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Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose diagnosis
depends on the presence of combined lower motor neuron (LMN) and upper motor neuron (UMN)
degeneration. LMN degeneration assessment is aided by electromyography, whereas no equivalent
exists to assess UMN dysfunction. Magnetic resonance imaging (MRI) is primarily used to exclude
conditions that mimic ALS. We have identified four different clinical/radiological phenotypes of
ALS patients. We hypothesize that these ALS phenotypes arise from distinct pathologic processes
that result in unique MRI signatures. To our knowledge, no machine learning (ML)-based data
analyses have been performed to stratify different ALS phenotypes using MRI measures. During
routine clinical evaluation, we obtained T1-, T2-, PD-weighted, diffusion tensor (DT) brain MRI of
15 neurological controls and 91 ALS patients (UMN-predominant ALS with corticospinal tract CST)
hyperintensity, n = 21; UMN-predominant ALS without CST hyperintensity, n = 26; classic ALS,
n = 23; and ALS patients with frontotemporal dementia, n = 21). From these images, we obtained 101
white matter (WM) attributes (including DT measures, graph theory measures from DT and fractal
dimension (FD) measures using T1-weighted), 10 grey matter (GM) attributes (including FD based
measures from T1-weighted), and 10 non-imaging attributes (2 demographic and 8 clinical measures
of ALS). We employed classification and regression tree, Random Forest (RF) and also artificial neural
network for the classifications. RF algorithm provided the best accuracy (70–94%) in classifying four
different phenotypes of ALS patients. WM metrics played a dominant role in classifying different
phenotypes when compared to GM or clinical measures. Although WM measures from both right and
left hemispheres need to be considered to identify ALS phenotypes, they appear to be differentially
affected by the degenerative process. Longitudinal studies can confirm and extend our findings.

Keywords: ALS phenotypes; MRI; machine learning; Random Forest; neural network

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease whose diag-
nosis depends on the presence of degenerating motor neurons in both peripheral nervous
system (PNS, or lower motor neuron (LMN)) and central nervous system (CNS, or upper
motor neuron (UMN)) regions. Assessment of LMN degeneration is aided by widely used
electromyography of peripheral nerve and muscle, while similar quantitative methods to
assess CNS dysfunction are not easily accessible. Qualitative magnetic resonance imaging
(MRI) is primarily used clinically to exclude conditions mimicking ALS. Although ALS
patients eventually develop clinical evidence of both UMN and LMN dysfunction, some
present with varying proportions of the two, and in a minority, demonstrate prominent
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frontotemporal cognitive impairment. Therefore, depending on the presence of such fea-
tures, we have identified four phenotypes of ALS patients: (a) classic ALS (ALS-Cl) patients
with obvious LMN and UMN clinical signs; (b) UMN-predominant ALS patients with
prominent spasticity and few or no LMN signs at time of brain MRI, which reveals bilateral
corticospinal tract (CST) hyperintensity on conventional FLAIR, T2-, and proton-density
(PD)-weighted sequences (ALS-CST+) [1]; (c) UMN-predominant ALS patients with brain
MRI showing no CST hyperintensity (ALS-CST−); and (d) ALS patients with frontotempo-
ral dementia (ALS-FTD). We hypothesize that these different ALS phenotypes arise from
distinct pathologic mechanisms that result in unique MRI signatures.

In our recent studies [2–5], we used different quantitative MRI approaches to study
brain degeneration in the above-mentioned ALS subgroups. These independent imaging
approaches revealed distinct abnormalities in the gray matter (GM) and white matter (WM)
brain regions of these phenotypes. Here, we aim to use machine learning (ML) algorithms
to identify which clinical and MRI features are most important in accurately classifying the
ALS subgroups. The features identified by ML can then be used to predict classification of
newer data sets into one of the ALS phenotypes based on their clinical and MRI signatures.
This will potentially allow stratification of ALS patients into specific phenotypes with
different clinical progressions and potentially diverse disease mechanisms.

ML algorithms have been employed in ALS to monitor disease progression (regression-
based approach) [6,7], compare staging systems [8], and stratify patients based on clinical
assessments such as limb involvement [9], disease stage, and ALSFRS-R score [10]. To date,
ML models stratifying ALS patients have used category labels of ‘healthy’ and ‘ALS’ for
all types, without separating into different phenotypes, as described above. The different
ML methods used in ALS studies include support vector machine (SVM), discriminant
analysis [11], Random Forest (RF) [8], canonical discriminant function [12], boosting [13],
and artificial neural networks (ANN) [14]. In ALS studies, RF is the most commonly
employed ML method and is one of the best-performing algorithms [15].

Because diagnosis of ALS is delayed an average of 12 months from symptom onset,
survival is usually 2–4 years from symptom onset [16], there is an urgent need to identify
non-invasive biomarkers for ALS, including those based on neuroimaging. At time of
ALS diagnosis, WM degeneration is already observed with little subsequent deterioration.
In contrast, GM degeneration progresses rapidly in the post-symptomatic phase [15].
Therefore, WM measures are believed to be more suitable for diagnostic models of ML,
while changes in GM measures may reflect disease progression [15].

Important contributions of this study include identifying: (a) four ALS phenotypes
using MRI, clinical, and demographic measures; (b) extensive and sophisticated feature sets
that can detect changes at microscopic (diffusion measures) and macroscopic (graph mea-
sures such as global efficiency, fractal dimension (FD) analysis of brain WM/GM skeleton,
general structure, etc.) levels; (c) feature sets of WM measures (specific to the universally
affected CST and whole brain network), GM measures (simple brain parenchymal fraction
[BPF] to sophisticated shape morphometric features such as FD) and bifurcation of clinical
measures (such as the ALSFRS-R score and its constituent subscores); (d) different ML
methods (by considering the complete vs selected feature sets) to stratify ALS phenotypes;
(e) large clinical sample size (106 subjects) reflecting real-world data and a large feature
set (121 features); and (f) which of WM, GM, demographic, and clinical measures play (a)
dominant role(s) in diagnosing ALS patients. A future goal would be to understand how
each feature selected by ML methods reflects the disease-related pathologic changes unique
to each ALS phenotype.

