was established [6]. Contin-
uing this trend, a study introduced a deep neural network method adept at identifying
central retinal vein occlusion [7], leveraging the wide field of view provided by UFI oph-
thalmoscopy. Additional research showed the effectiveness of UFI-assisted deep learning
models in detecting age-related macular degeneration [8] and treatment-naive proliferative
diabetic retinopathy, thereby broadening the study of detectable conditions [9]. Moreover,
the precision of deep convolutional neural networks in pinpointing retinitis pigmentosa
on UFI images was explored [10], alongside the identification of lattice degeneration and
retinal breaks [11], revealing the multifaceted applications of UFI imaging in retinal disease
screening. Advancements in deep learning allowed for not only the detection of retinal
detachment but also the assessment of macular status via fundus images. The momen-
tum continued into 2021, with the early detection of diabetic retinopathy based on deep
learning algorithms and UFI images, indicating a significant stride toward proactive retinal
healthcare [12].

Recent advancements in UFI involve the identification of diseases from scans by using
integrated detection, segmentation [13], and classification techniques. These studies em-
phasize the identification of crucial structures within the eye, such as the optic disk, macula,
and adjacent regions depicted in the UFI. The recognition of these pivotal components
enhances the performance of classifiers in differentiating various ocular diseases. In terms
of diagnosis, extensive research has been conducted using a public eye fundus dataset to
pretrain the U-net model [14], with ResNet-18 serving as its encoder. This model was later
adapted to an in-house UFI dataset, in which optic disk regions are identified using the
ellipse fitting method. In the classification domain, the ResNet-34 model, pretrained on the
ImageNet, was employed for both training and fine tuning. This paper reviews various
image processing techniques that consider the unique characteristics of UFIs, thus setting
a foundation for future experimental pursuits. In 2016, the introduction of automated
retinal disease assessment (ARDA) marked a significant advancement. This state-of-the-art
system, powered by artificial intelligence, specializes in detecting ocular diseases, particu-
larly diabetic retinopathy and age-related macular degeneration. Trained on a vast dataset
of eye scans rigorously analyzed by experienced ophthalmologists, ARDA achieves an
impressive specificity of 98.5% [15]. The combination of deep learning methodologies and
medical imaging necessitates the conceptualization of an automated diagnostic assistant
for UFI [16,17]. Such tools have the potential to transform ophthalmology by hastening
diagnoses, minimizing human errors, and efficiently handling an increasing patient influx.

In this study, we address the challenge of predicting diseases from UFI images by
utilizing state-of-the-art deep learning methodologies. Our approach first uses a specialized
preprocessing procedure to augment the decision-making prowess of the AI system. This
approach employs cutting-edge models pretrained on ImageNet [18], acclaimed for their
performance in image classification tasks. This selection encompasses formidable models
such as ResNet152, Vision Transformer, InceptionResNetV2, RegNet, and ConVNext, all
of which we integrated with our dataset for disease diagnosis. The results show that the
proposed model achieved an impressive AUC score, with a peak of 96.47%. However,
our investigation extended beyond model deployment; we performed a comparative
analysis on the performance of all aforementioned models to identify the optimal model to
perform the required task. By harnessing the capabilities of the top-performing model, we
crafted a visualization technique that elucidates prediction determinants. This visualization
approach, highlighting regions within images suggestive of the diseases, offers critical
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insights into disease localization within the eye, and it is crucial for both the ongoing
research and clinical evaluations. The key contributions and findings of our study are
summarized as follows:

1. Training and evaluation of deep learning models: We employ a range of state-of-the-
art deep learning models, such as ResNet and Vision Transformer, to classify images
and predict the presence of eye diseases. These models are compared to discern
their performance metrics, enabling us to identify the model that yielded the most
promising results in disease prediction.

2. Output visualization for in-depth analysis: To ensure that our findings are transparent
and interpretable, we provide visual representations of our results. This includes
heat maps which precisely indicate the focal regions in images displaying signs of
diseases where evident. These visual aids are invaluable for researchers and medical
professionals seeking to understand the exact locations and extents of potential disease
manifestations.

2. Materials and Methods
2.1. Data

In this study, we utilized an in-house dataset comprising 4697 images. These images
were retrospectively amassed from 2 January 2006 to 31 December 2019. They represent
a diverse group of patients—both with and without retinal diseases—who underwent
eye examinations at the Kangbuk Samsung Hospital Ophthalmology Department during
this period. A critical step in our data-handling procedure was ensuring the privacy and
confidentiality of the patients involved. To this end, upon acquisition of the images, all
identifiable information, including patient IDs, was meticulously removed. Subsequently,
these anonymized images were dispatched to a medical professional for accurate labeling.
Our study rigorously adhered to the tenets outlined in the Declaration of Helsinki. Fur-
thermore, our protocol underwent scrutiny and received approval from the Institutional
Review Boards (IRB) of Kangbuk Samsung Hospital under the identifier No. KBSMC
2020-01-031-001. As our study is retrospective and delves into medical records with all data
being fully anonymized, the IRB graciously waived the requirement for informed consent
from the patients.

