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Abstract: In order to support biomolecule attachment, an effective electrochemical transducer matrix
for biosensing devices needs to have many specialized properties, including quick electron transfer,
stability, high surface area, biocompatibility, and the presence of particular functional groups. Enzyme-
linked immunosorbent assays, gel electrophoresis, mass spectrometry, fluorescence spectroscopy,
and surface-enhanced Raman spectroscopy are common techniques used to assess biomarkers. Even
though these techniques provide precise and trustworthy results, they cannot replace clinical appli-
cations because of factors such as detection time, sample amount, sensitivity, equipment expense,
and the need for highly skilled individuals. For the very sensitive and targeted electrochemical
detection of the salivary oral cancer biomarker IL8, we have created a flower-structured molybdenum
disulfide-decorated zinc oxide composite on GCE (interleu-kin-8). This immunosensor shows very
fast detection; the limit of detection (LOD) for interleukin-8 (IL8) detection in a 0.1 M phosphate
buffer solution (PBS) was discovered to be 11.6 fM, while the MoS2/ZnO nanocomposite modi-
fied glassy carbon electrode (GCE) demonstrated a high catalytic current linearly from 500 pg to
4500 pg mL−1 interleukin-8 (IL8). Therefore, the proposed biosensor exhibits excellent stability, high
accuracy sensitivity, repeatability, and reproducibility and shows the acceptable fabrication of the
electrochemical biosensors to detect the ACh in real sample analysis.

Keywords: immunosensor; molybdenum disulfide; zinc oxide nanoparticles; biomarkers; electrochemical
biosensor; interleukin-8; oral cancer

1. Introduction

Cancer is the second most common cause of death around the world; about 8.8 million
deaths reported in 2015 were due to cancer. Oral squamous cell carcinoma (OSCC) is the
11th most common cancer worldwide; it accounts for more than 90% of total oral cancer
cases. Cancer is abnormal and uncontrolled cell growth [1,2]. Oral cancer (OC) disease is
the 6th most demise-causing malignant growth and can happen in lips, cheeks, gingiva,
or taste buds in the mouths of people [3]. Genome-based cancer biomarkers are applied

Diagnostics 2023, 13, 1464. https://doi.org/10.3390/diagnostics13081464 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13081464
https://doi.org/10.3390/diagnostics13081464
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-1326-5222
https://orcid.org/0000-0002-1428-0432
https://orcid.org/0000-0002-7476-8907
https://orcid.org/0000-0003-0606-4227
https://doi.org/10.3390/diagnostics13081464
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13081464?type=check_update&version=1


Diagnostics 2023, 13, 1464 2 of 13

in a variety of techniques to identify the genetic changes present in the carcinogenic state,
including DNA arrays, PCR, RT-PCR, gene sequencing, fluorescence in situ hybridization
(FISH), etc. Contrarily, proteomic techniques make use of technologies including immuno-
histochemistry, enzyme-linked immunosorbent assay, and mass spectrometry to find novel
cancer biomarkers and validate them in clinical trials [4]. Interleukin-8 (IL8) is a cytokine
that has been linked to angiogenic and mitotic processes in various cancers. Researchers
have shown that oral cancer patients had higher expression levels of IL8 in their saliva
(720 pg mL−1 vs. 250 pg mL−1) than those in the control group [5]. However, there is
an urgent need to create non-invasive, straightforward, and safe procedures for finding
cancer biomarkers. In the disciplines of biomedical and diagnostic research, accurate
disease-related biomarker detection is crucial [6]. Cancer biomarkers are proteins that are
overexpressed in blood, saliva, and serum or present at low concentrations on the surface
of cancer cells; biomarkers greatly aid in diagnosis [7,8]. Therefore, it is essential to create
instruments capable of detecting biomarkers at such low quantities. Finding biomarkers
can help with early disease diagnosis, disease staging, and therapy response monitoring.
Numerous techniques have recently been created for evaluating cancer biomarkers [6]. Due
to the antibodies’ strong affinity for the corresponding antigen, immunoassay is currently
one of the most commonly used techniques for the detection of trace cancer biomark-
ers [9]. Tumor markers have been identified using a variety of immunoassay protocols,
including chemiluminescence, fluorescence, Raman spectroscopy, electrochemistry, quartz
crystal microbalance, and surface plasmon resonance [10,11]. Electrochemical immunoas-
says have garnered the most attention among these techniques because of their inherent
benefits, including high sensitivity, cheap, low power requirements, and excellent compati-
bility with micromachining technologies [12–15]. Conventional immunoassays have often
been used to find protein biomarkers. Enzyme-linked immunosorbent assays (ELISA),
radio-immunoassays (RIA), and fluorescence, chemiluminescence, and mass spectrometric
immunoassays are examples of immunological assays commonly used to detect cancer
biomarkers. Conventional immunological assays, however, are challenging, labor-intensive,
expensive, time-consuming, and unsuitable for point-of-care applications. As a result, point-
of-care and research applications for protein measurement require straightforward, quick,
sensitive, and affordable technologies [16–20].