There is great interest in developing neuroimaging-based biomarkers of ALS to es-
tablish earlier diagnosis, recognize disease subtypes, monitor disease progression, and
assess efficacy of therapeutic interventions. We aimed to identify the attributes (in our
quantitative MRI measures) which may distinguish and diagnostically classify these four
ALS phenotypes. In Methods, we present the MR analyses and ML algorithms used; in
Results, we present findings from the ML algorithms and ML applied on different aspects
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of feature sets; and in Discussion, the findings are analyzed and their implications in each
of ALS phenotypes.

2. Methods
2.1. Imaging Data

Patients with ALS and neurological controls underwent brain MRI on a 1.5T Siemens
Symphony scanner (Erlangen, Germany) as part of routine clinical evaluation. High-
resolution 3D T1-weighted axial images were obtained using magnetization-prepared rapid
gradient echo (M-PRAGE) sequence with the following parameters: repetition time (TR) =
1800 ms, echo time (TE) = 4.38 ms, flip angle = 10◦, inversion time (TI) = 1100 ms, slice
thickness = 1 mm, in-plane resolution = 0.9 × 0.9 mm2, and number of slices = 160. T2-
and PD-weighted images were used to identify WM pathology, including the presence
of CST hyperintensity. T2- and PD- weighted images were acquired using a dual-echo
fast spin-echo sequence with the following parameters: TR = 3900 ms, TE = 26 ms and
104 ms, echo train length or turbo factor = 7, number of averages = 1, slice thickness = 4 mm,
and in-plane resolution = 0.9 × 0.9 mm. Diffusion tensor imaging (DTI) was performed
using single-shot echo planar imaging (SS-EPI) in 12 diffusion-weighted directions with
b = 1000 s/mm2 and a non-diffusion-weighted image with b = 0 s/mm2. Other parameters
included: resolution = 1.9 × 1.9 × 4 mm3, TR = 6000 ms, TE = 121 ms, and EPI factor = 128.

Brain MRI of 91 ALS patients (ALS-CST+, n = 21; ALS-CST−, n = 26; ALS-Cl, n = 23;
and ALS-FTD, n = 21) and 15 neurological controls were identified for storage, and analysis
of deidentified images after patient verbal consent, as approved by the Cleveland Clinic
Institutional Review Board.

2.2. Data Processing

We obtained 111 quantitative measures (attributes) from the MRI data and 10 non-
imaging attributes (2 demographic and 8 clinical measures of ALS), as listed in Table 1.
Although details of the image processing methods and quantitative metrics to obtain these
attributes have been previously reported [17–20], they are briefly described below. A
flowchart outlining our present study is shown in Figure 1.

Table 1. Total of 121 features and attributes considered in this study for all ALS subgroups and controls.

No. Measures/Attributes Type of Attribute (WM/GM/Demographic/Clinical)

1 Assortativity_AD

WM measures from graph theory networks using DTI

2 Density_AD

3 Mean_clustering_coefficient_AD

4 Transitivity_AD

5 Global_efficiency_AD

6 Mean_local_efficiency_AD

7 Modularity_AD

8 Modularity_Louvian_AD

9 Characteristic_path_length_AD

10 Mean_nodal_betweenness_AD

11 Mean_edge_betweenness_AD

12 Normalized path length_AD

13 Normalized clustering_AD

14 Small world index_AD

15 Mean_degree_FA

16 Assortativity_FA
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Table 1. Cont.

No. Measures/Attributes Type of Attribute (WM/GM/Demographic/Clinical)

17 Density_FA

18 Mean_clustering_coefficient_FA

19 Transitivity _FA

20 Global_efficiency_FA

21 Mean_local_efficiency_FA

22 Modularity_FA

23 Modularity_Louvian_FA

24 Characteristic_path_length _FA

25 Mean_nodal_betweenness_FA

26 Mean_edge_betweenness_FA

27 Normalized path length_FA

28 Normalized clustering_FA

29 Small world index_FA

30 Mean_degree_MD

31 Assortativity_MD

32 Density_MD

33 Mean_clustering_coefficient_MD

34 Transitivity_MD

35 Global_efficiency_MD

36 Mean_local_efficiency_MD

37 Modularity_MD

38 Modularity_Louvian_MD

39 Characteristic_path_length_MD

40 Mean_nodal_betweenness_MD

41 Mean_edge_betweenness_MD

42 Normalized path length_MD

43 Normalized clustering_MD

44 Small world index_MD

45 Mean_degree_RD

46 Assortativity_RD

47 Density_RD

48 Mean_clustering_coefficient_RD

49 Transitivity_RD

50 Global_efficiency_RD

51 Mean_local_efficiency_RD

52 Modularity_RD

53 Modularity_Louvian_RD

54 Characteristic_path_length _RD

55 Mean_nodal_betweenness_RD

56 Mean_edge_betweenness_RD

57 Normalized path length_RD
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Table 1. Cont.

No. Measures/Attributes Type of Attribute (WM/GM/Demographic/Clinical)

58 Normalized clustering_RD

59 Small world index_RD

60 FA_Right_CP

WM measures along CST using DTI

61 FA_Right_PLIC

62 FA_Right_ CSoLV

63 FA_Right_subPMC

64 FA_Left_CP

65 FA_Left_PLIC

66 FA_Left_CSoLV

67 FA_Left_subPMC

68 AD_Right_CP

69 AD_Right_PLIC

70 AD_Right_CSoLV

71 AD_Right_subPMC

72 AD_Left_CP

73 AD_Left_PLIC

74 AD_Left_CSoLV

75 AD_Left_subPMC

76 RD_Right_CP

77 RD_Right_PLIC

78 RD_Right_CSoLV

79 RD_Right_subPMC

80 RD_Left_CP

81 RD_Left_PLIC

82 RD_Left_CSoLV

83 RD_Left_subPMC

84 MD_Right_CP

85 MD_Right_PLIC

86 MD_Right_CSoLV

87 MD_Right_subPMC

88 MD_Left_CP

89 MD_Left_PLIC

90 MD_Left_CSoLV

91 MD_Left_subPMC

92 FD_WM_Gen_L

FD-based WM measures from T1-w imaging

93 FD_WM_Gen_R

94 FD_WM_Gen_W

95 FD_WM_surf_L

96 FD_WM_surf_R

97 FD_WM_surf_W

98 FD_WM_skel_L
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Table 1. Cont.

No. Measures/Attributes Type of Attribute (WM/GM/Demographic/Clinical)

