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Abstract: Uterine myomas affect 70% of women of reproductive age, potentially impacting their
fertility and health. Manual film reading is commonly used to identify uterine myomas, but it is time-
consuming, laborious, and subjective. Clinical treatment requires the consideration of the positional
relationship among the uterine wall, uterine cavity, and uterine myomas. However, due to their com-
plex and variable shapes, the low contrast of adjacent tissues or organs, and indistinguishable edges,
accurately identifying them in MRI is difficult. Our work addresses these challenges by proposing an
instance segmentation network capable of automatically outputting the location, category, and masks
of each organ and lesion. Specifically, we designed a new backbone that facilitates learning the shape
features of object diversity, and filters out background noise interference. We optimized the anchor
box generation strategy to provide better priors in order to enhance the process of bounding box
prediction and regression. An adaptive iterative subdivision strategy ensures that the mask boundary
details of objects are more realistic and accurate. We conducted extensive experiments to validate our
network, which achieved better average precision (AP) results than those of state-of-the-art instance
segmentation models. Compared to the baseline network, our model improved AP on the uterine
wall, uterine cavity, and myomas by 8.8%, 8.4%, and 3.2%, respectively. Our work is the first to realize
multiclass instance segmentation in uterine MRI, providing a convenient and objective reference
for the clinical development of appropriate surgical plans, and has significant value in improving
diagnostic efficiency and realizing the automatic auxiliary diagnosis of uterine myomas.

Keywords: deep learning; instance segmentation; uterine myomas; magnetic resonance imaging
(MRI); computer-aided diagnostics

1. Introduction

Uterine myomas, also known as uterine leiomyomas, fibroids, or leiomyomas, are the
most commonly encountered benign uterine tumors [1]. They have an incidence rate of
40–60% in women under 30 years old, and 70–80% in women over 50 years old [2]. Uterine
myomas are responsible for 2–3% of women’s infertility [3] and are globally the most com-
mon indication for hysterectomy. In the United States, more than 479,000 hysterectomies
are performed each year, with 46.6% due to myomas, and 47.7% occurring in women
between the ages of 18 and 44 [4]. Uterine myomas can be single or multiple, varying in
size, and have great heterogeneity in pathophysiology, size, location, and clinical symp-
toms [5]. The most common symptom is heavy menstrual bleeding (HMB), which often
leads to anemia, fatigue, or dysmenorrhea [5–7]. Other possible symptoms are back pain
and pelvic compression or pain, which can affect the quality of life. When uterine myomas
exceed a certain size, they can put pressure on the bladder or intestines, causing bladder
dysfunction or constipation, among other symptoms. In addition, uterine myomas may
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affect the outcome of pregnancy, and become the cause of infertility and recurrent abortion.
Almost one-third of women with uterine myomas seek treatment [8].

The International Federation of Gynecology and Obstetrics (FIGO) classifies uterine
myomas into eight types on the basis of their relationship to the uterine wall, uterine
cavity, and mixed myomas [9]. This classification plays a crucial role in helping doctors
in developing surgical plans. However, patient satisfaction with the current treatment
plans is often low, leading to women undergoing major surgery such as hysterectomy [10].
Personalized treatments according to FIGO classification, main symptoms (HMB, infertility),
and patients’ real intentions are necessary. Intelligent diagnosis is a significant current
research highlight in the medical field [11–13], but there is a relative gap in the area
of the auxiliary diagnosis of uterine diseases. Therefore, it is urgent and necessary to
perform auxiliary diagnostic research on the uterine region, which could significantly
benefit patients with uterine myomas and gynecologists.

Several methods have been proposed for segmenting the uterus. Yao et al. [14] used
the cascade method of the fast-marching and Laplacian level sets to segment the uterus.
Liao et al. [15] proposed an adaptive local region and edge-based active contour model to
segment uterine myomas in ultrasound images. Militello et al. [16] discussed the study of
magnetic resonance-guided focused ultrasound (MRgFUS) in the treatment of uterine myomas.
Casarino et al. [17] proposed a region-growth-based method that could segment myomas with
different pixel intensity levels. Fallahi et al. [18] proposed a fuzzy C-means-based method
to segment uterine myomas in T1-weighted MR-enhanced images. The MR-guided high-
intensity focused ultrasound was used by Antila et al. [19] to segment the uterine myoma
region. Militello et al. [20] proposed a two-dimensional segmentation method for uterine
myomas in MRgFUS treatment evaluation using fuzzy C-means and adaptive threshold
segmentation methods. However, accurate segmentation results cannot be obtained without
clear gray boundary differences, especially in scenes with complex and diverse shapes of
tissues or organs. Deep-learning technology can automate the entire process of medical image
segmentation and reduce dependence on expert intervention. Hodneland et al. [21] used a 3D
segmentation model to automatically segment endometrial cancer on MRI, and Kurata et al.
first tried to use UNet to automatically segment the uterus on MRI [22]. Zhang et al. [23]
proposed HIFUNet for the segmentation of the uterus, myomas, and the spine before HIFU
surgery. Niu et al. [24] used the Hessian matrix to extract image edges and completed the
semantic segmentation of uterine MRI. Tang et al. [25] proposed AR-UNet for the automatic
segmentation of uterine myomas from T2-weighted MRI.

Most existing studies on the uterine region employ traditional or machine-learning
methods, with some deep-learning studies being limited to semantic segmentation of uter-
ine myomas or uterus. These studies only achieved pixel-level classification in images and
could not distinguish between different instances of the same class. Instance segmentation
combines the advantages of object detection and semantic segmentation by achieving
pixel-level classification, and object positioning and classification (as shown in Figure 1).
It has the ability to accurately determine boundaries, size, and category of human organs
or lesions while understanding multiangle and indepth semantic information. Instance
segmentation can be divided into two- and one-stage methods. Two-stage models generally
achieve higher segmentation AP, but have longer segmentation times. Representative
methods include Mask-RCNN [26], RefineMask [27], and SSAP [28]. One-stage models can
achieve faster segmentation than two-stage models can, but their AP is generally lower.
Typical models include YOLACT++ [29] and SOLOv2 [30]. The Mask-RCNN model is
a two-stage instance segmentation model proposed by He et al. It mainly improves the
ROIAlign operation on the basis of high-precision object detection model Faster-RCNN [31],
and added a mask branch to predict segmentation masks, achieving 37.1% AP in the COCO
dataset [32]. Since the introduction of Mask-RCNN, its excellent performance and model
design ideas have become benchmarks for many subsequent instance segmentation models.
Although many new models have good innovative ideas and new architectures, their
metrics often cannot reach or exceed those of Mask-RCNN [29,33–35].
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(a) object detection (c) instance segmentation(b) semantic segmentation

Figure 1. Visualization of visual tasks. (a) Object detection; (b) semantic segmentation; (c) in-
stance segmentation.