Our dataset, comprising images with a resolution of 2600 × 2048 pixels, was cate-
gorized into normal and abnormal images. The “normal” category encompasses images
depicting eyes free from any discernible disease, whereas the “abnormal” category is a
collection of images displaying eyes afflicted with one or more conditions. These images
were also classified by our professional ophthalmologist. Among the normal images,
1444 and 161 healthy eye images were utilized for categorizing into training and testing
sets, respectively. In contrast, among the abnormal images, 2782 and 310 were allocated as
training and testing images, respectively.

2.2. Proposed System

Figure 2 presents the proposed framework, comprising three essential phases: data
augmentation, image-quality enhancement, and disease classification. A prevalent chal-
lenge in medical imaging research is the limited availability of labeled images. Such a
limitation could mainly be attributed to the complexities associated with acquiring patient
consents, thereby elevating the significance of each labeled dataset. To address this, we
initially performed data augmentation to enrich the dataset. This process not only increases
the dataset volume but also instills diversity, facilitating better model generalization and
mitigating overfitting risks. Next, each image was thoroughly enhanced for quality, which
is crucial for refining the image attributes, thereby ensuring that the neural network is
presented with salient features devoid of extraneous noise or distortions. After being
processed, these images were converted into tensors, making them ready for deep neural
network processing. Finally, state-of-the-art neural networks were deployed for disease
classification. A distinguishing characteristic of our framework is its fully automated
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nature, eliminating the need for human interventions, thereby reinforcing our commitment
to establishing an autonomous and accurate system for ocular disease diagnosis.

Figure 2. Deep learning-aided eye disease diagnosis system. The images first undergo augmentation
and preprocessing. Next, the preprocessed images are fed into deep learning neural networks to
learn feature representations. The model then outputs the predictions as normal or abnormal eyes.

The dataset, sourced from our hospital, comprises high-resolution images with dimen-
sions of 2600 × 2048 pixels. Although such high-definition images offer intricate details
beneficial for certain analyses, their direct incorporation into deep learning frameworks
presents computational challenges. A primary concern is the significant computational
overhead inherent in processing these resolutions. The direct use of such images for model
training is not only computationally burdensome but also risks extended training durations
and potential memory constraints. Therefore, the differential image interpretation between
deep learning algorithms and human clinicians must be determined. Whereas medical
professionals might focus on subtle diagnostic patterns within a high-definition image,
neural networks process extensive numerical pixel arrays, extracting patterns from these
vast data. This voluminous detail can inadvertently obscure essential patterns, potentially
diminishing the model’s efficacy. To synchronize the need for detail with computational
pragmatism, the images were resized to a resolution of 512 × 512 pixels by using bi-linear
interpolation—a method that employs successive linear interpolations in both the x and
y directions.

2.2.1. Data Augmentation

State-of-the-art deep learning models often feature an intricate architecture, boasting
multiple convolution layers. These deep architectures, with numerous parameters, en-
able models to grasp more intricate and distinct representations of data. However, such
complexities have certain limitations, i.e., these models demand vast amounts of labeled
data for effective training and validation. Such vast amounts of data are unavailable in
the field of medical imaging, primarily because of the stringent confidentiality obligations
surrounding patient data. To address this data scarcity, we leveraged data augmentation—a
suite of computer vision techniques to artificially expand our dataset. The principle of these
techniques is to produce variants of the original images, while preserving their inherent
medical information and characteristics.

• Horizontal and vertical flipping: By transposing the image, i.e., by swapping the x and
y indices, we can achieve both horizontal and vertical flipping. This straightforward
operation effectively doubles the dataset, providing mirrored versions of each image.x′

y′

1

 =

−1 0 w
0 1 0
0 0 1

x
y
1

 (1)
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• Rotation: This is achieved through affine transformation, a type of geometric trans-
formation that can retain straight lines and parallelism, albeit at the expense of the
absolute preservation of distances and angles. The mathematical underpinning of the
rotation technique can be denoted as:[

x′

y′

]
=

[
cosθ −sinθ
sinθ cosθ

][
x
y

]
(3)

where (x′, y′) denotes the new data point post-rotation, (x, y) symbolizes the original
data point, and θ represents the rotation angle. This transformation is methodically
applied to all coordinates within an image to produce the rotated version. A salient
feature of our augmentation strategy is its randomness. This stochastic approach,
whether to flip an image (with a probability of 0.5) or select a random rotation angle,
serves a dual purpose: (i) it ensures a diverse dataset, making it more representative,
and (ii) it actively combats the specter of overfitting, ensuring our model does not
overly familiarize with the training data but remains generalizable to new, unseen data.