99 FD_WM_skel_R

100 FD_WM_skel_W

101 FD_GM_Gen_L

FD-based GM measures from T1-w imaging

102 FD_GM_Gen_R

103 FD_GM_Gen_W

104 FD_GM_surf_L

105 FD_GM_surf_R

106 FD_GM_surf_W

107 FD_GM_skel_L

108 FD_GM_skel_R

109 FD_GM_skel_W

110 BPF_WM = ([WM]/TOTAL) ∗ 100
BPF measures from T1-w imaging

111 BPF_GM = ([GM]/TOTAL) ∗ 100

112 Age
Demographics

113 Gender

114 El_Escorial

Clinical measures of ALS

115 Dur_Symp

116 ALSFRS-R

117 Bulbar

118 Cervical

119 Lumbosacral

120 Resp

121 Prog_Rate

ALSFRS-R—Revised ALS functional rating scale, AD—Axial diffusivity, BPF—Brain parenchymal fraction,
Bulbar—Bulbar subscore (ALSFRS-R), Cervical—Cervical subscore (ALSFRS-R), CP—Cerebral peduncle, CSoLV—
Centrum semiovale at top of lateral ventricle , DTI—Diffusion tensor imaging, Dur_Symp—Duration of symptoms,
El_Escorial—El Escorial score, FD—Fractal dimension, FA—Fractional anisotropy, Gen—General structure,
GM—Gray matter, L and Left—Left hemisphere, Lumbosacral—Lumbosacral subscore (ALSFRS-R), MD—Mean
diffusivity, PLIC—Posterior limb of the internal capsule, Prog_Rate—Progression rate of disease, R and Right
—Right hemisphere, RD—Radial diffusivity, Resp—Respiratory subscore (ALSFRS-R), skel—Skeleton of the
brain, subPMC—Subcortical primary motor cortex, Surf—Brain surface, T1-w—T1-weighted, W—Whole brain,
WM—White matter.
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2.3. Graph Network Features

Graph theory metrics were obtained from DTI data as follows: (a) preprocessing of
DTI data using ExploreDTI (http://www.exploredti.com/ access data 10 January 2019)
openware [21]; (b) fitting of diffusion data to the DTI model after correcting for motion
artifact by using robust diffusion tensor estimation; (c) performance of brain tractography
using deterministic streamline approach with a fractional anisotropy (FA) starting threshold
of 0.2 and a stopping threshold of 1.0; (d) obtainment of connectivity matrices between
cortical regions based on the AAL atlas [22], which were registered to the subject’s space;
(e) construction of connectivity matrices for DTI metrics of FA, axial diffusivity (AD), radial
diffusivity (RD) and mean diffusivity (MD); (f) performance of whole-brain WM network
analysis using Graph Analysis toolbox (GAT) software (https://www.nitrc.org/projects/
gat/ access data 10 January 2019) [23]. Microarchitectural tissues correlates of these DTI
measures are believed to be: FA, both myelin and axonal integrity; RD, myelin integrity;
AD, axonal integrity; and MD, mobility of water molecules.

The connectivity matrix obtained using ExploreDTI was used in GAT for further
processing. We obtained network measures for each subject using the “network measures”
module in GAT. Graph measures studied, as listed in Table 1, included: assortativity,
density, mean clustering coefficient, transitivity, global efficiency, mean local efficiency,
modularity, Louvian modularity, characteristic path length, mean nodal betweenness, mean

http://www.exploredti.com/
https://www.nitrc.org/projects/gat/
https://www.nitrc.org/projects/gat/
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edge betweenness, normalized path length, normalized clustering, small world index, and
mean degree. Further details have been previously published [2,24]. DTI-derived WM
measures from graph theory network analyses are shown in Table 1, lines 1–59.

2.4. DTI Corticospinal Tract Features

Diffusion-weighted images were first corrected for susceptibility artifacts and eddy-
current distortion using FSL tools with b-matrix rotation after oblique-angle correction to
preserve correct orientation information [20]. These images were then processed using DTI
Studio open software in the following manner: (a) diffusion tensor fitting using a multi-
variate linear least square fit; (b) FA, MD, AD and RD maps of whole brain obtained [20];
(c) fiber tracking using the fiber assignment by continuous tracking (FACT) algorithm;
(d) reconstruction of bilateral CST virtual fibers after placing a region of interest (ROI)
caudally in the cerebral peduncle (CP) and another ROI rostrally just beneath the primary
motor cortex (subPMC); (e) identification of four ROIs at specific CST levels: CP, posterior
limb of internal capsule (PLIC), centrum semiovale at top of lateral ventricle (CSoLV), and
subPMC, as shown in Figure 2. The aforementioned DTI measures in each ROI bilaterally
were measured in ALS patients and neurological controls, as described previously [20].
DTI-derived WM measures along the CST are shown in Table 1, lines 60–91.
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2.5. Fractal Dimension WM and GM Features

FD analysis was performed using customized in-house routines, as detailed previ-
ously [18], and included: (a) extraction of brain precedes its segmention into WM and GM
probability maps using FSL tools; (b) binarization of WM and GM probability maps using
a threshold value of 0.5; (c) application of 3D thinning to WM and GM binary images to
produce corresponding 3D skeleton images [18]; generation of skeleton and general struc-
ture of left and right hemispheres after applying hemisphere-specific masks; (d) estimation
of FD values using 3D box-counting method.

FD values of skeleton, surface, and general structure shape representations were es-
timated by counting boxes required to cover: (a) skeleton foreground voxels for skeleton
FD value; (b) WM and GM interface boundary for surface FD; and (c) all WM and GM
foreground voxels (which included skeleton and surface) for general structure FD. The
skeleton, which preserves topological and geometric information of WM and GM, repre-
sents interior structure complexity of brain WM and GM. The surface structure reflects the
shape of gyral and sulcal convolutions at the WM–GM interface. The general structure
represents volume changes. Because the skeleton, surface and general structure represent
three different aspects of brain WM and GM integrity, they may provide insights into
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brain shape and structural changes occurring during the neurodegeneration of ALS. T1-w
imaging-derived FD-based WM and GM measures are shown in Table 1, lines 92–109.