Two-dimensional (2D) nanomaterials have received a lot of interest lately because
of their unusual architectures and unique physical and chemical characteristics. Due
to their behavior of accepting electrons and protons, layered transition metal dichalco-
genides (TMDCs) are ideal for electrochemical sensor applications [21–23]. Transition metal
dichalcogenides (TMDs) that resemble graphene have recently received a lot of academic
attention due to their novel electrical conductivity features, optical capabilities, optoelec-
tronic characteristics, and catalytic action [24]. Additionally, the exfoliated MoS2 condition
can result in a large number of highly exposed soft-edge sites that are extremely active
catalysts for electrochemical processes [25,26]. A type of layered substance resembling
graphite is MoS2. This substance has attracted interest in a variety of fields, including elec-
tronic device creation, sensing, luminescence, and catalysis. Due to their significant surface
area, minimal biotoxicity, remarkable biocompatibility, and anisotropic electron transporta-
tion, two-dimensional (2-D) films or flakes are used to detect molecular biomarkers as a
result of the rapid advancements in material science. Additionally, certain MoS2-based
proteins or DNA biosensors have been reported [27–29]. However, the bifunctional MoS2
nanocomposites based on MoS2 nanosheets frequently exhibit superior electrochemical
behavior, catalytic performance, and sensing capabilities in addition to having stronger
physical stability. MoS2 nanosheets have been viewed as viable options for determining
the emerging concert of their unique sheet-like structure.

In comparison to current bio-sensing platforms, nanoparticles have a huge number
of advantages, including narrow size distribution, effective surface modification, elec-
tron transport, electrochemical activities, quick electron transfer kinetics, desirable bio-
compatibility, and a high surface-to-volume ratio. The development of highly sensitive
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cancer biomarker sensors could make use of nanoparticles. Metal nanoparticles present
significantly increased catalytic activity by acting in concert via a fast electron transfer
reaction [30–32]. Moreover, because of the various elements that make up the electron
coupling effect, nanoparticles can offer good stability, quick reaction, and high catalytic
efficiency. Nanomaterials are used in immunoassays and sensors to provide: (i) a high
surface area for antibody attachment and greater analytes access; (ii) signal amplification;
and (iii) label-free real-time protein detection. As a result, the use of nanomaterials in the
creation of sensors and assays will enable the ultrasensitive detection of very low amounts
of cancer biomarkers. Nanomaterials have a strong affinity for cancer biomarkers, allowing
for the biomarker's identification [33–36].

In the present work, we have demonstrated well-established salivary oral cancer
biomarker interleukin-8 (IL8) detection using flower-structured molybdenum disulfide
(MoS2)-decorated zinc oxide (ZnO) composite on GCE. The structural morphology and
composition of the fabricated composite were then evaluated by different spectroscopic
and microscopic analyses, such as transmission electron microscopy (TEM) and X-ray
diffraction (XRD), as well as the differential pulse voltammetry (DPV) technique. Hence,
the obtained results proved that the hybrid forms of metal oxide (ZnO) and molybdenum
disulfide (MoS2) combination-based approach can be used in the clinical detection of IL8is,
a cancer biomarker in multiple forms of cancer. For cancer biomarkers, the exfoliated
MoS2-based composite is used in electrocatalysts for highly selective and sensitive electro-
chemical sensors. In addition, the developed sensor was used to detect biomarkers in real
sample analysis.