The instance segmentation of myomas, and the uterine wall and cavity in MR images
is an essential precondition for achieving FIGO classification and preoperative evalua-
tion. To the best of our knowledge, no relevant instance segmentation studies have been
reported [36]. The main challenges are as follows: (1) large variations in shape and size
between categories; (2) the low contrast between adjacent organs and tissues, hindering
distinguishing boundaries; (3) difficulty in identifying fine and narrow uterine-cavity and
small-scale myomas. As precision is more important than real-time performance in the
medical field, we optimized and improved the Mask-RCNN model, which could segment
the uterine wall, uterine cavity, and myomas in sagittal (SAG) T2W MR images. The main
contributions of this paper are summarized as follows:

• We propose an instance segmentation network that could achieve the full automatic
instance identification of multiple classes within the uterine region.

• We designed a new backbone network that reduces the loss of feature information
caused by continuous convolutional operations, and can better adapt to complex and
variable object shapes, and resist noise.

• We optimized the generation method of anchor boxes. We used the k-means algorithm
to adjust the size and scale of anchor boxes of each feature layer. This approach reduces
the generation of redundant anchor boxes and accelerates bounding box regression.

• We introduce a fine segmentation mask head. In the mask branch, we used an iterative
subdivision strategy to gradually refine rough masks and correct any misclassified pixels.

• We validated our approach with some excellent models and visualized its segmenta-
tion performance.

The structure of this paper is as follows: Section 2 describes the dataset and the
proposed network architecture. Section 3 covers the experimental configuration and results,
and evaluation metrics. In Section 4, we analyze and discuss the experimental results.
Lastly, Section 5 provides conclusions and perspectives.

2. Materials and Methods

The flowchart of this study is shown in Figure 2, including dataset acquisition and
preprocessing, and the design, training, and testing of the instance segmentation model.
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Figure 2. Study flowchart.

2.1. Dataset Description

MR imaging visualizes the size, location, and shape of myomas better than ultrasound
and CT imaging do.It has irreplaceable advantages in determining the relationship between
myomas and the uterine cavity, and showing the presence or absence of comorbid uterine
pathologies elsewhere [37]. T2W imaging is the primary examination sequence for pelvic
diseases, as it clearly displays the anatomical structure of the uterus. The SAG section
is the ideal orientation to show a panoramic view of the uterus, displaying the uterine
contour well and providing an intuitive anatomical basis for the protruding direction of
uterine myomas.

2.1.1. Image Acquisition

We included SAG T2W MR images from 143 patients with uterine myomas who had
undergone pelvic MR scanning at Beijing Shijitan Hospital from January 2015 to August
2022 with an age range of 21–86 years. The MR images were acquired using a 3.0T PHILIPS
INGENIA ultrahigh-field MR imaging system. Each MR volume contained slices with pixel
dimensions ranging from 512 × 512 to 880 × 880, slice thickness ranging from 4 to 6 mm,
and a slice spacing of 10% of the slice thickness. The MRI scan parameters are shown in
Table 1. To protect patient privacy, all private patient information is anonymous in MRI.

Table 1. Scan parameters of MR images.

Variable Value

Repetition time (TR) 4200 ms
Echo time (TE) 130 ms

Field of view (FOV) 24 × 24 cm
Voxel 0.8 × 0.8 × 4.0 cm3

Reverse angle 90°
Age (year) 50.04 ± 11.37 *

* Age is the mean value ± S.D.
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2.1.2. Image Preparation and Preprocessing

Data Annotation. The dataset was annotated by four doctors with intermediate
professional titles, and three imaging physicians as reviewers. The annotators used medical
image annotation tool ITK-SNAP (www.itksnap.org, accessed on 11 June 2022) to annotate
the polygonal contours in the categories of the uterine wall, uterine cavity, and uterine
myomas. The final annotation results were confirmed by reviewing physicians, and any
unqualified annotations were returned for revision until final approval. The annotated
visualization results are shown in Figure 3.

Figure 3. Visualization of annotation results. (a) Uterine wall; (b) uterine cavity; (c) myomas.

Data Preprocessing. MR images are characterized by low contrast, offset fields,
and blurred boundaries between tissues that require image preprocessing. We performed
the following preprocessing operations: (1) Contrast adjustment: Uterine myomas display
low signal intensity in raw MRI, resulting in relatively dark images with poor differenti-
ation between lesions, especially between myomas and the uterine wall. Therefore, we
applied an adaptive histogram equalization operation to each image. (2) Normalization:
we normalized MR image intensities into the same range using the Z score. (3) Offset field
correction: MR images are subject to offset field interference during the imaging process,
leading to different gray values for the same organ tissue in the image. To correct this, we
used the N4ITK [38] offset field correction method.

Data Split. For the supervised deep-learning task, we evaluated the model perfor-
mance using three dataset settings. We used manually annotated MR images as the ground
truth (GT) and randomly divided the patient dataset into training, validation, and test sets
in an 8:1:1 ratio. The statistical results for the number of images and instances are shown in
Table 2.

Table 2. Number of images and instances in the dataset.

Dataset Number of Images Number of Instances

Training 1349 2825
Validation 168 344

Test 170 351
Total 1687 3520

Moreover, we conducted a quantitative analysis of the data samples for the three
categories in the dataset as shown in Figure 4. The samples of each category maintained
the same distribution in the divided dataset, which indicates that the method of dividing
the dataset was reasonable. However, the samples for the uterine-cavity category were
very few, indicating an overall issue with sample imbalance. We provide corresponding
solutions in Section 3.2.

www.itksnap.org


Diagnostics 2023, 13, 1525 6 of 20

Figure 4. Multiclass data sample distribution statistics.