2.2.2. Preprocessing

Before initiating the training process, our dataset was subjected to a preprocessing
procedure to optimize model efficacy. To enrich our data repository, we utilized data
augmentation strategies that encompassed random horizontal and vertical flips in conjunc-
tion with random rotations. This approach generates various pixel configurations while
retaining the intrinsic attributes of the original images, effectively expanding our dataset
to a count of over 21,000 images. By considering the inherent variability, often character-
istic of medical images, we incorporated image enhancement methodologies. Utilizing
the image histogram, we modulated brightness to achieve harmonized illumination and
heightened the overall contrast to guarantee a homogenized pixel intensity distribution.
This process accentuated the features vital for accurate medical interpretation. To ensure
computational tractability and model congruence, images designated for both training
and testing were resized to a consistent resolution of 512 × 512 pixels. Subsequently,
normalization was applied to standardize the pixel intensities, priming them for optimal
neural network training.

Although capturing UFI is noninvasive and convenient, the quality of these images
is unsatisfactory (in terms of image property), and the images often include artifacts
(such as camera light) or other body parts (such as eyelashes). These elements could be
a problem for deep learning, as the models consider them as an aspect of the image that
must be considered. To overcome these problems, some image enhancing techniques have
been applied, such as histogram equalization or brightness/contrast adjustment. The
histogram equalization technique was employed to equally distribute the intensity values
of the images. In addition, the brightness/contrast was adjusted according to image pixel
intensity I, and the resulting intensity can be represented as:

I′ = α × I + β (4)

where I is the original pixel intensity, I′ is the pixel intensity after adjustment, α is the
contrast control, and β is the brightness control. Note that α > 1 represents an increase
in the contrast value, and 0 < α < 1 represents a decrease in the contrast. An α of 1 will
leave the contrast unchanged. Positive values of β represent an increase in the brightness,
whereas negative values represent a decrease in it.
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2.2.3. Deep Learning Classification

Over the past few years, the deep learning field has witnessed intensive research
on image classification based on deep learning architectures [19–21]. Conventional archi-
tectures, including VGG, CenterNet, and ResNet, historically dominated the computer
vision landscape. However, the introduction of Vision Transformer (ViT) has significantly
increased discussions within the field of deep learning. The primary advantage of ViT is its
attention mechanism, which adeptly prioritizes salient portions of input data, resulting in
the exemplary performance of diverse tasks [22]. Earlier, convolutional neural networks
(CNNs) formed the foundation of image analysis in computer vision [23]. These networks,
characterized by a series of interconnected neurons, can easily extract intricate features
from images, subsequently synthesizing meaningful representations. However, the intro-
duction of the Transformer architecture heralded a noteworthy evolution in this domain.
An increasing number of researchers are now investigating this architecture because of its
demonstrated proficiency in various benchmark tasks, often surpassing the capabilities of
conventional CNNs [24,25]. Notably, in some studies [26], ViT distinctly outperformed its
CNN counterparts, particularly in tasks centered around disease detection and grading,
highlighting its potential in discerning critical features within medical images. In this
paper, we tested five of the most recent and state-of-the-art methods in computer vision,
namely ResNet152, ViT, Inception-ResNet-v2, RegNet and ConVNext, for classifying the
UFI dataset. The core blocks of these models are shown in Figure 3.

Since the introduction of ResNet [27], it has rapidly superseded the prevailing model
VGG [28] not only in terms of accuracy but also computational efficiency. Conventional
wisdom within the deep learning community posited that the deepening of neural net-
works—by incrementing layers—would inherently bolster model performance. However,
this technique poses several complications. As networks deepen, they increasingly en-
counter the vanishing gradient effect, which complicates the training of profound networks
and culminates in diminished performance outcomes. ResNet provides an innovative
resolution to this predicament. Its main concept is the “residual block”, premised on the
“Identity Shortcut Connection”. Mathematically, a residual block can be articulated as:

y = F (x, {Wi}) + x (5)

where x and y represent the input and output of the respective layers, while F (x, {Wi}) + x
represents the residual mapping to be ascertained. This framework permits certain network
layers to avoid one or multiple subsequent layers, forging a more succinct traversal path
through the network. The underlying thesis suggests that, in specific contexts, optimizing
the residual mappings is more effective than directly adjusting the original mappings. Based
on this paradigm, ResNet assured that the augmenting network depth did not degrade
the overall performance. These “shortcut” or “skip connections” preserve the advantages
of intricate architectures, such as discerning nuanced data patterns, while obviating the
typical adversities of the profound networks. Consequently, ResNet models, with their
multitudinous layers, are adeptly trained without capitulating to the aforementioned
challenges, thereby redefining the benchmarks in diverse computer vision tasks.