2. Experimental
2.1. Chemicals and Reagents

Sodium molybdate dihydrate (Na2MoO4·2H2O), thiourea (H2NCSNH2), magnesium
chloride (MgCl2), potassium chloride (KCl), sodium dihydrogen phosphate monohydrate
(H2NaO4P·H2O), sodium phosphate dibasic heptahydrate (Na2HPO4·7H2O), sodium chlo-
ride (NaCl2), potassium hydroxide (KOH), zinc acetate dehydrate (Zn (CH3CO2)2·2H2O),
acetone, ethanol, nitric acid (HNO3), and sulfuric acid (H2SO4) were acquired from Sigma-
Aldrich. IL8 antigen and IL8 rabbit polyclonal antibodies were purchased from Bioss,
Woburn, MA, USA. All chemicals were AR grade and used without any further purifica-
tion. Ultrapure de-ionized water was used to prepare the necessary solutions. All other
chemicals were purchased in analytical grade and used without further purification.

2.2. Synthesis of MoS2

The 2D MoS2 flower-like nano-flakes were successfully synthesized by a facile one-
step hydrothermal technique. In total, 2.2 g Na2MoO4·2H2O and 2.0 g H2NCSNH2 were
dissolved into 100 mL of de-ionized (DI) ammonia with strong stirring to form a homo-
geneous solution. After changing the pH assessment to less than 1 with 12 M HCl, the
Mixed solution was shifted into a 250 mL Teflon-lined stainless-steel autoclave and hy-
drothermally treated for 18 h at 220 ◦C. The entire reaction method was cooled to ambient
temperature. The final samples were then prepared for black precipitate centrifugation
(9000 rpm), washing (water and ethanol), and drying for 12 h at 70 ◦C [37].

2.3. Preparation of MoS2/ZnO Composite

The flower-structured MoS2 nanosheet (50 mg) was exfoliated by sonication in water.
After that, the synthesized ZnO-NPs (50 mg) were treated for 1 h under ultra-sonication to
ensure good dispersion. Following dispersion, the solution was combined with a MoS2
suspension and left to stand at room temperature for 3 h with constant stirring. Following
stirring, the product was collected, cleaned with DI water, and dried for 12 h at 80 ◦C in a
hot air oven.
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2.4. Electrode Preparation and Modification

Using different grades of alumina slurry powder, a working glassy carbon electrode
(GCE) with a surface area of 0.07 cm2 and diameter of 3 mm was polished to have a mirror-
like surface (1.0, 0.05, and 0.3 microns). GCE was ultrasonically cleaned in water and
ethanol numerous times for 10 min following polishing to eliminate any remaining surface
debris. The GCE was then dried in a hot air oven at 50 ◦C before being used for further
research. The GCE was then rinsed in de-ionized (DI) water. The MoS2/ZnO powder
0.01 g was dispersed in water and ultra-sonication for 1 h. After that, sonication 10 µL
of dispersion solution was dropped on the cleaned GCE surface and dried overnight at
room temperature (25 ◦C). It was thoroughly dried before being cleaned with de-ionized
(DI) water and dried once more. A total of 20 L of newly made anti-IL8 antibodies were
immobilized on the active film surface of the working electrodes for 4 h and then washed
with 1× PBS buffer (pH 7.4) to remove any unwanted physical adsorption. Oral cancer
biomarkers will be found using the immunosensors (Antibody/MoS2/ZnO modified
GCE electrode) as they have been developed for the sensing of IL 8. The Fabrication
of MoS2/ZnO nanocomposite-based immunoelectrode for immunosensing is shown in
Scheme 1.
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Scheme 1. Schematic of Fabrication of MoS2/ZnO nanocomposite-based immunoelectrode for
immunosensing application.

2.5. Determination of Human Saliva Real Sample Analysis

This fabricated immunosensor was put to the test by injecting a cancer biomarker
into a controlled real sample of saliva. To remove any food particles or residues, the
controlled real human saliva sample was centrifuged for 15 min at 8000 rpm. The clear
supernatant was then collected for further use. This saliva sample will be spiked with
various quantities of a cancer biomarker (without any dilution); the binding to an Ab/NPs
adorned MoS2 modified GCEy electrode will then be observed using the detection of IL8
based on DPV method.

2.6. Electrochemical Measurements

All electrochemical experiments that used cyclic voltammeter (CV), differential pulse
voltammetry (DPV) analysis, and amperometry (i-t) were conducted in a CHI 760C elec-
trochemical workstation. All the measurements were performed under a conventional
three-electrode electrochemical cell and assembled at room temperature. Platinum (Pt) and
glassy carbon electrode (GCE) were used as the counter and working electrode, respectively,
while Ag/AgCl (3 M KCl) was used as a reference electrode. A 0.1 M phosphate buffered
saline solution (PBS pH 7.4) electrolyte was served as the electrolyte at room temperature
for sensor applications.
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2.7. Materials Characterization

The successful immobilization of Anti-IL8 onto AuNPs-rGO thin films was confirmed
by XRD. X-ray diffraction (XRD) was used to analyze phase composition and crystalline
structure measurements using an XRD, Bruker D8 Advance diffractometer consisting of
Cu Kα radiation (λ = 1.541 Å). The morphological traits and nanostructures of the Mxene
(Metal carbide) samples were further characterized by high solution transmission electron
microscopy TEM (HR-TEM, JEM-2100 Plus, Jeol operating at 200 kV).