2.6. Demographic and Clinical Features

Demographic features of age and gender, as well as clinical characteristics in ALS
subgroups of ALSFRS-R, disease duration, El Escorial score, and disease progression rate
are shown in Table 1, lines 112–121.

2.7. Machine Learning Methods

Based on the article by Grollemund and colleagues [15] that discussed the pros and
cons of different ML algorithms employed in ALS, we chose to apply Random Forest (RF)
and neural networks (NN) methods. We wrote custom ML codes in MATLAB (Mathworks
https://www.mathworks.com/ access date 1 October 2019) version 2016 and also in Python
(https://www.python.org/downloads/release/python-390/ access date 3 November 2022)
version 3.9 for classification of our ALS phenotypes and controls. Briefly, RF is an ensemble
of decision trees, of which a sample of records/data is chosen for each. Gini impurity
values were then used to select the best from the attributes and samples for expansion
at every node in the decision tree. “Out of bag error” (OOB), which should be as low as
possible for accurate prediction, was calculated for each decision tree in RF. Because CST
truncation of virtual tracts occurred from DTI calculations in some UMN-predominant
ALS patients [5], we filled in the missing data points with the average value of the dataset.
Further, we performed feature selection, as suggested in [15], using Waikato Environment
for Knowledge (WEKA), which is an ML software developed at the University of Waikato,
New Zealand (https://www.cs.waikato.ac.nz/ml/weka/ access date 23 October 2019).
Feature selection in WEKA is divided into two parts: attribute evaluator and search
method. The feature selection method, CfsSubsetEval, evaluates worthiness of a subset
of attributes depending on their individual output predictive power and the level of
redundancy between them. We then used the BestFitsearch option to obtain attributes.

When first employing the classification and regression tree (CART) and pruning
algorithms to a data sample size of 106 and 121 attributes, accuracy of classification was
only 55%; however, after applying the RF algorithm to this sample, accuracy increased to
71%. For this reason, we used the RF algorithm to analyze our data. Attributes selected
by WEKA were then classified by considering each as separate category or output class
variables: (1) neurologic controls, ALS-CST+ and ALS-CST− subgroups; and (2) neurologic
controls, ALS-Cl and ALS-FTD subgroups.

2.8. Neural Networks

We employed neural networks for classification after a custom code was written using
MATLAB (Mathworks https://www.mathworks.com/ access date 1 October 2019) version
2016. Briefly, a neural network is a computing model comprising of neurons in different
layers. After a literature review, we elected to use a two-layered architecture. The number
of neurons in each of the two hidden layers was decided on a case-by-case basis (i.e., when
WM or GM attributes were considered separately, clinical and demographic measures were
considered, or all of these measures were taken together) using the geometric pyramidal
rule proposed by Masters [25] calculations given below:

If we define r =
(

Number of input data
Number of output data

)1/3
, then the number of neurons in the

- first hidden layer = (Number of output data)× r2

- second hidden layer = (Number of output data)× r

Gradient descent with momentum was used for parameter characterization. The
value of momentum was fixed at 0.9, training time at 5000, and number of folds for cross-
validation was 5.

https://www.mathworks.com/
https://www.python.org/downloads/release/python-390/
https://www.cs.waikato.ac.nz/ml/weka/
https://www.mathworks.com/
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3. Results
3.1. Random-Forest-Based Classification

The RF algorithm was used to perform the above classification between ALS clinical
phenotypes, and average values were used to fill the missing data values. All 121 attributes
were considered for this classification and output classes were 0 for control group, 1 for
ALS-CST+ subgroup, 2 for ALS-CST− subgroup, 3 for ALS-Cl subgroup, and 4 for ALS-
FTD subgroup. Accuracy with RF was 71% and RF classification after attribute selection
using the attributes given by WEKA are shown in Table 2. RF classified the ALS clinical
phenotypes from controls as well as between the ALS subgroups with 71% accuracy.
Accuracy remained at 71% with the reduced attributes when compared to classifying the
ALS phenotypes using all 121 attributes. The confusion matrix, statistical parameters
and variable of importance when considering all the attributes, and the WEKA-selected
attributes are shown in Figures 3 and 4. A comparison between the statistical measures in
Figures 3 and 4 shows that attribute selection using WEKA shows some good improvement
in the ALS-CST+ and ALS-CST− groups, suggesting that selected features may be better
when compared to considering all 121 features for classification. Accuracy increased to
89.5%, however, when the second category for classification comprised of 0 for controls, 1
for ALS CST+, and 2 for ALS CST−, when the attributes given by WEKA (Table 3) were
used and average values to fill the missing data points were considered. Accuracy dropped
to 78.9% when all 121 attributes were used. The confusion matrix, statistical parameters
and variable of importance when considering all the attributes, and the WEKA-selected
attributes are shown in Figures 5 and 6. Since the classification of ALS-CST+ and ALS-CST−
groups was based on MRI, in order to understand the role played by imaging attributes
in classifying the 0, 1, and 2 groups, we performed an analysis where we considered the
imaging measures independently from clinical measures. GM measures, when considered
independently, resulted in an accuracy of 36%, whereas WM measures alone yielded 73%
accuracy, and 76% accuracy was obtained when clinical and demographic measures were
considered alone. As mentioned above, when all the measures were combined, the accuracy
of the classification between controls, ALS-CST+, and ALS-CST− groups was 88%.

Table 2. Features and attributes selected using WEKA when considering all the ALS subgroups and
controls.

