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Abstract: This study aimed to assess the feasibility and performance of an artificial intelligence
(AI) model for detecting three common wrist fractures: distal radius, ulnar styloid process, and
scaphoid. The AI model was trained with a dataset of 4432 images containing both fractured and non-
fractured wrist images. In total, 593 subjects were included in the clinical test. Two human experts
independently diagnosed and labeled the fracture sites using bounding boxes to build the ground
truth. Two novice radiologists also performed the same task, both with and without model assistance.
The sensitivity, specificity, accuracy, and area under the curve (AUC) were calculated for each wrist
location. The AUC for detecting distal radius, ulnar styloid, and scaphoid fractures per wrist were
0.903 (95% C.I. 0.887–0.918), 0.925 (95% C.I. 0.911–0.939), and 0.808 (95% C.I. 0.748–0.967), respectively.
When assisted by the AI model, the scaphoid fracture AUC of the two novice radiologists significantly
increased from 0.75 (95% C.I. 0.66–0.83) to 0.85 (95% C.I. 0.77–0.93) and from 0.71 (95% C.I. 0.62–0.80)
to 0.80 (95% C.I. 0.71–0.88), respectively. Overall, the developed AI model was found to be reliable
for detecting wrist fractures, particularly for scaphoid fractures, which are commonly missed.

Keywords: artificial intelligence; convolutional neural network; distal radius fracture; ulnar styloid
fracture; scaphoid fracture

1. Introduction

The wrist is one of the most common sites for fractures. According to previous
studies, the annual incidence of hand and wrist fractures is approximately 18 million
worldwide [1,2]. Wrist fractures typically indicate the distal radius and ulnar bone, due to
their high frequency [3]. Although scaphoid fractures are less frequent than the previous
two fractures, they account for the majority (about 82–89%) of carpal bone fractures [4].
Despite their high prevalence, wrist fractures are often missed on radiographs. In particular,
scaphoid fractures are difficult to detect, and if a scaphoid fracture is not detected and
properly treated, non-union can occur, leading to serious complications such as avascular
necrosis and, eventually, to loss of function [5–7]. Therefore, to prevent any missed fractures,
it is crucial to detect any abnormality during the initial radiographic evaluation at the
patient’s first visit.

Radiographic interpretation errors are influenced by human and environmental fac-
tors, such as the fatigue or inexperience of a clinician [8]. Since artificial intelligence (AI),
unlike human activity, is indefatigable and relatively consistent, interpretation errors may
be reduced with the use of AI. Therefore, several deep-learning-based fracture detection
models have been developed and several studies have demonstrated the feasibility of
fracture detection models on radiographs [9]. One of the deep learning techniques, known
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as the convolutional neural network (CNN), is widely used because it is capable of “learn-
ing” the discriminative features of pixel information on large image sets in order to fit a
diagnostic problem. Thian et al. showed that the CNN model can detect and localize radius
and ulna fractures on wrist radiographs with high sensitivity and specificity [8]. Hendrix
et al. demonstrated that the AI-based scaphoid fracture model can achieve radiologist-level
performance in detecting a scaphoid fracture on hand and wrist radiographs [10].

To our knowledge, there is no AI-based solution that can detect all three frequently
encountered and clinically important wrist fractures: distal radius, ulnar styloid, and
scaphoid fractures. Therefore, we developed an AI-based wrist fracture detection software
that is able to detect and mark the fracture sites.

The purpose of this study is to verify the performance of the wrist-fracture detection
AI model and to evaluate the clinical feasibility of the model.

2. Materials and Methods

This study was reviewed and approved by the institutional review board and the
ethics committee of Korea University Anam Hospital on 26 August 2019 (IRB number:
2019AN0385).