2.8. Analyte (IL8) Sample Preparation

By injecting IL8 into control saliva, this made-up immunosensor was evaluated for its
ability to analyze genuine samples. To remove of any leftover food or residues, the control
saliva sample was centrifuged for 15 min at 8000 rpm. The clear supernatant was then
collected for future use. This saliva sample was spiked with various IL8 concentrations
(without any dilution) and the binding on Anti-IL8/MoS2/ZnO/GCE immunoelectrodes
was investigated using DPV.

In 10 mM PBS (pH 7.4), different concentrations of IL8 (from 500 fg/mL to 4500 fg/mL)
were prepared and administered to the immunological electrode surface for 9 min. Utilizing
the DPV approach, the immunoreactions that resulted were examined in a 1:1 v/v ratio of
10 mM PBS and 3 mM Zobell’s solution at a scan rate of 0.02 Vs−1, with pulse potential and
pulse time values of 0.02 V and 0.07 s, respectively.

3. Results and Discussion
3.1. XRD Analysis

The crystal structure and phase composition of the synthesized samples were identified
and determined using powder XRD. The diffraction pattern of flower-shaped MoS2 is
shown in Figure 1a, which reveals peaks at 2 = 13.88 and 42.61, respectively, that originate
from the planes of the hexagonal 2H-MoS2 phase (JCPDS No. 37-1492). These peaks all
supported the production of MoS2. The remaining peaks were observed at 2θ values of
31.42, 34.01, 35.88, 47.02, 56.22, 62.45, 65.75, 67.39, and 76.8, respectively, which corresponds
to the crystal planes of the hexagonal ZnO nanoparticle’s structure (JCPDS card no. 36-1451).
All these peaks support the formation of MoS2/ZnO nanocomposite [2,38]. Furthermore,
no other phase segregation was detected in the XRD pattern; thus, the XRD results indicate
the formation of a MoS2/ZnO nanocomposite.

3.2. HR-TEM and EDXS Analysis

The HR-TEM images of the as-prepared MoS2 flower structured morphology obtained
(Figure 1b) are homogeneously distributed, which confirms the TEM images; we can see
the flower-structured morphology assembled byMoS2, while the strong evidence for the
formation of the flower structure of MoS2 was provided by HR-TEM analysis. Figure 1c
shows a typical TEM image of MoS2 flowers, while HR-TEM measurement further confirms
its nano sheet-like structure. Figure 2f clearly shows the ultrathin MoS2 nanosheet’s highly
crystalline few-layer structure is well stacked with an interlayer distance observed as the
(002) lattice planes of MoS2; the MoS2 nanosheets in HR-TEM image clearly indicate this
fact. Figure 2c reveals the microspheres’ internal layer structure. Numerous nanosheets
with a thickness of several nanometers may be seen to twist and spread out toward the
spheres’ edges; the SAED pattern of MoS2 composite is shown in Figure 2d. The MoS2/ZnO
nanocomposite TEM image, as shown in Figure 2b, is a flowered uniform MoS2 structure
fully covered in ZnO. Figure 2 shows the EDXS spectrum of the MoS2/ZnO nanocomposite
sample and confirms the presence of Mo, S, O, and Zn without any other impurities from
the source ingredients. The HR-TEM images and analysis provided strong evidence for the
formation of flower-structured MoS2 with a nano sheet-like structure, while the MoS2/ZnO
nanocomposite was confirmed to contain Mo, S, O, and Zn without any other impurities
through EDXS spectrum analysis [39].
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Figure 1. (a) XRD patterns of MoS2/ZnO nanocomposite. (b) HR-TEM image of exfoliated flower-
structured MoS2 nanosheets. (c) HR-TEM image of flower-structured MoS2 nanosheets in high-
resolution. (d) MoS2 nanosheets for selected area electron diffraction (SAED) pattern. (e) HR-TEM
image of MoS2 lattice fringes.
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3.3. DPV Detection of IL8