COCO dataset format conversion. Instance segmentation models typically use the
COCO dataset annotation format [32], which consists of three parts: basic image information,
annotation information, and classification information (as shown in Figure 5). To facilitate
data processing and model training, we converted our data into the COCO format.

Figure 5. COCO dataset format.

2.2. Instance Segmentation Approach for the Uterine Region

The overall network structure is shown in Figure 6, consisting of three main stages:
(1) Feature extraction and feature fusion: the backbone performs feature extraction on
the input medical images, allowing for detail and semantic features to complement each
other for feature enhancement. (2) Region proposal network (RPN): multiscale feature
maps output from the backbone are input into the RPN to obtain high-quality regions of
interest (ROIs). ROI Align was then performed for feature extraction to improve subsequent
localization and classification accuracy. (3) Prediction: multiple prediction heads predict
and output the categories, locations, and masks of the focus area in the medical images.



Diagnostics 2023, 13, 1525 7 of 20

Figure 6. The network architecture of instance segmentation. First, preprocessed images and corre-
sponding label files are fed into the network during training, while only images are used during the
testing phase. The backbone network then extracts multiscale feature maps that are input into the
RPN, which performs ROIAlign operations. Lastly, three branches generate predictions for categories,
bounding box positions, and image masks.

2.2.1. Feature Extraction and Fusion

The MR images that we had acquired had complex backgrounds, varying-size and
-shape myomas, and unclear edge contours, requiring a neural network with strong feature-
extraction ability. Therefore, we used HRNetv2p for high-resolution feature extraction
and multiscale feature fusion [39]. We first used 3 × 3 convolution to downsample the
feature map to its original 1/4 size, and then performed continuous convolution for feature
extraction, obtaining parallel high- and low-resolution branches. The output of each
stage was obtained from the repetitive exchange of information from multibranch feature
maps. Feature fusion was then performed on the multiscale feature maps, so that each
output retained certain details while obtaining semantic information. The low-resolution
layer used bilinear interpolation to upsample the high-resolution layer and concatenate
the obtained feature representations. Lastly, multiscale features were obtained by using
average pooling step by step.

Regular convolutional kernels are usually fixed squares, resulting in similar receptive
fields for objects of different shapes and sizes in the same feature layer. The fixed position
sampling of the convolutional kernel hinders adaptively extracting the actual shape features
of objects, and limits the fitting ability, leading to missed pixel points. Regular convolution
is defined as follows:

y(p0) = ∑
pl∈K

ω(pl)F(p0 + pl) (1)

where, pl represents the local position of convolution K, ω represents the weight, p0 repre-
sents the center of the convolutional kernel, and F(·) represents the activation function of
the convolution.

To better adapt to the complex and diverse shapes of the objects, we introduced
deformable convolution (DCN) [40] into the backbone, which is defined as follows:

y(p0) = ∑
pl∈K

ω(pl)F(p0 + pl + ∆pab) (2)

The introduction of offsets4pab in convolutional kernels enables random sampling
around the current sampling point, expanding the receptive field beyond the previous
regular square, as shown in Figure 7. This approach helps in alleviating segmentation
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difficulties caused by serious losses of shape detail information. Learning offset variables
only requires a few additional parameters and calculations.

Figure 7. Comparison of regular and deformable convolution.

The compact positioning of the uterine wall, uterine cavity, and myomas hinders
accurately recognizing and identifying these objects. To address this issue, we added a
convolutional block attention module (CBAM) [41] to the model whose structure is shown
in Figure 8. The CBAM module is a lightweight attention mechanism that enhances the
representational power of the model by selectively highlighting the most relevant features
and suppressing irrelevant ones. The module consists of two types of attention blocks:
the channel attention block (CAB) and the spatial attention block (SAB). First, the CBAM
module takes in a feature map F(H × W × C) and passes it through the CAM module,
which performs global average pooling and max pooling in parallel. Two sets of 1 × 1 × C
feature maps are obtained and jointly input into an MLP with two layers of neurons.
The MLP uses element-wise addition for feature fusion, and applies the sigmoid activation
function to obtain the feature weight value Mc (F) of each channel in the input feature
layer. This weight value is then applied to the input feature map to enhance channel
attention. Next, the output of the CAM module is fed into the SAM module, which
performs average pooling and max pooling to obtain two sets of H ×W × 1 feature maps.
These feature maps are fused using channel concatenation, and the feature weight Ms
(F) for the spatial dimension is obtained after activation using the sigmoid function. This
weight is applied to the input feature map to achieve attention weighting on both the
channel and spatial dimensions.

Figure 8. CBAM structure.
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The MR image contains both the uterine region and other organs such as the spine
and bowel that may have similar signal intensity. To demonstrate the feature extraction
ability of the model, we present a heat map in Figure 9. The darker red in the heat map
indicates higher activation intensity that received more attention from the network, while
blue indicates weaker activation intensity and corresponds to irrelevant regions. The heat
map shows that the uterus in different positions and with different sizes was sufficiently
activated, while irrelevant information in the image was suppressed.

Figure 9. Heat map of the uterine region.

2.2.2. Anchor Box Generation Strategy

After the multiscale feature maps had been generated, they were input into the region
proposal network (RPN), which traverses each pixel on the feature map to generate anchor
boxes. These boxes serve as references for subsequent classification and box regression.
Anchor boxes have various sizes and aspect ratios to cover objects of different sizes. How-
ever, using incorrectly sized anchor boxes can increase the training time, affect positional
regression, and impact the segmentation within the boxes.

To provide an appropriate anchor box size, we first computed the width, height,
and aspect ratio of the object boxes in the dataset. As shown in Figure 10a,b, the width
and height of the boxes were mostly within 260 × 260. Figure 10c shows that the aspect
ratio was mostly less than 2, and when the aspect ratio was 1, the number of boxes was
the largest.

(a) Bboxes width distribution. (b) Bboxes height distribution. (c) Bboxes aspect ratio distribution.

Figure 10. Box width, height, and aspect-ratio distributions.

We then used the k-means clustering algorithm to generate new anchor box sizes that
better fit the objects in the uterine region. In this paper, we used the intersection over the
union (IoU) to measure the distance between the samples and clustering centers, as shown
in Equation (3).