No. Measures/Attributes Type of Attribute (WM/GM/Demographic/Clinical)

1 Assortativity_AD WM measures from graph theory networks using DTI

2 Global_effiiciency_FA

3 Mean_local_efficiency_FA

4 Mean_edge_betweenness_FA

5 Normalized path length_MD

6 Assortativity_RD

7 Density_RD

8 Mean_local_efficiency_RD

9 Normalized path length_RD

10 FA_Right_CP WM measures along CST using DTI

11 FA_Right_subPMC

12 AD_Right_CP

13 AD_Right_PLIC

14 AD_Right_CSoLV

15 AD_Left_CP
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Table 2. Cont.

No. Measures/Attributes Type of Attribute (WM/GM/Demographic/Clinical)

16 AD_Left_subPMC

17 RD_Right_CP

18 RD_Right_PLIC

19 RD_Right_CSoLV

20 RD_Right_subPMC

21 RD_Left_CP

22 MD_Right_CSoLV

23 MD_Left_CSoLV

24 FD_WM_Gen_W

FD-based GM and WM measures from T1-w imaging

25 FD_WM_skel_L

26 FD_WM_skel_R

27 FD_WM_skel_W

28 FD_GM_Gen_L

29 FD_GM_Gen_R

30 FD_GM_Gen_W

31 FD_GM_skel_R

32 FD_GM_skel_W

33 Gender

Demographic and clinical measures
34 El_Escorial

35 Dur_Symp

36 Bulbar

37 Prog_Rate

AD—Axial diffusivity, BPF—Brain parenchymal fraction, Bulbar—Bulbar subscore (ALSFRS-R), CP—Cerebral
peduncle, CSoLV—Centrum semiovale at top of lateral ventricle, DTI—Diffusion tensor imaging, Dur_Symp—
Duration of symptoms, El_Escorial—El Escorial score, FD—Fractal dimension, FA—Fractional anisotropy, Gen—
General structure, GM—Gray matter, L and Left—Left hemisphere, MD—Mean diffusivity, PLIC—Posterior limb
of the internal capsule, Prog_Rate—Disease progression rate, R and Right—Right hemisphere , RD—Radial diffu-
sivity, skel—Skeleton of the brain, subPMC—Subcortical primary motor cortex, T1-w—T1-weighted, W—Whole
brain, WM—White matter.
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Figure 3. Classification of neurologic controls and ALS subgroups when all 121 features are used,
showing the (a) confusion matrix, (b) variable of importance, and (c) statistical measures of precision,
recall, and F1 scores. The numbers (0 to 4) shown along the horizontal and vertical axes in (a) and
labeling the columns of the classification report in (c) denote the following subgroups: 0 for neurologic
controls, 1 for ALS-CST+, 2 for ALS-CST−, 3 for ALS-Cl, and 4 for ALS-FTD. Abbreviations of feature
names used in figure (b) include: AD—Axial diffusivity, ALS-FRS_R—Revised ALS function rating
scale, BPF—Brain parenchymal fraction, Bulbar—Bulbar subscore (ALSFRS-R), Cervical—Cervical
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subscore (ALSFRS-R), CP—Cerebral peduncle, CSoLV—Centrum semiovale at top of lateral ventri-
cle, Dur_Symp—Duration of symptoms, ElEscorial—El Escorial score, FA—Fractional anisotropy,
FD—Fractal dimension, Gen—General structure, GM—Gray matter, L and Left—Left hemisphere,
Lumbosacral—Lumbosacral subscore (ALSFRS-R), MD—Mean diffusivity, PLIC—Posterior limb
of internal capsule, Prog_Rate—Progression rate of disease, R and Right —Right hemisphere, RD—
Radial diffusivity, Resp—Respiratory subscore (ALSFRS-R), skel—Skeleton of the brain, subPMC—
Subcortical primary motor cortex, surf—Surface, W—Whole brain, WM—White matter.

Table 3. Features and attributes selected using WEKA when considering only ALS-CST+ and ALS-
CST− subgroups and controls.

No. Measures/Attributes Type of Attribute (WM/Demographic/Clinical)

1 Assortativity_AD

WM measures from graph theory networks using DTI

2 Transitivity_FA

3 Characteristic_path_length_FA

4 Mean_degree_MD

5 Normalized clustering_MD

6 Normalized path length_RD

7 FA_Right_CP

8 AD_Right_CP

WM measures along CST using DTI

9 AD_Right_CSoLV

10 RD_Right_CP

11 RD_Right_PLIC

12 RD_Right_CSoLV

13 RD_Right_subPMC

14 MD_Right_CP

15 MD_Left_CP

16 Gender

17 El_Escorial

Demographic and clinical measures
18 Dur_Symp

19 Bulbar

20 Lumbosacral

AD—Axial diffusivity, CP—cerebral peduncle, DTI—Diffusion tensor imaging, Dur_Symp—Duration of symp-
toms, FA—Fractional anisotropy, Left—Left hemisphere, MD—Mean diffusivity, PLIC—Posterior limb of the
internal capsule, RD—Radial diffusivity, Right—Right hemisphere, subPMC—Subcortical primary motor cortex,
CSoLV—Centrum semiovale at top of lateral ventricle, WM—White matter.
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Figure 4. Classification of neurologic controls and ALS subgroups when WEKA-selected attributes
are used, showing the (a) confusion matrix, (b) variable of importance, and (c) statistical measures of
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precision, recall, and F1 scores. The numbers (0 to 4) shown along the horizontal and vertical axes
in (a) and labeling the columns of the classification report in (c) denote the following subgroups:
0 for neurologic controls, 1 for ALS-CST+, 2 for ALS-CST−, 3 for ALS-Cl, and 4 for ALS-FTD.
Abbreviations of feature names used in figure (b) include: AD—Axial diffusivity, Bulbar—Bulbar
subscore (ALSFRS-R), CP—Cerebral peduncle, CSoLV—Centrum semiovale at top of lateral ven-tricle,
Dur_Symp—Duration of symptoms, ElEscorial—El Escorial score, FA—Fractional anisotropy, FD—
Fractal dimension, Gen—General structure, GM—Gray matter, L and Left—Left hemisphere, MD—
Mean diffusivity, PLIC—Posterior limb of internal capsule, Prog_Rate—Progression rate of disease,
R and Right—Right hemisphere, RD—Radial diffusivity, skel—Skeleton of the brain, subPMC—
Subcortical primary motor cortex, W—Whole brain, WM—White matter.