This study was based on three steps: model development, clinical testing, and statisti-
cal analysis. Details about each step and the study population are provided in Figure 1.Diagnostics 2023, 13, x FOR PEER REVIEW 3 of 12 
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Figure 1. Overview of the study. The model was developed using two datasets. A total of 4432 wrist
radiographs were used as training and validation sets, and a total of 1186 wrist radiographs were
used for clinical testing. A statistical analysis was conducted.
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2.1. Model Development

As summarized in Figure 2, the model consists of five modules with four analytical
steps: (1) data input and preprocessing, (2) detection of automatic regions of interest (ROIs),
(3) location segmentation and fracture classification, and (4) integrated assessment results.
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Figure 2. Overview of wrist-fracture (radius, ulnar styloid, and scaphoid) detection models.
DICOM = digital imaging and communications in medicine. ROI = region of interest.

The first step was data input and preprocessing. Image preprocessing included
CLAHE, normalization, histogram matching, and sharpening. In the second step, a deep
learning-based detection model named RetinaNet, which applies focal loss to improve the
class imbalance and make backgrounds easy to predict [11], was used to automatically
detect each ROI (radius, ulnar styloid, and scaphoid). In the third step, segmentation of the
fracture site and fracture classification were performed. We used the DeepLab v3 model
for segmentation of the AI module and the NasNet model for the fracture classification
module. NasNet is based on automated machine learning (AutoML) that automatically
calculates the location and combination of variable operations, such as the convolution
layer and the average pooling, to make optimal models [12]. Finally, the results of both
the segmentation and fracture classification modules were integrated and our AI model
showed a final decision (fracture or no-fracture), including probability. The final decision
was determined by comparing the probability value of the segmentation analysis result
and the probability value of the classification analysis result with the threshold value
of each part. Each of the four steps was fully automatic. The model was implemented
using an open-source machine learning library, TensorFlow version 1.9.0, and Keras 2.2.2.
Sample images of MediAI-FX, the automatic solution interface of this software, are shown
in Figure 3.

We trained the model using the MURA dataset, one of the largest public musculoskele-
tal radiographic image datasets, which was published by the Stanford ML group in January
2018, together with images from our hospital. A total of 3791 wrist radiographs from MURA
were used for distal radius and ulnar styloid fracture training, while 641 radiographs from
our hospital were used for scaphoid fracture training. We used 20% of the dataset as a
validation set.
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Figure 3. Image of the proposed wrist fracture-detection artificial intelligence model. (a) The
initial wrist-detection result image, which includes the following: 1© wrist-fracture radiography for
analysis, 2© the magnified image, as indicated by the mouse cursor, 3© the graph showing the fracture
probability for radius, ulna, and scaphoid, and 4© a button to display the heatmap in (b). (b) The
heatmap image, which includes 1© a heatmap indicating the fracture site and 2© a button to return to
the original image in (a).

2.2. Clinical Test

For the clinical test, subjects were selected by simple random sampling from among
the patients who visited the emergency department and underwent wrist radiographs
to evaluate wrist fractures at the Korea University Anam Hospital between January 2010
and February 2020. Prior to the sampling process, a musculoskeletal radiologist with 19
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years of clinical experience (reviewer 1) reviewed all the radiographs and excluded those
with anatomic variations or bony abnormalities other than fractures, such as a bone tumor.
The reviewer also excluded radiographs with poor imaging quality, inadequate fields of
view, or foreign bodies, including orthopedic hardware, splints, or casts. As a result, a total
1186 wrist studies from 593 patients were selected for the clinical test.

In our institution, wrist radiography for patients with trauma is performed bilaterally
and consists of anteroposterior (AP) and lateral views. Our emergency department clin-
icians also commonly take oblique views to aid in carpal bone fracture detection, so we
included all these views (AP, lateral, and oblique) in our study.

To establish a ground truth, two human experts independently evaluated the fractures
on each wrist radiograph by using a self-developed platform (e-CRF). Reviewer 1 was a
musculoskeletal radiologist with 19 years of clinical experience, and reviewer 2 was an
orthopedic upper-limb surgeon with 19 years of clinical experience. Both reviewers marked
all fracture sites with a bounding box. Nothing was marked if there was no fracture. Each
image was analyzed independently; thus, only the view where the fracture was visible was
marked. For instance, if a fracture was detected on the AP view but not on the lateral view,
it was only marked on the AP view. If there was a significant discrepancy between the
two reviewers, a consensus meeting was held to resolve it. In cases where there was still
no agreement after the meeting, the decision was made based on follow-up radiography
or CT.