D(box, centroid) = 1− IoU(box, centroid) (3)
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where D is the required distance for calculation, the box is not the anchor selection infor-
mation of the cluster center, and the centroid is the anchor selection information of the
cluster center.

Figure 11a illustrates the relationship between different clusters and the average IoU.
As the number of clusters increased, the average IoU also increased, and the slope of
the curve was significantly flattened when the clusters were more than 9. When k = 9,
the average IoU reached 75.7%, which was almost the maximum among the 11 clusters.
Increasing the number of clusters generated more anchor boxes, which significantly in-
creased the training time. Considering both IoU and computational efficiency, we chose
k = 9 as the final number of clusters. Figure 11b shows the clustering effect of the boxes at
that cluster size.

(a) (b)

Figure 11. Bounding-box clustering results. (a) Average IoU under different cluster centers.
(b) Visualization of the clustering effect of 9 clustering centers.

The output anchor box size was (17,16), (28,28), (50,45), (74,75), (103,167), (112,100),
(142,137), (189,171), (235,255). After sorting from small to large, each group of three anchor
sizes was applied to the small, medium-sized, and large feature maps that had been output
by the feature extraction stage. Different levels of anchor scales could cover the effective
receptive field range of each feature map. This ensures that each feature layer contains
matching anchor boxes, which improves the subsequent box regression results. Specifically,
P3 belonged to the shallow layer and had a small receptive field, rendering it suitable for
predicting small objects, so the anchor should be smaller; P4 belonged to the middle layer
and could predict medium-sized objects; P5 belonged to the deepest layer and had the
largest receptive field, rendering it suitable for predicting large-scale objects, so the anchor
was larger.

2.2.3. Mask Branch

The traditional mask branch utilizes an encoder–decoder structure for dense prediction
on a uniform grid, which can result in coarse mask details and indistinguishable edge
regions that are not suitable for tasks requiring high edge accuracy. To improve the
smoothness and clarity of mask boundaries, we used the PointRend module [42] to replace
the traditional upsampling process. The PointRend module consists of three stages: point
selection, point-level feature representation, and PointHead prediction. The first stage
selects points that can be adaptively focused on indistinguishable boundary features in
the image. During training, kN (k > 1) points are randomly selected from the feature map,
and the most uncertain βN (β ∈ [0, 1]) points are selected from them. During testing,
an iterative coarse-to-fine strategy was adopted to render and refine the mask. Coarse
prediction was performed on the low-level feature map, which contained more contextual
and semantic information. After using bilinear interpolation for upsampling, the regular
grid became denser, and the most uncertain points n∗i (i = 1, 2, 3, ..., N) with a confidence
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level less than 0.5 were selected as the pixel points for correction. The selection method for
these points is as follows:

n∗i = arg min
ni
|p(ni)− 0.5| (4)

where p(ni) is the probability for point ni to belong to the binary mask, and n∗i is the
selected point.

The specific iterative subdivision process is shown in Figure 12. Through continuous
iterative refinement, fuzzy edge points can be classified more clearly and accurately. Point-
wise feature representation consists of combining fine-grained and high-level semantic
features. PointHead is a few-parameter multilayer perceptron (MLP) with 3 hidden layers
and 256 channels.

Figure 12. Adaptive iterative subdivision step of edge points on a uterine MR image. First, rough
predictions are performed on a 4 × 4 grid, and bilinear interpolation is used to upsample twiceon
the prediction. After that, the 21 most ambiguous points are selected on a finer, 8 × 8 grid. Af-
ter PointHead’s prediction, detailed pointwise features are recovered. This process is repeated until
the segmentation is upsampled to the desired spatial resolution.

2.2.4. Loss Function

The proposed network in this paper is a multitask network with a loss function
consisting of three components: classification, object detection, and segmentation. We used
weighting factors to balance the losses of each branch as shown in Equation (5):

Lloss = λ1Lcls + λ2Lbbox + λ3Lmask (5)

where λi (i = 1, 2, 3) is the weighting factor of each branch. After the experiment, λ1 and λ3
were set to 1, and λ2 was set to 1.2.

Lcls represents the classification loss that was calculated using the cross entropy loss
function as shown in Equation (6). Lbbox represents the bounding box localization and
regression loss, as shown in Equation (7); the smooth L1 loss function was calculated as
shown in Equation (8). Lmask was composed of the loss generated by CoarseMaskHead
and MaskPointHead, and it was calculated using the binary cross-entropy loss as shown
in Equation (9).

Lcls =
1

Ncls
∑

i
Lcls(Pi, P′i ) (6)

Lbbox =
1

Nreg
∑

i
P′i Lreg(ti, ti′) (7)

Lreg(ti, ti′) = smoothL1(ti− ti′) (8)

Lmask = −ylogy′ − (1− y)log(1− y′) (9)
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3. Experiments and Results
3.1. Evaluation Metrics

The COCO evaluation metric is the most widely used criterion for instance segmen-
tation tasks. It uses AP to calculate the average precision and measure the performance
of all classes. AP is defined using the IoU criterion, which measures the overlap between
prediction masks and GT masks. In Table 3, ”area” refers to the number of pixels in the
masks. Generally, a higher AP value indicates better results and is used as the final overall
criterion. Since instance segmentation involves both detection and segmentation tasks,
boxAP is used to represent the precision of the bounding box, and maskAP is used to
indicate the precision of the mask.

Table 3. Evaluation metrics of the COCO dataset.

Metrics Means

AP IoU = 0.50:0.05:0.95
AP50 IoU = 0.50
AP75 IoU = 0.75
APs area < 322

APm 322 < area < 962

APl area > 962

3.2. Implementation Details

The experiments were conducted using PyTorch on an Ubuntu 20.04 operating system.
We used an NVIDIA GeForce RTX 3060 (14 GB memory) with CUDA 10.2 and CuDNN
with 7.6.3 for experiments. The SGD optimizer was used with an initial learning rate
of 0.001, and momentum and weight decay settings of 0.9 and 0.0001, respectively; the
model was trained for 60 epochs. The training process took approximately 6.5 h. The
input image was resized to 512 × 512, and the batch size was set to 4. To balance the data
samples, we applied class weighting by calculating the inverse frequency of each class
in the training set. We assigned higher weights to the minority classes (uterine cavity),
and lower weights to the majority class (uterine wall and myoma). This approach ensured
that the model focused on the under-represented classes and avoided bias towards the
majority class. We also used data augmentation techniques to increase the diversity and
variability of the data, and reduce overfitting, including random rotation, central cropping,
and vertical and horizontal flipping. All experiments in this study used the same dataset
and experimental configuration.