The introduction of ViT allowed the use of architectures previously reserved for
natural language processing in the field of computer vision. The ViT draws its strength
from the attention mechanism, which enables it to selectively focus on salient regions
of the input, thereby enhancing the interpretability and relevance of its outputs. At the
core of this attention mechanism are three pivotal elements introduced in [22], namely
the query (Q), key (K), and value (V). When combined with positional encoding, these
elements facilitate the learning of attention weights within an encoder–decoder framework,
ensuring that spatial relationships within the input are retained. By adapting the original
Transformer structure for visual tasks, the ViT inherits its predecessor’s properties, ensuring
the continued benefits of the original design. The most notable modification in ViT is the
treatment of the input. Instead of receiving raw pixel values, ViT utilizes images as
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sequences of patches. These patches, derived by segmenting the input image, can be
mathematically represented as:

xp ∈ RH×W×C → xp ∈ RN×(P2·C) (6)

where (H, W) is the resolution of the original images, (C) is the number of channels, (P, P) is
the resolution of each image patch, and N = HW/P2 is the number of patches. After these
patches are flattened into sequences, they are converted into embeddings through learnable
parameters. These embeddings are then further processed, with a classification head
appended to predict the output class. Notably, this head uses a multilayer perceptron
(MLP) during pretraining and a linear layer in the fine-tuning phase.

Inception-ResNet-v2 is a CNN architecture that was built using the Inception structure
but further fused with a residual network, which is the most important feature of a ResNet
architecture. Originally stemming from the InceptionV3 framework, Inception-ResNet-v2
incorporates key features from both designs, resulting in a CNN with 164 layers. This
model was pretrained on a diverse set of data spanning 1000 categories, designed to accept
inputs of dimensions 299 × 299 pixels. The guiding principle of the Inception architectures
is to favor width over depth. This is embodied in the ‘inception blocks’, which concurrently
execute convolution operations of varied sizes within a singular layer. Based on these
operations, dimensionality was reduced to ensure computational efficiency. What sets
Inception-ResNet-v2 apart is the integration of Residual Inception Blocks. Within these
blocks, each convolution from the inception units is harmoniously melded with a residual
connection, a concept central to the ResNet design. The Inception module is defined as
a combination of convolutional filters of different sizes applied to the same input layer.
Assume I(x) represents an inception block operation on input x. Then, the output of this
operation would be I(x). In the context of the residual connection, the output is obtained
by adding the original input x to the output of the inception operation I(x).

RegNet [29] represents a new approach to dynamically adapting neural network archi-
tectures through parameterization. Instead of maintaining static architectural dimensions,
RegNet leverages parameterization to describe the widths and depths of networks by
using a quantized linear function. The development process is initiated by establishing a
comprehensive space called “AnyNet”, encompassing a broad spectrum of unconstrained
network architectures. In this study, each of these networks underwent rigorous training
and evaluation to filter out the most efficient ones. This allows to reduce the complex space
of possibilities so as to extract the critical parameters governing the best models. The use of
such a selective process resulted in the RegNet design space, characterized by a regular
and systematic network structure.

So far, we tested two types of deep learning methods for classification, namely CNNs
(ResNet152, InceptionResNetV2, and RegNet) and a Transformer (ViT). However, recent
studies have focused on a model that inherits the most compelling features of both methods:
ConVNext. Introduced in 2022, ConVNext is a CNN that is significantly inspired by the
design philosophy of ViT. Instead of being another convolutional model, the ConVNext
presents itself as a “modernized” convolution network, morphing the foundational prin-
ciples of a standard ResNet to align more closely with the architectural nuances of ViT.
Its innovative design not only pays homage to its predecessors but reportedly surpasses
the original designs in performance metrics [30]. Table 1 shows the characteristics of
each model, where ConVNext is the largest model in size (337.95 MB) and has the most
parameters among all the models (88,600,000 parameters).
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Figure 3. Different core blocks of the proposed deep learning models. ResNet152 employs convolution
layers of size 1 and 3, RegNet introduces a design space with additional convolution layers of 1 × 1,
and ConVNext introduces a depth-wise convolution. Vision Transformer comprises Multi-head
Self-attention (MHSA) and multilayer perceptron (MLP).