For evaluating clinical efficacy, a two-year-fellowship-trained musculoskeletal radiol-
ogist (reviewer 3) and a one-year-trained radiology resident (reviewer 4) independently
evaluated the wrist fractures in two different sessions. Initially, both reviewers marked
fracture sites in the same manner without AI model assistance. Three weeks after the
washout period, they repeated the fracture analysis with AI model assistance. The total
interpretation time for each session was recorded on the self-developed platform. Finally,
the clinical research coordinator conducted the fracture detection using the AI model and
reviewer 1 confirmed the model’s results on a heatmap.

2.3. Statistical Analyses

To evaluate the model’s performance, we calculated sensitivity, specificity, and ac-
curacy by comparison with the ground truth. Furthermore, we drew receiver operating
characteristic (ROC) curves and analyzed the area the under the curve (AUC) of the model.
We determined each value per wrist (i.e., per study including AP, lateral, and oblique
views). As radiologists or clinicians usually study multiple wrist radiographs at once to
detect fractures, we calculated the values per wrist rather than per image. The values were
calculated based on each site (distal radius, ulnar styloid, and scaphoid). The model’s
performance was considered equivalent when the lower limits of the 95% confidence inter-
val (C.I.) of sensitivity, specificity, accuracy, and AUC of our model was higher than the
lower limits of the 95% C.I. of sensitivity, specificity, accuracy, and AUC from previous
studies [6,8].

To evaluate the clinical efficacy of the model, we compared the diagnostic accuracy of
the two novice radiologists (reviewer 3 and 4) per wrist, with and without model assistance.
In addition, sensitivity, specificity, and AUC were compared. Furthermore, we calculated
the amount of time spent and performed via a paired t-test to compare the reading times
for reviewers 3 and 4, with and without model assistance.

All statistical analyses were conducted using SAS version 9.4 (SAS Institute Inc., Cary,
NC, USA). A p-value < 0.05 was considered statistically significant.

3. Results
3.1. Clinical Test Cohort

A total of 593 subjects were enrolled in this study, including 294 males and 299 females.
Among them, 398 subjects had at least one site fracture, with 332 having a radius fracture,
270 having an ulnar styloid fracture, and 32 having a scaphoid fracture. The mean age of
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all subjects was 52.7 ± 19.9 years. Thirty-two of the subjects were under the age of 21, 10 of
whom had fractures, including six with radius fractures, five with ulnar styloid fractures,
and four with scaphoid fractures.

3.2. Model Performance

Table 1 shows the sensitivity, specificity, accuracy, and AUC per wrist. The sensitivity
of distal radius and ulnar styloid fractures was 0.972 (95% C.I. 0.956–0.990, and 0.977 (95%
C.I. 0.959–995), respectively. The specificity of distal radius and ulnar styloid fractures was
0.832 (95% C.I. 0.807–0.957) and 0.873 (95% C.I. 0.851–0.894), respectively. The AUC of
distal radius and ulnar styloid processes was 0.903 (95% C.I. 0.887–0.918) and 0.925 (95%
C.I. 0.911–0.939), respectively. All values were higher than the equivalent values. The
sensitivity and specificity of scaphoid fractures were 0.870 (95% C.I. 0.760–0.989), and 0.740
(95% C.I. 0.714–0.765), respectively. Table 2 shows the variable sensitivity and specificity
of scaphoid fracture detection according to five previous studies [13–18]. The AUC of
scaphoid fracture of our model was 0.808 (95% C.I. 0.748–0.967).

Table 1. The sensitivity, specificity, accuracy, and AUC per wrist.

Sensitivity
(95% C.I.)

Specificity
(95% C.I.)

Accuracy
(95% C.I.)

AUC
(95% C.I.)