3.3. Ablation Study

We conducted ablation experiments to evaluate the role of each structure and com-
ponent in the model with the designed backbone structure (HRAD), the improved anchor
box generation strategy of RPN (RA), and the PointRend module in the mask branch (PR).
Table 4 shows that the HRAD structure played a significant role in improving the perfor-
mance of the model, with an overall AP improvement of 3.7%. Improvements in RA and PR
are also evident. By combining these structures and components, the AP improvement was
10.1% compared to the baseline model. These results demonstrate that HRAD achieved
excellent feature extraction, providing a solid foundation for bounding box localization
and segmentation masks.
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Table 4. Performance evaluation of each network structure and component, X: adds corresponding
improvements to the network.

HRAD RA PR AP% AP50% AP75%

34.5 56.8 30.0
X 38.2 60.5 36.2
X X 39.8 61.7 37.5
X X 42.5 62.8 40.8
X X X 44.6 64.7 41.3

The RA and PR structures are modifications of the detection branch and the mask
branch, respectively. To evaluate their respective effects on bounding boxes and masks, we
assessed them using the boxAP and maskAP metrics as shown in Table 5. An improvement
in RA directly affected the localization and regression of bounding boxes, resulting in
an increase of 0.9%, 1.4%, and 2.2% in small, medium-sized, and large boxAP scales,
respectively. This improvement also affected the segmentation masks inside the boxes,
leading to a certain improvement in maskAP, which is very promising. The improvement
in PR mainly affected maskAP, as the method primarily enhanced the mask edges and
largely left bounding box positions unaffected. Lastly, the combined effect of these two
methods led to an improvement in the overall metrics.

Table 5. Performance evaluation of improved detection branch and mask branch. X: adds corre-
sponding improvements to the network.

RA PR
boxAP maskAP

APs% APm% APl% APs% APm% APl%

27.1 52.5 67.4 20.9 50.4 66.5
X 28.0 53.9 69.6 21.5 51.7 67.3

X 26.8 52.7 67.7 21.8 52.2 68.8
X X 28.5 54.4 67.8 22.3 53.4 69.0

Figure 13 visualizes the effect of each structure on the uterine wall, uterine cavity,
and uterine myomas using bar charts. Comparing our proposed model with the basic
model, we observed significant improvements of 8.8% and 8.4% in the uterine wall and uter-
ine cavity, respectively, and of 3.2% in uterine myomas. Overall, these results demonstrate
the effectiveness of each structure and component applied to uterine MRI segmentation.

Figure 14 demonstrates the instance segmentation results of our model in the uter-
ine region. To facilitate visual observation and description, we covered the masks on
the raw MR image. Figure 14a–c show segmentation masks for multiclass coexistence;
Figure 14d,e illustrate the masks of small myomas; Figure 14f shows the masks of the
slender uterine cavity.

Figure 13. Performance of maskAP for each model structure and component in the uterine region.
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a b

c d

e f

GT ours GT ours

Figure 14. Visualization of the instancesegmentation results of our model in the uterine region.
The left-hand side of each group represents GT masks, and the right-hand side displays the inference
masks generated by our model. In GT masks, red represents the uterine wall, green represents the
uterine cavity, and yellow represents myomas. In the masks of model inference, blue represents
myomas, and the others were consistent with GT. The score on the bounding box is the predicted
confidence value.

Figure 15 shows the confusion matrix of the test dataset after model inference, which
indicates whether the predicted category labels matched the true categories. The diag-
onal values represent the probability of each category being classified correctly, while
off-diagonal values indicate prediction errors. Due to the high signal intensity and overall
brightness of the uterine cavity, while both the uterine wall and myomas had low signal
intensity and overall darkness, the uterine cavity was rarely predicted incorrectly, while
the uterine wall and myomas were often confused. Comparing Figure 15a,b show that our
model significantly improved prediction accuracy for the uterine wall and uterine myomas.
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(a) (b)

Figure 15. Confusion matrix of the test dataset. (a) Confusion matrix of the baseline model. (b) Con-
fusion matrix of the proposed model.

3.4. Comparison with Popular Models

We conducted comparative experiments with instance segmentation models that
have been highly precise and strongly competitive in recent years, and the results are
shown in Table 6. Our proposed model outperformed the other models in all metrics.
Among the existing instance segmentation models, the Mask-RCNN network remained
highly competitive. Our model improved upon this approach with significant gains, such
as a 10.1% improvement in AP, a 4.6% improvement in APs, a 5.7% improvement in APm,
and a 6.5% improvement in APl .

Table 6. Performance comparison of different instance segmentation models.

Model AP% AP50% AP75% APs% APm% APl%

YOLACT++ [29] 27.3 47.0 21.7 11.1 25.7 59.1

SOLOv2 [30] 29.9 52.7 27.9 12.9 37.3 66.8

BlendMask [33] 28.1 45.3 23.8 11.7 27.6 57.2

E2EC [34] 30.8 55.7 29.6 13.0 41.4 68.7

Mask-RCNN [26] 34.5 56.8 30.0 17.7 47.7 62.5

ours 44.6 64.7 41.3 22.3 53.4 69.0

We compared the visualization results of our approach with those of competitive
models SOLOv2 and Mask-RCNN. Figure 16 shows several typical instance segmentation
results in the uterine region. In the first row, it is evident that the segmentation mask of
our model was closer to the shape and edge of the real myoma. This was attributed to the
DCN and PointRend structures, which gave the model better deformable feature-learning
and mask-refinement abilities. Rows 2 and 3 show that the other models misinterpreted
myomas in the uterus due to the uneven signal intensity in the uterine wall. Rows 4 and
5 show that there were many organs and tissues in the MR image that had very similar
signal intensities to those of the uterine region, causing the model to confuse them with our
target. Overall, our model was more robust to noise, and the segmentation of edge details
was smoother and more realistic.