Table 1. Characteristics of deep learning models.

Models Size (MB) Number of Layers Total Number
of Parameters

ResNet152 230.19 152 60,192,808
Vision Transformer 330.23 - 86,567,656
InceptionResNetV2 207.41 572 54,309,538

RegNet 319.34 293 83,590,140
ConVNext 337.95 300 88,600,000

2.3. Measurement Metrics

In evaluating our models, we utilized several standard measurement metrics:

AUC score: The Area Under the Receiver Operating Characteristic Curve (AUC-ROC)
measures a classifier’s ability to distinguish between classes.
F1 score: This is the harmonic mean of precision and recall, balancing the trade-off between
the two.
Kappa score: Cohen’s Kappa score measures the inter-rater reliability for categorical items,
indicating the precision of the classifier.

Each of these metrics provides a different perspective on the performance of our
models, from their discriminative power (AUC) to their balance between precision and
recall (F1), and their reliability (Kappa).

2.4. Implementation Details

The use of complex deep neural networks, including architectures such as ResNet or
Transformer, could often result in the limited availability of adequately labeled training
data. A widely endorsed mitigation, especially pertinent to medical imaging, is the use
of transfer learning. This methodology facilitates a model to extrapolate insights from
one domain and proficiently repurpose them for another cognate task within a similar
purview. The success of transfer learning can be attributed to comprehensive labeled
databases, such as ImageNet or Cifar, which serve as a foundation for the preliminary
training of these extensive networks. By harnessing these corpora, models can undergo a
pretraining regimen, thereby optimizing their initial weight configurations. These models
are then refined using domain-centric datasets, such as UFI, ensuring task specificity
while capitalizing on the generalized image semantics. Such a strategy not only bolsters
the model’s efficacy and expedites convergence but also reduces reliance on voluminous
labeled data, resulting in significant reductions in computational overheads and epoch
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durations. Table 2 lists the comprehensive training parameters. Our empirical assessments
substantiate the merits of transfer learning. Specifically, a model primed with pretrained
weights manifested an AUC score at the start of training (85.6%) better than that of a model
without such a pre-configuration (65.4%).

Table 2. Training configurations of deep learning models.

Model ResNet15, InceptionResNetV2, RegNet, ConVNext Vision Transformer

Image size 512 × 16,512 224 × 16,224
Batch size 64 32

Number of epochs 100 100
Learning rate 0.001 0.0001

Our proposed methodology utilizes Pytorch [31], operating on GeForce RTX 3080 Ti
GPUs. The computational prowess of these GPUs is pivotal, handling both the extensive
dataset and the intricate nature of the model. By considering the parallel processing abilities
of the GPUs, we can efficiently train our model and accelerate the pretraining processes by
using the recommended methods. Performance measurements are calculated automatically
by using the sklearn libraries.

3. Results

To validate our proposed system, we assessed the performance of each model by
employing three distinct methods: processing raw data, data augmentation (without
pre-processing), and deploying the proposed system (with both augmentation and pre-
processing). Figure 4 illustrates the ROC curves for the five models under study: ResNet152,
InceptionResNetV2, RegNet, ConVNext, and ViT. Within these graphs, the yellow line
represents models trained on raw data, the blue line represents models trained using only
augmentation, and the red line represents models trained using our proposed system.
Among the models, ResNet152 and ConVNext emerged as top performers, registering
AUC values of 96.47 (with a 95% confidence interval (CI) of 0.953–0.975) and 96.13 (with a
CI of 0.948–0.973), respectively. Their high performance results were highlighted by their
proximity to an AUC of 1. For clarity, all evaluation metrics were determined based on the
configurations detailed in Table 3. Specifically, under these settings, InceptionResNetV2,
RegNet and ViT achieved average AUCs of 95.2, 96.04 (95% CI of 0.947–0.972), and 95.2
(95% CI of 0.937–0.967), respectively.

More detailed performance results of each models are shown in Table 3. We computed
each models’ evaluation scores, i.e., AUC score, F1 score, Kappa score, and accuracy
(Test accuracy). As shown, ResNet152 achieved the best accuracy of 89.17%, followed by
ConVNext. In addition, ResNet152 achieved the highest scores among all the classifiers
(4/4 metrics), with the highest F1 and Kappa score of 89.09% and 75.61%, respectively. Note
that in our dataset, the fundus images contain many diseases, including age-related macular
degeneration, diabetic retinopathy, epiretinal membrane or retinal vein occlusion. A single
image could comprise more than one disease, complicating the appropriate prediction
of abnormal images in the dataset. Nonetheless, our approach still achieved practicable
results for this task.