This research demonstrated a fresh method for creating biosensors for the identifi-
cation of bio-molecular signatures such as interleukin 8. Electrochemical detections have
frequently used the highly sensitive DPV technique. With different concentrations of IL8
added to 0.1 M PBS (pH 7.4) buffer solution at a scan rate of 50 mV s−1, Figure 3a,b displays
the typical DPV behaviors of the Anti-IL8/MoS2/ZnO nanocomposite modified electrode.
Figure 3a shows the DPV curves for different concentrations of IL8on Anti-IL8/MoS2/ZnO
modified GCE. As the concentration of analytes increases, the oxidation peak current also
decreases linearly with a concentration range of 200–1400 µM. As a result of increased
antigen binding, an insulating barrier has formed, preventing electron transport, which
is the cause of the drop in current. The DPV current produced for the constructed sensor
was proportional to the concentration of IL8 in the electrochemical cell. As is evident from
the graph, the response current drops linearly as the concentration of the substrate (IL8)
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rises. With a linear correlation coefficient of R2 = 0.9960, Figure 3b demonstrates a strong
linear relationship dependent on the concentrations of IL8 and the peak current response in
the range of 200–1400 M. The experiment was repeated three times (n = 3) and the results
are highly reproducible. The limit of detection is calculated from Anti-IL8/MoS2/ZnO
modified electrode. This is a promising biosensor that could be used in the detection of IL8
at low concentrations. The detection limit prepared biological sensor of detection (LOD) is
S/N = 3 of the biosensor; it was observed at 11.6 fM.
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Electrochemical oxidation of 2000 pg IL8 was tested on a bare GCE and Anti-IL8/MoS2/ZnO
composite modified GCE (at a scan rate of 50 mV s−1) in the potential range of 0.5–0.6 V,
as shown in Figure 4. The Anti-IL8/MoS2/ZnO composite modified GCE exhibited a
highly enhanced oxidation peak (black curve). In contrast, bare GCE showed no oxidation
peak current (red curve). It was obvious that modified Anti-IL8/MoS2/ZnO composite
produced a highly enhanced catalytic current of IL8. This study presents a promising
biosensor using Anti-IL8/MoS2/ZnO nanocomposite modified electrode, which can detect
IL8 at low concentrations with high sensitivity and reproducibility using DPV technique;
this is demonstrated by the linear relationship between peak currents and concentrations
of IL8 and the LOD of 11.6 fM [40].
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Practical application of the proposed sensorofAnti-IL8/MoS2/ZnO modified electrode
was tested for A Chin diluted human saliva; the real analysis sample was recorded in
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0.1 M PBS, pH 7.4 using DPV technique via standard addition method. Saliva from a
healthy individual was spiked with three different amounts to examine the effectiveness of
the artificial immunosensor in real biological samples. Human saliva real sample analysis
was collected from a healthy person at Medical College Hospital and Research Centre
(SRM MCHRC), India. Human saliva sample was 1000 times diluted in 0.1 M PBS before
testing. In order to determine the authentication of the proposed sensor, certain known
concentrations of IL8100 nM, 200 nM, and 300 nM were spiked in the saliva sample and
then detected (three measurements were taken in each sample). The recoveries were
calculated from triplicate results. The results are provided in Table 1. Anti-IL8/MoS2/ZnO
modified GCE showed good reproducibility and recovery rate for IL8 in real sample
analysis. The experimental results of IL8 showed satisfactory recoveries that range between
101.5 and 103% in the blood–saliva sample. These results suggest that Anti-IL8/MoS2/ZnO
modified GCE electrode is a promising candidate for real sample applications. The RSD
Value shows less than 3%. In our present study, the results showed that the sensing
platform shows effective performance in actual sample detection. The Anti-IL8/MoS2/ZnO
modified electrode demonstrated excellent performance for the detection of interleukin 8
in diluted human saliva samples, with recoveries ranging from 101.5% to 103%, suggesting
its potential as a practical biosensor for real sample analysis [41–43].

Table 1. Electrochemical detection of IL8 spiked in diluted human serum samples using Anti-
IL8/MoS2/ZnO composite modified GCE as a sensor.

