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Abstract: Spinal cord segmentation is the process of identifying and delineating the boundaries of the
spinal cord in medical images such as magnetic resonance imaging (MRI) or computed tomography
(CT) scans. This process is important for many medical applications, including the diagnosis, treatment
planning, and monitoring of spinal cord injuries and diseases. The segmentation process involves using
image processing techniques to identify the spinal cord in the medical image and differentiate it from other
structures, such as the vertebrae, cerebrospinal fluid, and tumors. There are several approaches to spinal
cord segmentation, including manual segmentation by a trained expert, semi-automated segmentation
using software tools that require some user input, and fully automated segmentation using deep learning
algorithms. Researchers have proposed a wide range of system models for segmentation and tumor
classification in spinal cord scans, but the majority of these models are designed for a specific segment
of the spine. As a result, their performance is limited when applied to the entire lead, limiting their
deployment scalability. This paper proposes a novel augmented model for spinal cord segmentation
and tumor classification using deep nets to overcome this limitation. The model initially segments all
five spinal cord regions and stores them as separate datasets. These datasets are manually tagged with
cancer status and stage based on observations from multiple radiologist experts. Multiple Mask Regional
Convolutional Neural Networks (MRCNNs) were trained on various datasets for region segmentation.
The results of these segmentations were combined using a combination of VGGNet 19, YoLo V2, ResNet
101, and GoogLeNet models. These models were selected via performance validation on each segment. It
was observed that VGGNet-19 was capable of classifying the thoracic and cervical regions, while YoLo V2
was able to efficiently classify the lumbar region, ResNet 101 exhibited better accuracy for sacral-region
classification, and GoogLeNet was able to classify the coccygeal region with high performance accuracy.
Due to use of specialized CNN models for different spinal cord segments, the proposed model was able to
achieve a 14.5% better segmentation efficiency, 98.9% tumor classification accuracy, and a 15.6% higher
speed performance when averaged over the entire dataset and compared with various state-of-the art
models. This performance was observed to be better, due to which it can be used for various clinical
deployments. Moreover, this performance was observed to be consistent across multiple tumor types
and spinal cord regions, which makes the model highly scalable for a wide variety of spinal cord tumor
classification scenarios.

Diagnostics 2023, 13, 1417. https://doi.org/10.3390/diagnostics13081417 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13081417
https://doi.org/10.3390/diagnostics13081417
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0003-4395-1343
https://orcid.org/0000-0001-9595-0567
https://orcid.org/0000-0001-7425-3578
https://orcid.org/0000-0002-3141-2900
https://doi.org/10.3390/diagnostics13081417
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13081417?type=check_update&version=1


Diagnostics 2023, 13, 1417 2 of 17

Keywords: spinal; cord; segments; tumor; classification; segmentation; convolutional; neural network;
mask regions

1. Introduction

The spinal cord is a long, thin, tubular bundle of nerve fibers that extends from the
brain down through the vertebral column. It is a part of the central nervous system and
plays a crucial role in relaying information between the brain and the rest of the body. The
spinal cord is protected by the bony vertebral column, which provides both support and
flexibility. The spinal cord is divided into four regions: the cervical region (neck), thoracic
region (upper back), lumbar region (lower back), and sacral region (pelvis). Each of these
regions has a specific set of nerves that control different parts of the body. Injury to the
spinal cord can cause a range of disabilities, depending on the location and severity of the
injury. Some common effects of spinal cord injury include paralysis, loss of sensation, and
loss of bowel and bladder control. Treatments for spinal cord injury include medication,
physical therapy, and surgery, but there is currently no cure for spinal cord injury [1].