Similarly, when we considered 0 for controls, 3 for ALS-Cl, and 4 for ALS-FTD as well
as all 121 attributes with average values to fill the missing data points, accuracy was 88.9%.
Accuracy improved to 94.44% when attributes (given by WEKA in Table 4) were used.
The confusion matrix, statistical parameters and variable of importance when considering
all the attributes, and the WEKA-selected attributes are shown in Figures 7 and 8. We
then considered clinical, GM, and WM measures independently. When clinical measures
were used to classify all ALS clinical phenotypes, an accuracy of 64% was obtained. The
classification of ALS CST+ and ALS CST− patients resulted in accuracy of 75%, and ALS-
Cl and ALS-FTD patients resulted in accuracy of 78%. When GM attributes were used
to classify the ALS clinical phenotypes and controls, classification accuracy remained
very poor (<48%). On the other hand, using WM measures resulted in an accuracy of
73% when comparing between controls, ALS CST+, and ALS CST− patients, and 75%
when comparing between controls, ALS-Cl, and ALS-FTD patients; when all ALS clinical
phenotypes combined and controls were considered, accuracy dropped to 58%.
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1 
 

 
Figure 5. Classification of neurologic controls, ALS-CST+, and ALS-CST− subgroups when all 121
features are used, showing the (a) confusion matrix (b) variable of importance, and (c) statistical
measures of precision, recall, and F1 scores. The numbers (0 to 2) shown along the horizontal and
vertical axes in (a) and labeling the columns of the classification report in (c) denote the following
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subgroups: 0 for neurologic controls, 1 for ALS-CST+, and 2 for ALS-CST−. Abbreviations of feature
names used in figure (b) include: AD—Axial diffusivity, ALS-FRS_R—Revised ALS function rating
scale, BPF—Brain parenchymal fraction, Bulbar—Bulbar subscore (ALSFRS-R), Cervical—Cervical
subscore (ALSFRS-R), CP—Cerebral peduncle, CSoLV—Centrum semiovale at top of lateral ventri-
cle, Dur_Symp—Duration of symptoms, ElEscorial—El Escorial score, FA—Fractional anisotropy,
FD—Fractal dimension, Gen—General structure, GM—Gray matter, L and Left—Left hemisphere,
Lumbosacral—Lumbosacral sub-score (ALSFRS-R), MD—Mean diffusivity, PLIC—Posterior limb
of internal capsule, Prog_Rate—Progression rate of disease, R and Right —Right hemisphere, RD—
Radial diffusivity, Resp—Respiratory subscore (ALSFRS-R), skel—Skeleton of the brain, subPMC—
Subcortical primary motor cortex, surf—Surface, W—Whole brain, WM—White matter.

Table 4. Features and attributes selected using WEKA when considering only ALS-FTD and ALS-Cl
subgroups and controls.

No. Measures/Attributes Type of Attribute (WM/GM/Demographic/Clinical)

1 Density_AD WM measures from graph theory networks using DTI

2 Mean_local_efficiency_AD

3 Mean_edge_betweenness_AD

4 Density_MD

5 Mean_clustering_coefficient_MD

6 Mean_local_efficiency_MD

7 Normalized path length_RD

8 FA_Left_PLIC

9 FA_Left_CSoLV

WM measures from CST using DTI

10 FA_Left_subPMC

11 AD_Right_CP

12 AD_Right_PLIC

13 RD_Right_CP

14 RD_Right_PLIC

15 RD_Right_CSoLV

16 RD_Right_subPMC

17 MD_Right_CP

18 MD_Left_CP

19 MD_Left_subPMC

20 FD_WM_skel_W

FD-based GM and WM measures from T1-w imaging
21 FD_GM_Gen_R

22 FD_GM_skel_L

23 FD_GM_skel_R

24 FD_GM_skel_W

25 El_Escorial
Demographic and clinical measures26 Dur_Symp

27 ALSFRS-R

ALSFRS-R—Revised ALS functional rating scale, AD—Axial diffusivity, CP—Cerebral peduncle, CSoLV—
Centrum semiovale at top of lateral ventricle, DTI—Diffusion tensor imaging, Dur_Symp—Duration of symptoms,
El_Escorial—El Escorial score, FD—Fractal dimension, FA—Fractional anisotropy, Gen—General structure, GM—
Gray matter, L and Left—Left hemi-sphere, MD—Mean diffusivity, PLIC—Posterior limb of the internal capsule, R
and Right—Right hemisphere, RD—Radial diffusivity, skel—Skeleton of the brain, subPMC—Subcortical primary
motor cortex, Surf—Brain surface, T1-w—T1-weighted, W—Whole brain, WM—White matter.
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 Figure 6. Classification of neurologic controls and ALS subgroups when WEKA-selected attributes
are used, showing the (a) confusion matrix, (b) variable of importance, and (c) statistical measures of
precision, recall, and F1 scores. The numbers (0 to 4) shown along the horizontal and vertical axes in
(a) and labeling the columns of the classification report in (c) denote the following subgroups: 0 for
neurologic controls, 1 for ALS-CST+, and 2 for ALS-CST−. Abbreviations of feature names used in
figure (b) include: AD—Axial diffusivity, Bulbar—Bulbar subscore (ALSFRS-R), CP—Cerebral
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peduncle, CSoLV—Centrum semiovale at top of lateral ventricle, Dur_Symp—Duration of symptoms,
ElEscorial—El Escorial score, FA—Fractional anisotropy, FD—Fractal dimension, Gen—General
structure, GM—Gray matter, L and Left—Left hemisphere, MD—Mean diffusivity, PLIC—Posterior
limb of internal capsule, Prog_Rate—Progression rate of disease, R and Right—Right hemisphere,
RD—Radial diffusivity, skel—Skeleton of the brain, subPMC—Subcortical primary motor cortex,
W—Whole brain, WM—White matter.