Distal radius 0.972
(0.956–0.990)

0.832
(0.807–0.957)

0.872
(0.852–0.890)

0.903
(0.887–0.918)

Ulnar styloid 0.977
(0.959–0.995)

0.873
(0.851–0.894)

0.896
(0.878–0.913)

0.925
(0.911–0.939)

Scaphoid 0.870
(0.760–0.989)

0.740
(0.714–0.765)

0.740
(0.715–0.765)

0.808
(0.748–0.967)

Note: C.I. = confidence interval, AUC = area under the curve.

Table 2. The sensitivity and specificity of scaphoid fracture based on X-ray.

Sensitivity (95% C.I.) Specificity (95% C.I.)

Cetti 1982 [17] 0.94 (0.86–0.98) 0.90 (0.85–0.94)
Dias 1987 [16] 0.83 (0.73–0.91) 0.44 (0.30–0.59)
Langer 1988 [15] 0.88 (0.71–0.97) 0.67 (0.61–0.73)
Banerjee 1999 [14] 0.90 (0.76–0.97) 0.78 (0.62–0.89)
Annamalai 2003 [13] 0.50 (0.36–0.64) 0.50 (0.36–0.64)

Note: C.I. = confidence interval.

3.3. AI Model Clinical Efficacy

Table 3 shows the sensitivity, specificity, accuracy, and AUC determined by two novice
radiologists with or without software assistance. The wrist-fracture detection sensitivity
determined by reviewers 3 and 4 increased with model assistance in all sessions. In
particular, the scaphoid fracture sensitivity determined by the two novice radiologists
significantly increased from 0.50 (95% C.I. 0.32–0.68) to 0.72 (95% C.I. 0.53–0.86) and from
0.47 (95% C.I. 0.29–0.65) to 0.66 (95% C.I. 0.47–0.81), respectively. The scaphoid fracture
AUC determined by the ROC analysis of the two novice radiologists also significantly
increased from 0.75 (95% C.I. 0.66–0.83) to 0.85 (95% C.I. 0.77–0.93) and from 0.71 (95%
C.I. 0.62–0.80) to 0.80 (95% C.I. 0.71–0.88), respectively. The scaphoid fracture specificity
determined by reviewer 4 slightly decreased; therefore, the scaphoid fracture detection
accuracy of reviewer 4 slightly decreased from 0.94 (95% C.I. 0.93–96) to 0.93 (95% C.I.
0.92–0.95). However, this difference was not statistically significant.

The mean interpretation time (seconds), with and without model assistance, was
4.46 ± 6.96 and 5.10 ± 8.37, respectively. Statistically, it was significantly different
(p < 0.007). The time took approximately 1.1 times longer with model assistance than
without model assistance.
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Table 3. The sensitivity, specificity, accuracy, and AUC as determined by each reviewer with or
without software.

Reviewer 3 Reviewer 4
Without
Software

With
Software

Without
Software

With
Software

Sensitivity (95% C.I.)

Distal radius 0.94
(0.91–0.96)

0.97
(0.95–0.99)

0.90
(0.86–0.93)

0.95
(0.92–0.97)

Ulnar styloid 0.97
(0.94–0.98)

0.98
(0.95–0.99)

0.71
(0.65–0.76)

0.86
(0.81–0.90)

Scaphoid 0.50
(0.32–0.68)

0.72
(0.53–0.86)

0.47
(0.29–0.65)

0.66
(0.47–0.81)

Specificity (95% C.I.)

Distal radius 0.97
(0.96–0.98)

0.97
(0.96–0.98)

0.95
(0.94–0.97)

0.94
(0.92–0.96)

Ulnar styloid 0.98
(0.96–0.98)

0.97
(0.95–0.98)

0.99
(0.98–1.00)

0.97
(0.95–0.98)

Scaphoid 0.99
(0.99–1.00)

0.98
(0.97–0.99)

0.96
(0.94–0.97)

0.94
(0.92–0.95)

Accuracy (95% C.I.)