Spinal cord segmentation is a medical image analysis task that involves the automatic
or manual delineation of the spinal cord from magnetic resonance imaging (MRI) data.
Accurate segmentation of the spinal cord is essential for many clinical applications, such
as diagnosis, treatment planning, and monitoring of spinal cord diseases and injuries.
Segmentation of the spinal cord can be performed using various techniques, including
manual delineation by experts, threshold-based methods, edge detection, region growing,
clustering, machine learning, and deep learning-based methods [2]. The choice of method
depends on the specific application and the available data. Manual delineation by experts is
considered the gold standard for spinal cord segmentation. However, it is time-consuming,
tedious, and subject to inter- and intra-rater variability. Automated methods based on
image processing and machine learning techniques can provide accurate and reproducible
segmentations in a fraction of the time required for manual delineation. Deep learning-
based methods, in particular, have shown promising results in spinal cord segmentation,
using convolutional neural networks (CNNs) and other deep learning architectures. These
methods are data-driven and can learn complex patterns and features from the MRI data,
enabling them to generalize well to new data and improve segmentation accuracy. Over-
all, spinal cord segmentation is a challenging task that requires a combination of expert
knowledge, image analysis techniques, and machine learning methods. The accurate seg-
mentation of the spinal cord from MRI data has the potential to improve diagnosis and
treatment of spinal cord diseases and injuries. A typical spinal cord image processing
model is depicted in Figure 1, wherein different processing components are integrated
together for final tumor classification.

Detection of the spinal cord using deep learning algorithms is an active area of research
in the field of medical image analysis. Deep learning algorithms are particularly suited to
this task, because they can learn complex patterns in large volumes of data, such as medical
images, and make accurate predictions. There are different approaches to detecting the
spinal cord using deep learning algorithms. One approach is to use convolutional neural
networks (CNNs), which are a type of deep learning algorithm that is commonly used for
image analysis tasks. CNNs are designed to identify patterns in images by analyzing their
local features and spatial relationships. To train a CNN model for spinal cord detection, a
large dataset of spinal cord images is needed. This dataset should include images of the
spinal cord with different orientations, resolutions, and contrast levels. The images can be
obtained from various imaging modalities, such as magnetic resonance imaging (MRI) and
computed tomography (CT). Once the dataset is prepared, the CNN can be trained using
a supervised learning approach. The CNN learns to classify pixels in the image as either
belonging to the spinal cord or not. During training, the CNN adjusts its parameters to
minimize the difference between its predicted outputs and the ground truth labels provided
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in the training dataset. After training, the CNN model can be used to detect the spinal cord
in new images. The CNN model takes an image as input and produces a binary mask that
highlights the pixels that belong to the spinal cord. The mask can be further processed to
extract features of the spinal cord, such as its length, width, and position. Overall, deep
learning algorithms such as CNNs have shown promising results for detecting the spinal
cord in medical images. However, further research is needed to validate the performance
of these algorithms on different datasets and imaging modalities, and to optimize their
parameters for clinical use.
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It can be observed that segmentation, feature extraction and classification are the
major blocks which assist in achieving high-efficiency tumor classification performance [3].
Based on this model flow, a wide variety of spinal cord tumor classification models have
been proposed by researchers, and each of them varies in terms of its applicability and
performance. In [4], the authors used different ML methods including k-nearest-neighbor, a
neural network with radial basis functions, and a naive Bayer classifier to classify vertebral
compression fractures as either benign or malignant on T1-weighted sequences. They
achieved an AUROC of 0.97 in detecting vertebral fractures and of 0.92 in classifying them
as benign or malignant. However, their model was limited by their manual segmentation
process (introducing intra- and interobserver variability) and their individual analysis of
the vertebral bodies, ignoring relevant information such as the presence of epidural masses.
Thomas et al. trained a deep CNN to differentiate between tuberculous and pyogenic
spondylitis on axial T2-weighted MRI images, concluding that the algorithm’s performance
was comparable to that of three radiologists. They suggested that their model could be
used to identify spondylitis as an incidental finding on spine MRI obtained for reasons
other than for the assessment of a suspected infection. However, the DL method used
in the model needs further validation with a larger-scale study that utilizes multiplanar
MR images [5]. The eventual integration of these spinal cord deep learning algorithms
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into routine clinical practice would open the door to potential improvements in diagnostic
sensitivity, treatment monitoring, and patient outcomes, with resultant value added for
both clinicians and our patients.