Diagnostics 2023, 13, 1525 16 of 20Diagnostics 2023, 1, 0 17 of 21

(a) Image (b) GT (c) SOLOv2 (d) Mask-RCNN (e) ours

Figure 16. Segmentation visualization of different instance segmentation models in uterine region.
In the GT masks, red represents the uterine wall, green represents the uterine cavity, and yellow
represents myomas. In the masks generated by the models, blue means myomas, and others are
consistent with GT.

Figure 17 shows the maskAP results for multi-class in the uterine region for each
instance segmentation model. We can intuitively see that our model outperforms the other
models in terms of the uterine wall, uterine cavity, and myomas.

Figure 16. Segmentation visualization of different instance segmentation models in uterine region.
In GT masks, red represents the uterine wall, green represents the uterine cavity, and yellow represents
myomas. In the masks generated by the models, blue means myomas, and the others are consistent
with GT.

Figure 17 shows the maskAP results for multiple classes in the uterine region for each
instance segmentation model. Our model outperformed the other models in terms of the
uterine wall, uterine cavity, and myomas.
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Figure 17. maskAP comparison of different instance segmentation models in the uterine region.

4. Discussion

In this paper, we proposed an instance segmentation model based on deep learning
for the auxiliary diagnosis of uterine myomas in MRI. Our method achieved better AP
results than those of state-of-the-art instance segmentation models on the same dataset.
The visualization results demonstrate that the mask output of our method fit better with the
real object. Specifically, in the uterine MRI with complex backgrounds, our model had better
resistance to background noise and did not detect nonuterine objects as our targets. This
is mainly because our backbone structure maintained high-resolution features containing
detailed information, and the attention mechanism enhanced the focus on features related
to the uterine region while filtering out irrelevant noise. Additionally, our improved anchor
box generation strategy rendered our model more suitable for the size of multiple categories
in the uterine region and could perform better at the small, medium-sized, and large scales.
The DCN could learn the shape features of objects more flexibly, while the PointRend
module further ensured the fineness of the mask for complex objects with various shapes.

However, the AP of the uterine cavity and the APs of all categories were relatively
low, as shown in these metrics, mainly because uterine walls or myomas compress the
uterine cavity, rendering it very thin and narrow, and there were some small-scale myomas
in early onset or in different MRI slices. These objects had only a few pixels, hindering the
model from learning useful features. In the future, we plan to conduct further research to
address these issues and improve the results of these objects. Furthermore, the 3D image
features of the uterus are essential in clinical and deep-learning technique research, as it
can provide more contextual information and spatial features. Due to the limitation of
GPU resources, we only conducted experiments on 2D images. Our next step is to extend
computing resources, and explore the potential of instance segmentation on 3D uterine
MR images.

5. Conclusions

In this paper, we proposed a deep-learning-based instance-segmentation model that
could automatically output the class, location, and masks of the uterine wall, uterine cavity,
and uterine myomas. Experimental verification and visualization results demonstrate
that our approach had excellent instance segmentation ability in the uterine region. Our
approach could reduce the burden of the manual segmentation of lesions for doctors,
alleviate the pressure of manual film reading, accelerate the diagnostic process for uterine
myomas, and improve patient satisfaction. It can also be used for the auxiliary diagnosis of
uterine myomas, providing gynecologists with a quick and objective reference to develop
individualized treatment plans, such as hysteroscopic and laparoscopic surgeries, and
drug therapy. Relatively few studies use deep-learning technology to achieve instance
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segmentation in the uterine region, and this study provides a promising solution, and has
potential applications in the diagnosis of uterine diseases. In the future, we will build
larger and richer datasets, and strive to improve the segmentation precision of our model
on the uterine cavity and small-scale objects to further enhance the application of instance
segmentation techniques in medical-image-assisted diagnosis.

Author Contributions: Conceptualization, W.B.; data curation, B.L., M.C., M.Z., X.Z. and Y.L.;
methodology, M.Z.; writing—original draft preparation, M.Z. and H.P.; writing—review and editing,
H.P., H.W. and H.G.; software, M.Z. and D.Z.; supervision, H.P. and W.B.; project administration, H.P.
and W.B.; funding acquisition, H.P. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the Beijing Hospitals Authority’s Ascent Plan (grant no.
DFL20190701).

Institutional Review Board Statement: According to the Declaration of Helsinki, this study was con-
ducted with the approval of the Institutional Review Board (or Scientific Research Ethics Committee)
of Beijing Shijitan Hospital, Capital Medical University (code: sjtkyll-lx-2022(1)).

Informed Consent Statement: The written informed consent of all patients was waived.

Data Availability Statement: Data are available upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Stewart, E.A. Clinical practice. Uterine fibroids. N. Engl. J. Med. 2015, 372, 1646–1655. [CrossRef] [PubMed]
2. Giuliani, E.; As-Sanie, S.; Marsh, E.E. Epidemiology and management of uterine fibroids. Int. J. Gynecol. Obstet. 2020, 149, 3–9.

[CrossRef]
3. Donnez, J.; Jadoul, P. What are the implications of myomas on fertility? A need for a debate? Hum. Reprod. 2002, 17, 1424–1430.

[CrossRef] [PubMed]
4. Cohen, S.L.; Vitonis, A.F.; Einarsson, J.I. Updated hysterectomy surveillance and factors associated with minimally invasive

hysterectomy. JSLS J. Soc. Laparoendosc. Surg. 2014, 18, e2014.00096. [CrossRef]
5. Stewart, E.; Laughlin-Tommaso, S.; Catherino, W.; Lalitkumar, S.; Gupta, D.; Vollenhoven, B. Uterine fibroids. Nat. Rev. Dis. Prim.

2016, 2, 16043. [CrossRef]
6. Ulin, M.; Ali, M.; Chaudhry, Z.T.; Al-Hendy, A.; Yang, Q. Uterine fibroids in menopause and perimenopause. Menopause 2020,

27, 238–242. [CrossRef] [PubMed]
7. De La Cruz, M.S.D.; Buchanan, E.M. Uterine Fibroids: Diagnosis and Treatment. Am. Fam. Physician 2017, 95, 100–107. [PubMed]
8. Donnez, J.; Dolmans, M.M. Uterine fibroid management: From the present to the future. Hum. Reprod. Update 2016, 22, 665–686.