Distal radius 0.96
(0.95–0.97)

0.97
(0.96–0.98)

0.94
(0.92–0.95)

0.94
(0.93–0.95)

Ulnar styloid 0.97
(0.96–0.98)

0.97
(0.96–0.98)

0.93
(0.91–0.94)

0.94
(0.93–0.96)

Scaphoid 0.98
(0.97–0.99)

0.98
(0.97–0.98)

0.94
(0.93–0.96)

0.93
(0.92–0.95)

AUC (95% C.I.)

Distal radius 0.96
(0.94–0.97)

0.97
(0.96–0.98)

0.93
(0.91–0.95)

0.94
(0.93–0.96)

Ulnar styloid 0.97
(0.96–0.98)

0.97
(0.96–0.98)

0.85
(0.82–0.88)

0.91
(0.89–0.93)

Scaphoid 0.75
(0.66–0.83)

0.85
(0.77–0.93)

0.71
(0.62–0.80)

0.80
(0.71–0.88)

Note: C.I. = confidence interval, AUC = area under the curve.

4. Discussion

Our study demonstrated the sensitivity, specificity, accuracy of the AI-based distal
radius, ulnar styloid process, and scaphoid fracture-detection model. Thian et al. sug-
gested an AI-based model for detecting and localizing radius and ulna fractures on wrist
radiographs, including frontal and lateral views. Their model’s sensitivity, specificity, and
AUC were 0.981 (95% C.I. = 0.956–0.994), 0.729 (95% C.I. = 0.671–0.782), and 0.895 (95%
C.I. = 0.876–0.94), respectively. However, they did not distinguish between distal radius
and ulna fractures [8]. Carpenter et al. summarized the scaphoid fracture detection accuracy
of previous studies (Table 2) [6], and we used those values as equivalent values. According
to our study, for each fracture site, the lower 95% C.I. of the AUC of distal radius and
ulnar styloid process (0.887 and 0.911, respectively) was higher than the equivalent value
of 0.876. In the case of scaphoid fracture detection, the lower value of 95% C.I. of scaphoid
fracture detection sensitivity was 0.760, which was higher than the equivalent value of
0.710, which was the second lowest value in previous studies, as shown in Table 2 [15]. In
addition, the lower value of 95% C.I. of scaphoid fracture detection specificity was 0.714,
which was higher than the equivalent value of 0.360, which was the second lowest value
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in previous studies, as shown in Table 2 [13]. Furthermore, these values were the same
as or higher than those in previous studies, except for the study by Cetti et al. [17]. Thus,
our model’s performance for detecting wrist fractures was as accurate as the detection in
previous studies.

Moreover, our results proved that the AUC for wrist fracture detection by novice
radiologists improved, except for reviewer 3’s detection of ulnar styloid fractures, and it
improved more significantly with respect to scaphoid fracture detection. The accuracy
was equal to or improved with AI model assistance, except for reviewer 4’s scaphoid
fracture detection. This was because reviewer 4’s sensitivity for scaphoid fracture detection
improved, but the specificity decreased. However, the decrease in specificity was not
statistically significant, whereas the improvement in sensitivity for scaphoid detection
was statistically significant. Therefore, we expect that our AI model could be helpful for
fracture detection screening in an emergency room setting, where immediate radiographic
interpretation by a musculoskeletal radiologist or a wrist surgeon is not available.

Although the model’s assistance improved the diagnostic performance of novice
radiologists, the reading time was lengthened by approximately 110%. While this increase
was statistically significant (p = 0.007), the actual added time was less than 1 s. In contrast
to our findings, Hendrix et al. focused on AI-assisted scaphoid fracture detection and
found that it reduced the reading time for four out of five experienced musculoskeletal
radiologists [18]. However, their study involved skilled radiologists with 5 to 26 years
of experience and focused only on scaphoid fracture. Our study may have resulted in
slightly longer reading times because we considered two additional areas beyond scaphoid
fractures. Furthermore, it is expected that the use of improved user interfaces and better
interworking of PACS systems will help to reduce the interpretation time utilizing the AI
model. Consequently, our study highlights the need for the improvement of workflow in
the development of an assistant AI model.