For models trained on raw data, ConVNext demonstrated superior performance
metrics with an AUC score of 94.44, F1 score of 87.04%, Kappa score of 71.10%, and accuracy
of 87.05%. ResNet152 trailed closely, whereas ViT lagged in comparison, with notably lower
metrics overall. In particular, it achieved an AUC score of 85.0. When integrated with
data augmentation techniques, a tangible enhancement was observed in the performance
metrics for most models. ConVNext again emerged at the forefront with a commendable
AUC score of 96.07, F1 score of 88.71%, Kappa score of 77.45%, and accuracy of 89.06%.
Notably, ViT showed improvement, especially in term of its Kappa score, displaying a
significant leap to 50.03 from 42.08 when using raw data.
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Figure 4. AUC score of ResNet152, Vision Transformer, InceptionResNetV2, RegNet and ConVNext.

Table 3. Performance of different deep learning models, evaluated on the UFI test set.

Methods Models AUC Score F1 Score Kappa Score Accuracy

Raw data

ResNet152 93.98 84.83 66.62 84.71
Vision Transformer 85.0 74.59 42.08 76.88
InceptionResNetV2 84.0 86.85 69.96 86.62

RegNet 93.96 86.73 70.30 86.84
ConVNext 94.44 87.04 71.10 87.05

Data augmentation

ResNet152 94.9 83.78 63.05 84.71
Vision Transformer 85.31 77.39 50.03 77.28
InceptionResNetV2 94.85 76.73 69.25 86.41

RegNet 95.57 87.20 71.43 87.26
ConVNext 96.07 88.71 77.45 89.06

Proposed system

ResNet152 96.47 89.09 75.61 89.17
Vision Transformer 94.50 87.10 71.35 87.26
InceptionResNetV2 95.20 88.10 73.50 88.11

RegNet 96.04 88.40 73.98 88.54
ConVNext 96.13 88.27 74.98 89.08

We examined the performance of five deep learning architectures during training
by plotting the loss curves of these models as shown in Figure 5. The loss trajectories,
charted over training epochs, offer a lucid depiction of the learning efficacy and depend-
ability of each model. All architectures displayed a diminishing loss trend, suggesting
resilience against overfitting and endorsing the validity of the reported outcomes. Notably,
ResNet152 and ConVNext emerge as frontrunners with minimal loss magnitudes. This
metric accentuates the distinguished capability of these two models to generalize and
discern complex patterns within the dataset. Although the remaining architectures also
exhibit commendable performance, the marked proficiency of ResNet152 and ConVNext
highlights their potential applicability for applications that necessitate paramount accuracy
and consistency.
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Figure 5. Training losses of ResNet152, Vision Transformer, InceptionResNetV2, RegNet and Con-
VNext. The transparent lines represent the raw training loss for each epoch, while the solid lines
show the smoothed training loss with a smoothing factor of 0.6.

To enhance the transparency and comprehensibility of our deep learning models, we
illustrate the post-training heatmaps in Figure 6. Sequentially, each column displays the
resized input image, succeeded by the heatmaps generated from ResNet152, ViT, RegNet,
InceptionResNetV2, and ConVNext. The subsequent rows represent original images jux-
taposed with their corresponding heatmaps as interpreted by each model. In particular,
the top three rows represent eyes with diagnosed pathologies, whereas the final row rep-
resents a healthy eye for comparative analysis. These heatmaps employ a color spectrum
from blue to red superimposed on the original images, with the red regions emphasizing
the predominant focus during model predictions. Preliminary inspection suggests that
the models consistently localize anomalies in the images identified as pathological. This
localization is based on a comparative evaluation with respect to healthy eyes, displaying
distinct irregularities in the pathological eyes. To bolster the credibility of these observa-
tions, we consulted two experienced ophthalmologists. Their insights were revelatory,
pinpointing a notable alignment between the areas emphasized by ResNet152 and their
diagnostic focal points, particularly in the posterior ocular segments. According to their
professional knowledge, these regions frequently harbor pivotal signs indicative of the ocu-
lar health status. Although this information cannot be considered conclusive evidence of
our models’ interpretive efficiency, the expert feedback underscores the promising efficacy
of these AI-driven methodologies.

Figure 6. Heatmaps generated from each deep learning model. The first-row images display abnormal
eyes, and the second-row images represent normal eyes.