Added (fM) Found (fM) Recovery (%) RSD (%) (n = 3)

10 10.2 102 1.92
20 20.6 103 2.36
30 30.5 101.6 2.24

3.5. Anti-Interference of Coexisting Compounds

During the anti-interference ability test, as depicted in Figure 5, we assessed whether
the possible interfering species hTERT, S-100, MAGE-A2, and CD59, each at a concentration
of 2000 pg/mL Anti-IL8/MoS2/ZnO composite modified GCE, were present. The addition
of hTERT, S-100, MAGE-A2, and CD59 did not significantly alter the current response at
DPV performance, while the analysis was maintained until the IL8 current was likewise
reduced. This confirms the excellent specificity of the immunosensor for the IL8 antigen,
as shown in Figure 5. These findings imply that the novel biosensor sensor system's IL8
detection is highly selective for the analytes without causing noticeable interference effects.
The results show that the Anti-IL8/MoS2/ZnO composite modified GCE has excellent
specificity for the IL8 antigen as it did not significantly alter the current response in the
presence of possible interfering species hTERT, S-100, MAGE-A2, and CD59, confirming
the biosensor's high selectivity for IL8 detection [44,45].
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3.6. Repeatability and Reproducibility of Anti-IL8/MoS2/ZnO Modified Electrode

Repeatability and reproducibility are some of the most important indicators for the
electrochemical sensor. All electrodes showed acceptable operational stability and no
evident enzyme leaching. This might be a result of the significant electrostatic attraction
between the MoS2/ZnO matrix and Anti-IL8 at the test pH value (7.4). Reproducibility of
the proposed sensor of Anti-IL8/MoS2/ZnO modified GCE electrode was tested for IL8 in
0.1 M PBS using DPV technique by using a series of three consecutive measurements under
the same conditions. It was found that the average relative standard deviations (RSDs)
for the IL8 oxidation peak current were lower than 2.9%. The proposed sensor's excellent
stability and the good reproducibility of the Anti-IL8/MoS2/ZnO modified electrodes are
acceptable. We have also compared our analytical data with other reported methods for
electrochemical detection of IL8 in Table 2. This proposed new method offers a number
of advantages.

Table 2. Various detection methods for IL-8 biomarkers.

Detection Method Detection Range Limit of Detection (LOD) References

Chrono-coulometry 1 pg/mL to 1 µg/mL ~1 pg/mL [46]
Cyclic voltammetry 0.1–10 pM 0.04 pM [47]
Differential pulse voltammetry (DPV) 1 fg/mL–40 ng/mL 90 pg/mL [47]

100 fg/mL–5 ng/mL 51.53 ± 0.43 pg/mL [48]
500 fg/mL–4 ng/mL 72.73 ± 0.18 pg/mL [40]

Anodic stripping voltammetry (ASV) 5–5000 fg/mL 3.36 fg/mL [49]
Electrochemical impedance spectroscopy (EIS) 0.01–3 pg/mL 3.3 fg/mL [50]

900 fg/mL to 900 ng/mL 90 fg/mL [51]
0.02 pg/mL to 3 pg/mL 6 fg/mL [44]

Amperometry 0.01–12.5 ng/mL 7.4 pg/mL [52]
Amperometry 0.005–50 pM 3.9 fM [53]
Amperometry 8–1000 pg/mL 8 pg/mL [54]
Amperometry 10–1000 fg/mL 10 fg/mL [55]
Amperometry 7–3750 fg/mL 7 fg/mL [56]

4. Conclusions

In summary, this work described Anti-IL8/MoS2/ZnO nanocomposite being success-
fully synthesized in constructing an electrochemical sensor for a sensitive system for the
analyte without significant interference effects. The XRD, HR-TEM, and EDS mapping
analysis were used to confirm the crystal structure, surface morphology, and elemental
composition of the synthesized composite. The Anti-IL8/MoS2/ZnO composite outper-
forms other electrochemical sensors that have been previously reported because of its
large specific surface area, enhanced mass and electron transfer, and high concentration
of electroactive species. When compared to other analogs, these electrochemical sensors
have good selectivity for IL8. In addition, the Anti-IL8/MoS2/ZnO composite has excellent
reproducibility, while stability exhibited good sensitivity (1.257 fM) and anti-interference
abilities, was enzyme-free, had wide detection range, and involved a simple process. This
proposed biosensor work may offer new open doors for huge enhancements in the devel-
opment of modified GCE. The fabricated immunosensor's high specificity, precision, and
stability make it a promising platform for early-stage oral cancer detection; this method
can be easily modified to detect other cancer types as it only requires samples from body
fluids, such as saliva, blood, and urine, for cancer-specific biomarker detection.
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