Recently, AI tools have received significant attention in musculoskeletal radiology, and
fracture detection is one of these fields [9,19]. Olczak et al. trained an AI model with approx-
imately 256,000 wrist, hand, and ankle radiographs, and its fracture classification accuracy
was 83% [20]. However, that study included ankle radiographs, and the diverse training
set may have lowered the accuracy. Recently, there have been more studies that focus on
wrist-fracture detection [8,10,18,21–23]. In our study, we achieved per-wrist accuracies of
87.2% and 89.6% for distal radius and ulnar styloid process fractures, respectively. These
values are comparable to the overall accuracy of distal radius and ulna fracture detection
in a previous study, which were 88.9% for frontal X-ray and 91.2% for lateral X-ray [8].
The AUCs in our study for distal radius and ulnar styloid process fracture detection were
0.903 and 0.925, respectively. The AUC value of Kim and MacKinnon’s CNN model, which
showed binary results (the presence or absence of a fracture) and did not show localization,
was 0.956 [22]. Although our model’s AUC was slightly lower, our model marked the
fracture site with heatmap images, which could particularly resolve the “black-box” nature
of CNNs [24]. We retrospectively reviewed all heatmap images of our model’s results
and there were no serious errors. Therefore, our model’s heatmap images could assist
clinicians in determining whether a marked fracture is true or false. Langerhuizen et al.
demonstrated a scaphoid fracture-detection model with 72% accuracy, 84% sensitivity, and
60% specificity, which were similar to the sensitivity and accuracy of orthopedic surgeons,
but lower than their specificity [21]. Our model had slightly higher overall accuracy.

One of the strengths of our model is its ability to analyze all three high-frequency
fractures simultaneously, making it the first such model, to our knowledge. A recent study
developed an AI model for the detection of all wrist fractures; however, the performance of
that model in detecting carpal bones other than scaphoid, such as pisiform and trapezium,
was poor [23]. Hence, we believe that our model is helpful in accurately detecting wrist
fractures relatively more frequently. Moreover, we incorporated the oblique view of wrist
radiographs, an important view for detecting wrist fractures. Consequently, we expect our
model to be beneficial in a clinical setting.
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Our study had some limitations. First, it was a single-center retrospective study with
mostly adult subjects (94.6%). Wrist fractures can be found in children, particularly distal ra-
dius fractures that often occur in children and adolescents under the age of sixteen [25], and
the fracture pattern of children may differ from that of adults [26]. Therefore, multicenter
prospective studies involving children and adolescents are needed. Second, since our study
was unable to detect fractures other than distal radius, ulnar styloid, and scaphoid fractures,
such as other carpal fractures, trauma-related carpal alignment abnormalities, or even bone
tumors or infections, interpretation by a radiologist is necessary. However, as a fracture
screening tool, our model is adequate, and it is not intended to be used independently in a
clinical setting. Third, we did not distinguish between recent and old fractures in our study.
In our training, old ulnar styloid and scaphoid fractures in a non-union state were classified
as fracture-positive, whereas old radius fractures a healing deformity were classified as
fracture-negative. In a clinical setting, it is important to differentiate between recent and
old fractures. Hence, further studies are required.

Finally, the ultimate validation of the clinical feasibility of our AI model requires a
demonstration of clinical outcomes beyond the performance metrics, such as reducing
complications or lowering medical costs. In the future, it will be necessary to determine
whether our AI model has improved patients’ outcomes or medical cost efficacy in real
emergency room situations.

5. Conclusions

The AI model we developed for detecting simultaneously three commonly encoun-
tered and clinically important wrist fractures (distal radius, ulnar styloid, and scaphoid
fractures) was reliable for fracture detection with high accuracy. It was particularly useful
for detecting the easily overlooked scaphoid fractures, especially by inexperienced radiolo-
gists. We expect that the model will be useful and time-saving in the future, once it is fully
integrated with the PACS system.
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