[CrossRef]
9. Fraser, I.S.; Critchley, H.O.D.; Broder, M.; Munro, M.G. The FIGO recommendations on terminologies and definitions for normal

and abnormal uterine bleeding. Semin. Reprod. Med. 2011, 29, 383–390. [CrossRef]
10. Dolmans, M.M.; Cacciottola, L.; Donnez, J. Conservative Management of Uterine Fibroid-Related Heavy Menstrual Bleeding

and Infertility: Time for a Deeper Mechanistic Understanding and an Individualized Approach. J. Clin. Med. 2021, 10, 4389.
[CrossRef]

11. Yu, H.; Zhang, Q.; Yang, L.T. An Edge-cloud-aided Private High-order Fuzzy C-means Clustering Algorithm in Smart Healthcare.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, Online ahead of print. [CrossRef]

12. Wang, S.; Wang, S.; Liu, Z.; Zhang, Q. A role distinguishing Bert model for medical dialogue system in sustainable smart city.
Sustain. Energy Technol. Assessments 2023, 55, 102896. [CrossRef]

13. Zhang, X.; Shams, S.P.; Yu, H.; Wang, Z.; Zhang, Q. A pairwise functional connectivity similarity measure method based on
few-shot learning for early MCI detection. Front. Neurosci. 2022, 16, 1081788. [CrossRef]

14. Yao, J.; Chen, D.; Lu, W.; Premkumar, A. Uterine fibroid segmentation and volume measurement on MRI. In Proceedings of the
Medical Imaging 2006: Physiology, Function, and Structure from Medical Images; Manduca, A., Amini, A.A., Eds.; International Society
for Optics and Photonics, SPIE: Bellingham, WA, USA, 2006; Volume 6143, p. 614322. [CrossRef]

15. Liao, X.; Yuan, Z.; Tong, Q.; Zhao, J.; Wang, Q. Adaptive localised region and edge-based active contour model using shape
constraint and sub-global information for uterine fibroid segmentation in ultrasound-guided HIFU therapy. IET Image Process.
2017, 11, 1142–1151. [CrossRef]

16. Militello, C.; Vitabile, S.; Rundo, L.; Russo, G.; Midiri, M.; Gilardi, M.C. A fully automatic 2D segmentation method for uterine
fibroid in MRgFUS treatment evaluation. Comput. Biol. Med. 2015, 62, 277–292. [CrossRef] [PubMed]

http://doi.org/10.1056/NEJMcp1411029
http://www.ncbi.nlm.nih.gov/pubmed/25901428
http://dx.doi.org/10.1002/ijgo.13102
http://dx.doi.org/10.1093/humrep/17.6.1424
http://www.ncbi.nlm.nih.gov/pubmed/12042254
http://dx.doi.org/10.4293/JSLS.2014.00096
http://dx.doi.org/10.1038/nrdp.2016.43
http://dx.doi.org/10.1097/GME.0000000000001438
http://www.ncbi.nlm.nih.gov/pubmed/31834160
http://www.ncbi.nlm.nih.gov/pubmed/28084714
http://dx.doi.org/10.1093/humupd/dmw023
http://dx.doi.org/10.1055/s-0031-1287662
http://dx.doi.org/10.3390/jcm10194389
http://dx.doi.org/10.1109/TCBB.2022.3233380
http://dx.doi.org/10.1016/j.seta.2022.102896
http://dx.doi.org/10.3389/fnins.2022.1081788
http://dx.doi.org/10.1117/12.653856
http://dx.doi.org/10.1049/iet-ipr.2016.0651
http://dx.doi.org/10.1016/j.compbiomed.2015.04.030
http://www.ncbi.nlm.nih.gov/pubmed/25966922


Diagnostics 2023, 13, 1525 19 of 20

17. Rundo, L.; Militello, C.; Vitabile, S.; Casarino, C.; Russo, G.; Midiri, M.; Gilardi, M.C. Combining split-and-merge and multi-seed
region growing algorithms for uterine fibroid segmentation in MRgFUS treatments. Med. Biol. Eng. Comput. J. Int. Fed. Med. Biol.
Eng. 2016, 54, 1071–1084. [CrossRef]

18. Fallahi, A.; Pooyan, M.; Oghabian, M.A.; Khotanlou, H.; Ahmari, S. Uterine Segmentation and Volume Measurement in Uterine
Fibroid Patients’ MRI Using FCM Algorithm and Morphological Operations. In Proceedings of the 16th Iranian Conference of
Biomedical Engineering, Mashhad, Iran, 29–30 December 2009.

19. Antila, K.; Nieminen, H.J.; Sequeiros, R.B.; Ehnholm, G. Automatic segmentation for detecting uterine fibroid regions treated
with MR-guided high intensity focused ultrasound (MR-HIFU). Med. Phys. 2014, 41, 073502. [CrossRef] [PubMed]

20. Militello, C.; Vitabile, S.; Russo, G.; Candiano, G.; Gagliardo, C.; Midiri, M.; Gilardi, M.C. A Semi-automatic Multi-seed
Region-Growing Approach for Uterine Fibroids Segmentation in MRgFUS Treatment. In Proceedings of the 2013 Seventh
International Conference on Complex, Intelligent, and Software Intensive Systems, Washington, DC, USA, 3–5 July 2013;
pp. 176–182. [CrossRef]

21. Hodneland, E.; Dybvik, J.A.; Wagner-Larsen, K.S.; Šoltészová, V.; Munthe-Kaas, A.Z.; Fasmer, K.E.; Krakstad, C.; Lundervold, A.;
Lundervold, A.S.; Salvesen, Ø.; et al. Automated segmentation of endometrial cancer on MR images using deep learning. Sci.
Rep. 2021, 11, 1–8. [CrossRef]

22. Kurata, Y.; Nishio, M.; Kido, A.; Fujimoto, K.; Yakami, M.; Isoda, H.; Togashi, K. Automatic segmentation of the uterus on MRI
using a convolutional neural network. Comput. Biol. Med. 2019, 114, 103438. [CrossRef]

23. Zhang, C.; Shu, H.; Yang, G.; Li, F.; Wen, Y.; Zhang, Q.; Dillenseger, J.L.; Coatrieux, J.L. HIFUNet: Multi-Class Segmentation of
Uterine Regions From MR Images Using Global Convolutional Networks for HIFU Surgery Planning. IEEE Trans. Med. Imaging
2020, 39, 3309–3320. [CrossRef]

24. Niu, Y.; Zhang, Y.; Ying, L.; Li, H.; Chen, W.; Miao, H.; Bao, N. Uterine magnetic resonance image segmentation based on deep
learning. J. Phys. Conf. Ser. 2021, 1861, 012067. [CrossRef]

25. Tang, C.; Liu, D.; Yu, X. MRI image segmentation system of uterine fibroids based on AR-Unet network. Am. Sci. Res. J. Eng.
Technol. Sci. (ASRJETS) 2020, 71, 1–10.

26. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [CrossRef]

27. Zhang, G.; Lu, X.; Tan, J.; Li, J.; Zhang, Z.; Li, Q.; Hu, X. RefineMask: Towards High-Quality Instance Segmentation with
Fine-Grained Features. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
Nashville, TN, USA, 20–25 June 2021; pp. 6857–6865. [CrossRef]

28. Gao, N.; Shan, Y.; Wang, Y.; Zhao, X.; Yu, Y.; Yang, M.; Huang, K. SSAP: Single-Shot Instance Segmentation With Affinity
Pyramid. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea,
27 October–2 November 2019; pp. 642–651. [CrossRef]

29. Bolya, D.; Zhou, C.; Xiao, F.; Lee, Y.J. YOLACT++ Better Real-Time Instance Segmentation. IEEE Trans. Pattern Anal. Mach. Intell.
2022, 44, 1108–1121. [CrossRef] [PubMed]

30. Wang, X.; Zhang, R.; Kong, T.; Li, L.; Shen, C. SOLOv2: Dynamic and Fast Instance Segmentation. Adv. Neural Inf. Process. Syst.
2020, 33, 17721–17732.

31. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE
Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [CrossRef]

32. Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft coco: Common objects in con-
text. In Proceedings of the Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014;
Part V 13; Springer: Berlin, Germany, 2014; pp. 740–755.

33. Chen, H.; Sun, K.; Tian, Z.; Shen, C.; Huang, Y.; Yan, Y. BlendMask: Top-Down Meets Bottom-Up for Instance Segmentation.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 8570–8578. [CrossRef]

34. Zhang, T.; Wei, S.; Ji, S. E2EC: An End-to-End Contour-based Method for High-Quality High-Speed Instance Segmentation. In
Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18–24 June 2022; pp. 4433–4442. [CrossRef]

35. Huang, T.; Li, H.; Zhou, G.; Li, S.; Wang, Y. A Survey of Research on Instance Segmentation Methods. J. Front. Comput. Sci.
Technol. 2023, 17, 810.

36. Yu, H.; Yang, L.T.; Zhang, Q.; Armstrong, D.; Deen, M.J. Convolutional neural networks for medical image analysis: State-of-the-
art, comparisons, improvement and perspectives. Neurocomputing 2021, 444, 92–110. [CrossRef]

37. Lipson, S.A.; Hricak, H. MR imaging of the female pelvis. Radiol. Clin. N. Am. 1996, 34, 1157–1182. . [CrossRef]
38. Tustison, N.J.; Avants, B.B.; Cook, P.A.; Zheng, Y.; Egan, A.; Yushkevich, P.A.; Gee, J.C. N4ITK: Improved N3 Bias Correction.

IEEE Trans. Med. Imaging 2010, 29, 1310–1320. [CrossRef]
39. Sun, K.; Zhao, Y.; Jiang, B.; Cheng, T.; Xiao, B.; Liu, D.; Mu, Y.; Wang, X.; Liu, W.; Wang, J. High-resolution representations for

labeling pixels and regions. arXiv 2019, arXiv:1904.04514.

http://dx.doi.org/10.1007/s11517-015-1404-6
http://dx.doi.org/10.1118/1.4881319
http://www.ncbi.nlm.nih.gov/pubmed/24989416
http://dx.doi.org/10.1109/CISIS.2013.36
http://dx.doi.org/10.1038/s41598-020-80068-9
http://dx.doi.org/10.1016/j.compbiomed.2019.103438
http://dx.doi.org/10.1109/TMI.2020.2991266
http://dx.doi.org/10.1088/1742-6596/1861/1/012067
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1109/CVPR46437.2021.00679
http://dx.doi.org/10.1109/ICCV.2019.00073
http://dx.doi.org/10.1109/TPAMI.2020.3014297
http://www.ncbi.nlm.nih.gov/pubmed/32755851
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/CVPR42600.2020.00860
http://dx.doi.org/10.1109/CVPR52688.2022.00440
http://dx.doi.org/10.1016/j.neucom.2020.04.157
http://dx.doi.org/10.1016/S0033-8389(22)00696-0
http://dx.doi.org/10.1109/TMI.2010.2046908


Diagnostics 2023, 13, 1525 20 of 20

40. Dai, J.; Qi, H.; Xiong, Y.; Li, Y.; Zhang, G.; Hu, H.; Wei, Y. Deformable Convolutional Networks. In Proceedings of the 2017 IEEE
International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 764–773. [CrossRef]

41. Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional Block Attention Module. In Proceedings of the Computer Vision—ECCV
2018; Springer International Publishing: Cham, Switzerland, 2018; pp. 3–19.

42. Kirillov, A.; Wu, Y.; He, K.; Girshick, R. PointRend: Image Segmentation As Rendering. In Proceedings of the 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 9796–9805. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICCV.2017.89
http://dx.doi.org/10.1109/CVPR42600.2020.00982

	Introduction
	Materials and Methods
	Dataset Description
	Image Acquisition
	Image Preparation and Preprocessing

	Instance Segmentation Approach for the Uterine Region
	Feature Extraction and Fusion
	Anchor Box Generation Strategy
	Mask Branch
	Loss Function


	Experiments and Results
	Evaluation Metrics
	Implementation Details
	Ablation Study
	Comparison with Popular Models

	Discussion
	Conclusions
	References