In the subsequent evaluation, we visualized the feature maps extracted from each
model after the application of 2D convolutional layers as depicted in Figure 7. These feature
maps serve as a window into the complex learning mechanisms of the networks, revealing
the progression of feature extraction and abstraction at various depths. For multi-layered



Diagnostics 2024, 14, 105 13 of 19

architectures, such as ResNet152, InceptionResNetV2, and RegNet, we encounter a vast ar-
ray of convolutional layers. To provide a meaningful visualization without overwhelming
detail, we judiciously selected and presented feature maps from three or four representative
layers, chosen based on their relevance to capturing pivotal features in the UFI data. Con-
versely, for ConvNext, we offered a comprehensive visual array, detailing the feature maps
following each convolutional layer to demonstrate the model’s methodical construction of
features from simple to complex. Furthermore, with the Vision Transformer (ViT), we con-
centrated on showing its class activation mappings, which highlight the critical areas within
the input image that contribute most significantly to the model’s classification decision.
Across all models, these visualizations provide a deeper understanding of the discrimina-
tive regions that the models prioritize during their learning process. The detailed terminal
feature maps are particularly revealing, as they allow us to pinpoint disease-associated
regions within the medical images with high precision. This accuracy is notably prominent
in models like ResNet, ViT, and ConvNext, showcasing their proficiency in discerning
pathological features. Those insights underscore the capabilities of these models in medical
diagnostic applications, where the precise identification of abnormalities is crucial.

Figure 8 illustrates the t-SNE visualizations, which provide an intuitive represen-
tation of the high-dimensional feature spaces learned by various deep learning models.
These visualizations extract complex data patterns into two-dimensional plots that can
be readily interpreted, allowing us to assess the models’ abilities to segregate classes spa-
tially. In the case of ResNet152, InceptionResNetV2, and ConVNext, we observe distinct,
well-separated clusters, indicative of their superior pattern extraction and classification
capabilities. The clear demarcation between ‘normal’ and ‘abnormal’ classes in their re-
spective t-SNE plots underscores the effectiveness of these architectures in capturing and
emphasizing the salient features necessary for accurate class differentiation. On the other
hand, some models exhibit less defined clustering, with overlaps in the t-SNE space,
suggesting potential challenges in distinguishing between classes with high precision.
These patterns are pivotal, as they reveal the intrinsic discriminative power of each model,
with the spatial separation of the clusters serving as a proxy for the models’ ability to gen-
eralize from the data. This visual comparison of t-SNE embeddings from multiple models
not only demonstrates the robustness of certain architectures in feature representation but
also affirms the critical impact of feature extraction proficiency on the overall performance
of the models. The discernible differences in cluster formation highlight the importance of
model selection in medical diagnostic applications, where the accuracy and reliability of
predictions are of the utmost importance.
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Figure 7. Feature map generated from each deep learning model after each convolution layer (or
after each block of attention, in the case of Vision Transformer).
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Figure 8. t-SNE visualization for each deep learning model, generated from 400 samples (200 for
each class).

In the subsequent visual representation, the model-based predictions for each input
image are shown in Figure 9. For every input, the model depicts not only the prediction
but also its true label, presenting a clear insight into the model’s accuracy. Similarly,
the “model confidence” is a crucial factor in understanding the certainty of the model
prediction. This factor can be fundamentally derived from the model’s softmax function,
which is defined as:

P(yi) =
eyi

∑K
j=1 eyj

(7)

where yi represents the raw score (logit) for class i, and K is the total number of classes.
The output of softmax transforms these logits into probability values. For instance, if the
model predicts an image as “abnormal” and assigns it a softmax probability of 0.95,
the model represents a 95% confidence level. Similarly, a “normal” prediction with a
softmax value of 0.85 translates to 85% confidence in the image being “normal”. Al-
though these confidence scores can be highly suggestive of the model’s conviction, they do
not always mirror its actual accuracy or reliability. Such discrepancies could be attributed
to issues such as biased training data or overfitting.

Figure 10 plots the inference times with respect to the number of parameters for each
model. As observed, InceptionResNetV2 demonstrated the shortest inference time and the
fewest parameters, indicative of its capability to process data efficiently with a streamlined
architecture. Nevertheless, this efficiency seems to compromise its overall performance
as demonstrated by its relatively suboptimal results. In contrast, ResNet152 achieves a
remarkable equilibrium: it demonstrates a near-minimal inference time with a moderate
number of parameters. Overall, it is a top performer among the models in terms of accuracy.
This underscores the efficacy of its architectural design in balancing speed and precision.
ConVNext presents a distinct profile: despite comprising the most extensive parameter set,
its inference time remains competitively low. Such a profile suggests adept utilization of
its expansive parameters for swift predictions. This examination underscores the varying
design philosophies and the consequential trade-offs among the model complexities, com-
putational speeds, and performance, emphasizing that an increased parameter count is not
a straightforward indicator of either prolonged inference or enhanced performance.
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Figure 9. Examples of ResNet152 model predictions, given an input image.