1 
 

 
Figure 7. Classification of neurologic controls and ALS subgroups when all 121 features are used,
showing the (a) confusion matrix, (b) variable of importance and (c) statistical measures of precision,



Diagnostics 2023, 13, 1521 20 of 25

recall, and F1 scores. The numbers (0, 3, 4) shown along the horizontal and vertical axes in (a)
and labeling the columns of the classification report in (c) denote the following subgroups: 0 for
neurologic controls, 3 for ALS-Cl, and 4 for ALS-FTD. Abbreviations of feature names used in figure
(b) include: AD—Axial diffusivity, ALS-FRS-R—Revised ALS function rating scale, BPF—Brain
parenchymal fraction, Bulbar—Bulbar subscore (ALSFRS-R), Cervical—Cervical subscore (ALSFRS-
R), CP—Cerebral peduncle, CSoLV—Centrum semiovale at top of lateral ventricle, Dur_Symp—
Duration of symptoms, ElEscorial—El Escorial score, FA—Fractional anisotropy, FD—Fractal di-
mension, Gen—General structure, GM—Gray matter, L and Left—Left hemisphere, Lumbosacral—
Lumbosacral sub-score (ALSFRS-R), MD—Mean diffusivity, PLIC—Posterior limb of internal capsule,
Prog_Rate—Progression rate of disease, R and Right —Right hemisphere, RD—Radial diffusivity,
Resp—Respiratory subscore (ALSFRS-R), skel—Skeleton of the brain, subPMC—Subcortical primary
motor cortex, surf—Surface, W—Whole brain, WM—White matter.

3.2. Neural-Network-Based Classification

NN-based classification resulted in a low accuracy of 61% when all 121 attributes were
used to stratify the 4 ALS patient phenotypes and control group. Selection of features shown
in Table 2 slightly improved classification accuracy to 71%. Classifying the second category
of the controls, ALS CST+, and ALS CST− subgroups by incorporating all 121 attributes
resulted in 75% accuracy; after selecting features shown in Table 3, this increased to 83%.
Similarly, when the controls, ALS-Cl, and ALS-FTD subgroups were classified incorporating
all 121 attributes, accuracy was 75% but also increased to 83% after using the selected
features shown in Table 4. Considering clinical, GM, and WM features independently, the
following accuracies were observed: (1) clinical measures alone provided an accuracy of 55%
when considering all ALS phenotypes, 88% when classifying ALS-CST+ from ALS-CST−
subgroups, and 77% when classifying ALS-Cl from ALS-FTD subgroups; (2) GM measures
alone gave an accuracy of only 28% when stratifying controls and all ALS phenotypes; 57%
when classifying controls, ALS-CST+, and ALS-CST− subgroups; and 50% when classifying
controls, ALS-Cl, and ALS-FTD subgroups; and (3) WM measures alone produced an
accuracy of 66% when classifying between controls and all ALS phenotypes; 58% when
classifying controls, ALS-CST+, and ALS-CST subgroups; and also 58% when classifying
controls, ALS-Cl, and ALS-FTD subgroups.
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Figure 8. Classification of neurologic controls and ALS subgroups when WEKA-selected attributes
are used, showing the (a) confusion matrix, (b) variable of importance and (c) statistical measures of
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precision, recall, and F1 scores. The numbers (0, 3, 4) shown along the horizontal and vertical axes
in (a) and labeling the columns of the classification report in (c) denote the following subgroups:
0 for neurologic controls, 3 for ALS-Cl, and 4 for ALS-FTD. Abbreviations of feature names used
in figure (b) include: AD—Axial diffusivity, Bulbar—Bulbar subscore (ALSFRS-R), CP—Cerebral
peduncle, CSoLV—Centrum semiovale at top of lateral ventricle, Dur_Symp—Duration of symptoms,
ElEscorial—El Escorial score, FA—Fractional anisotropy, FD—Fractal dimension, Gen—General
structure, GM—Gray matter, L and Left—Left hemisphere, MD—Mean diffusivity, PLIC—Posterior
limb of internal capsule, Prog_Rate—Progression rate of disease, R and Right—Right hemisphere,
RD—Radial diffusivity, skel—Skeleton of the brain, subPMC—Subcortical primary motor cortex,
W—Whole brain, WM—White matter.

4. Discussion

In this study, we demonstrated the: (1) dominant role of WM metrics in classifying
the clinical phenotypes of ALS-CST+ and ALS-CST− from controls as well as from each
other; (2) dominant role of clinical, GM, and WM attributes in classifying controls, ALS-Cl,
and ALS-FTD clinical phenotypes; (3) use of all 121 attributes (clinical, GM, and WM) to
classify controls and all ALS phenotypes resulted in 71% accuracy for both RF and NN
methods; and (4) dominant role of AD and RD measures in classifying ALS phenotypes,
and suggesting that axonal and myelin damage, respectively, occur differentially in ALS.

In the classification of all ALS phenotypes and controls, assortativity, global and
local efficiency, mean edge betweenness, normalized path length, and density played
important roles in patient stratification among different graph metrics. The assortativity
metric reflects the tendency of nodes to connect with other nodes of similar properties (e.g.,
high-degree nodes connect with other high-degree nodes), whereas negative assortativity
(or disassortativity) indicates nodes of dissimilar properties connecting (e.g., high-degree
nodes connect with lower-degree nodes). Mean assortativity values of controls and ALS
subgroups for AD and RD graph networks, as shown in Supplementary Table S1, revealed
differing machine-learning-selected attributes between patient subgroups. Specifically,
values among ALS-CST+, ALS-CST−, and ALS-Cl subgroups showed positive assortativity
but slightly reduced values when compared to controls, which may reflect compensatory
mechanisms by the disrupted brain network. AD-weighted graph-network disassortativity
in ALS-FTD patients may be compensatory for functional deficits occurring during loss of
WM connections in the frontal and temporal lobes [4]. In a longitudinal ALS study using
functional magnetoencephalography, Sorrentino et al. [26] observed high disassortativity
with disease progression, which suggested that more peripheral nodes connect to higher-
degree nodes to compensate for dysfunctional degenerating brain areas.

Differences in certain DTI-metric attributes at various CST-rostrocaudal levels (see
Figure 2) were important in classifying ALS-CST+, ALS-CST−, ALS-FTD, and ALS-Cl
subgroups, including RD and MD at CP, CSoLV, and subPMC levels, and AD at the CSoLV
level. The ability of these metrics to differentiate the ALS phenotypes infers that distinct
patterns of CST degeneration occur in these patient subgroups. In addition, dominance of
right hemisphere FA, AD, RD, and MD values in classifying the disease process suggests
that CST fibers are affected differentially between hemispheres, more so on the right.

Graph theory measures involved in classifying controls, ALS-CST+, and ALS-CST−
groups (as shown in Table 3) included assortativity_AD, transitivity_FA, characteristic
path length_FA, mean degree_MD, normalized clustering coefficient_MD, and normalized
path length_RD. Transitivity and clustering coefficients reflect local structural (topology-
wise) segregation of nodes for functional integration, whereas path length reflects global
integration of information in a network. Mean value differences of the above measures were
greater between controls and ALS-CST− patients than between controls and ALS-CST+
patients, as seen in Supplementary Table S2. In the ALS-CST− subgroup, increases of
characteristic and normalized path length values suggests compromised global integration,
whereas decreased assortativity values imply greater interconnection between low-degree
and high-degree nodes.
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Interestingly, FA, AD, RD, and MD values at only rostral levels of the CST (in CSoLV
and subPMC) were used by the feature selection algorithm to classify controls, ALS-CST−,
and ALS-CST+ subgroups, while those at caudal levels (in PLIC and CP) were not. Fractal
dimension (FD) attributes of WM or GM were not involved in classification. The DTI metrics
along the CST revealed abnormal values in both ALS-CST+ and ALS-CST− subgroups
when compared to controls and between these two patient subgroups. Mean values of the
chosen DTI attributes for control group and UMN-predominant ALS subgroups are shown
in Supplementary Table S3. The observation that essentially all DTI metrics along the CST
chosen for classification by the feature selection algorithm were from the right hemisphere
(except for MD in the left CP) emphasizes the asymmetry of hemispheric involvement,
as mentioned above. In addition, lack of GM attributes being chosen for classification
and no significant difference of GM FD values between controls, ALS-CST+, and ALS-
CST− subgroups suggests either a primary ‘axonopathy’ (and not a ‘neuronopathy’) or
insensitivity of GM measures in these UMN-predominant ALS patients. Clinical attributes
that played a key role in classifying ALS-CST+ and ALS-CST− subgroups include symptom
duration, El Escorial criteria score, and ALSFRS-R subscores of bulbar and lumbosacral
function; mean values of these measures are shown in Supplementary Table S4.

Graph theory measures used to classify controls, ALS-Cl, and ALS-FTD subgroups
(as shown in Table 4), resulted in accuracies of 88% for RF and 83% for NN. Except for
attribute #7, these were all different from those used to classify controls, ALS-CST+, and
ALS-CST− subgroups (discussed above), and included: (1) density of the AD network (den-
sity_AD), (2) mean local efficiency (mean local efficiency_AD), (3) mean edge betweenness
(mean edge betweenness_AD), (4) density based on MD network (density_MD), (5) mean
clustering coefficient (mean clustering coefficient_MD), (6) mean local efficiency (mean
local efficiency_MD), and (7) normalized path length of the RD network (normalized path
length_RD). Network density measures the proportion of connections relative to the total
number of possible connections. Mean value differences of the above measures were lower
in ALS-FTD patients than in controls and ALS-Cl patients, as shown in Supplementary
Table S5. Edge betweenness, local efficiency, and density metrics were important in clas-
sifying ALS-FTD from ALS-Cl and controls. Globally lower graph theory metric values
in ALS-FTD patients compared to controls and ALS-Cl patients indicate more prominent
WM abnormalities in the former patient subgroup. Attributes from DTI measures along
the CST involved in classifying ALS-Cl and ALS-FTD subgroups, and controls were not
restricted to its caudal level (as when classifying ALS-CST+ and ALS-CST− subgroups) but
involved its entire rostrocaudal extent, as shown in Supplementary Table S6. FD WM and
GM metrics were important in classifying ALS-Cl and ALS-FTD patients and controls with
their mean values, as shown in Supplementary Table S7. Interestingly, WM fractal values
were reduced in ALS-FTD patients compared to ALS-Cl patients and controls, whereas GM
fractal values were increased in ALS-Cl and ALS-FTD patients when compared to controls.
Increased FD GM values suggest an amorphous change in GM structures, as could occur
with loss of neurons and their processes. Importance of GM features in classifying ALS-Cl
and ALS-FTD patients and controls suggests that neurodegeneration in ALS-FTD (and
possibly ALS-Cl) patients may be primarily a ‘neuronopathy’. The mean values of clinical
attributes that played a key role in classifying ALS-Cl and ALS-FTD subgroups including
symptom duration, El Escorial score, and ALSFRS-R are shown in Supplementary Table S8.

5. Conclusions

The RF algorithm was the most accurate in classifying the four different ALS phe-
notypes. WM metrics played a major role in classifying these phenotypes compared to
GM or clinical measures. Although WM measures from both right and left hemispheres
should be considered when identifying ALS phenotypes (consistent with bihemispheric
degeneration occurring in ALS), they appear to be differentially affected by the disease
process. Longitudinal studies of multiple time-point data can confirm and expand on
our findings.
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Increasing patient numbers in each subgroup, potentially through a multisite study
will strengthen the statistical validity of our present findings. Time constraints in obtaining
MRI under a clinical protocol prevented the use of smaller voxel sizes and higher-direction-
number DTI acquisitions. Follow-up studies using higher-resolution imaging parameters at
3T will also be useful to confirm our findings. As a biomarker, neuroimaging is useful not
only in cross-sectional studies (as ours here) for diagnosis and identification of abnormali-
ties present at a single timepoint, but also in multiple timepoint analyses. Therefore, future
longitudinal studies of various patient subgroups beginning even earlier in the course of
ALS will provide insights into the evolution and spread of disease throughout the brain.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13091521/s1, Table S1: Mean assortativity values of
the control group and ALS subgroups; Table S2: Mean graph measure values in the control group
and UMN-predominant ALS subgroups; Table S3: Mean DTI metrics along the CST in the control
group and UMN-predominant ALS subgroups; Table S4: Clinical measures influencing classification
of UMN-predominant ALS subgroups; Table S5: Mean graph measure values in controls and patients
with classic ALS and ALS-FTD; Table S6: Mean DTI metrics along the CST in controls and patients
with classic ALS and ALS-FTD; Table S7: Mean FD attributes influencing classification of controls
and patients with classic ALS and ALS-FTD; Table S8: Clinical measures influencing classification of
patients with classic ALS and ALS-FTD.
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