Figure 10. Inference time for each model (average time taken for each model to generate a prediction,
given an input image).

4. Discussion

Our findings demonstrated the potential of utilizing deep learning models in the field
of UFI for diagnosing eye diseases. The high AUC score achieved using deep learning
is particularly noteworthy, as it is a strong indicator of the model’s capability to distin-
guish between diseased and healthy conditions. In real-world clinical applications, such
a high AUC indicates AI to be a reliable diagnostic tool that can minimize false positives
and negatives, thereby ensuring that patients receive timely and appropriate care. This
is especially crucial in settings where there is a dearth of experienced ophthalmologists,
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as an automated system with high accuracy can ensure quality care. The integration of
AI techniques in the medical domain could pave the way for significant advancements
as evidenced by the robust results yielded in our study. These methods hold great potential
for augmenting clinicians’ diagnostic abilities, expediting patient assessments, and, conse-
quently, accelerating the treatment initiation process. The evolution of such deep learning
systems increases the possibility of the development of autonomous medical instruments
that could perform diagnoses without direct human intervention, promising both cost- and
time effectiveness in the healthcare process.

Our study introduces several advancements in the application of deep learning models
to ultra-wide-field fundus imaging (UFI) datasets yet acknowledges key limitations. Firstly,
the initial exploratory phase, which included models trained on unprocessed images, was
not systematically documented, limiting our ability to empirically validate the impact
of the preprocessing steps, such as histogram equalization, on the model accuracy. This
gap in documentation and analysis hinders a full understanding of the preprocessing’s
contribution to enhancing deep learning performance in UFI contexts, an aspect we aim
to address in future research. Additionally, the unique approach of employing UFI for a
binary ‘normal’ vs. ‘abnormal’ classification presents challenges in benchmarking against
existing studies, which typically focus on distinguishing ‘normal’ from specific diseases.
This novel classification approach, while innovative, affects the direct comparability and
interpretability of our models, underscoring the need for future work to establish a baseline
for such broad-spectrum classification using UFI. As the field evolves, we believe our study
will provide a valuable reference for subsequent research in this area, contributing to the
broader understanding and application of UFI in ophthalmic diagnostics.

Our research primarily focuses on the technical aspects of image analysis and model de-
velopment, which means the direct correlation with clinical outcomes and patient-oriented
evidence is limited. The clinical applicability of our findings requires further validation
through prospective clinical trials and collaboration with medical practitioners to ensure
that our models align with the clinical realities and patient needs. Secondly, while our
models demonstrate promising results in image analysis, we did not explore the integra-
tion of these diagnostic capabilities with treatment strategies, particularly advanced drug
delivery systems, like controlled release methods. The omission of this aspect limits the
scope of our research in providing a comprehensive view of patient care that encompasses
both diagnosis and treatment. Addressing these limitations in future work will be cru-
cial for transitioning from technical innovation to practical, patient-centered applications
in ophthalmology.

Nevertheless, the task of disease diagnosis using medical images is an ever-evolving
field with ample scope for further exploration. Given the inherent challenges of data
labeling, especially the need for expert input in the case of medical images, researchers
must consider studying cutting-edge deep learning techniques that can deliver results
with minimal labeled data. In such scenarios, techniques such as semi-supervised and self-
supervised learning [32] are promising candidates. This is because they do not necessitate
a vast corpus of labeled data to discern the intricate feature representations in medical
images. Such techniques could dramatically reduce the need for expert interventions in
the training process yet, as preliminary studies suggest, still maintain, or even exceed,
the current performance benchmarks in medical imaging.

5. Conclusions

This study proposed an approach combining state-of-the-art deep learning models
with UFIs. Compared to conventional fundus images, the proposed method achieved
competitive performance in the diagnosis of disease based on retinal images. Along with
the development of CNNs and the attention module, these deep learning algorithms could
extract features and demonstrate important regions of the medical images showing signs
of lesions and hemorrhage. This study exploited the performance of supervised learning
models such as ResNet or Transformer on the UFI dataset, accurately understanding how
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well an AI system would be able to achieve generalization with this modal of medical
images. In the future, we plan to develop new self-supervised learning methods to tackle
the deficiencies in labeled medical images.
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