On the basis of the literature described above, this work proposes a new augmented
model for spinal cord segmentation and tumor classification using deep nets. The proposed
model initially divides each spinal cord image into multiple segments via the MRCNN
model and uses these segments to train an ensemble of CNN classifiers. Each of these
classifiers is responsible for detecting a particular type of tumor, which assists in improving
model scalability and performance. The model initially segments all five spinal cord regions
and stores them as separate datasets. These datasets are manually tagged with cancer status
and stage based on observations from multiple radiologist experts. Multiple Mask Regional
Convolutional Neural Networks (MRCNNs) were trained on various datasets for region
segmentation. The results of these segmentations are combined using a combination of
VGGNet 19, YoLo V2, ResNet 101, and GoogLeNet models. These models were selected
via performance validation on each segment. It was observed that VGGNet-19 was capable
of classifying Thoracic and Cervical regions, while YoLo V2 efficiently classified Lumbar
regions, ResNet 101 showcased better accuracy for Sacral region classification, and Goog-
LeNet classified Coccygeal regions with high accuracy performance. This performance is
evaluated in terms of Peak Signal-to-Noise Ratio (PSNR), accuracy, and delay measures in
Section 4, and compared with various state-of-the-art models. Based on this comparison, it
can be observed that the proposed model is highly scalable for multiple spinal cord regions
and showcases better performance w.r.t. existing classification models. Finally, this text
concludes with some interesting observations about the proposed model and recommends
various methods to further improve its performance.

2. Related Work

A wide variety of models have been proposed for spinal cord processing and clas-
sification, and every one of them has explicit execution. For example, in the work in [5],
limit-based division and Convolutional Neural Network (CNN)-based division models
are portrayed. It can be seen that the edge-based model has limited precision, and must
be physically tuned for each dataset, while the CNN model is autotuned, and has high
division effectiveness, and in this manner can be applied to a wide assortment of datasets.
An examination of such models was discussed in [6], from where it can be seen that AI
techniques beat direct division models, and consequently are profoundly liked for clinical
applications. This model was additionally examined in [7], wherein division repeatability
of thoracic spinal muscle morphology was performed by means of deep learning-based
characterization strategies. A plan of a comparable model was additionally portrayed in [8],
wherein the Statistical Parametric Planning (SPP) structure was depicted. This strategy
has great precision and can be utilized for quite a long time with negligible preparation
exertions on the client side. In any case, these models require huge delays for preparation,
which can be streamlined through utilization of equal handling, or pipelining methods.
An illustration of such a high-speed performance model is proposed in [9–11], in which
scientists utilized a deep learning network with more learning. The fusing of move learn-
ing diminishes cold-start issues, and hence, in general, works on Accuracy, Recall, and
FMeasure execution. Motivated by this perception, the proposed model additionally uti-
lizes move learning to achieve the profoundly effective division of spinal rope symbolism.
Comparatively high-productivity models are proposed in [12–14], wherein the analysts
utilized scientific change-based completely computerized convolutions, vertebrae divi-
sion, and Particle Swarm Optimization (PSO) models to achieve high exactness in low
postpone division and order tasks. The PSO model will, in general, beat other models
because of its minuscule division execution, and capacity to perform order and relapse with
high productivity.

The effectiveness of the assessed models should additionally be assessed on bigger
datasets. Such examination was discussed in [15–17], wherein vertebral estimation, Deep
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Neural Network (DNN) for injury grouping, and Dense Dilated Convolutions (DDC) are
utilized for division and arrangement activities. By displaying different datasets and
using the Finite Element Method (FEM) for the division and inspection of spinal lines,
the models in [18,19] further assist in developing the arrangement and executing the
division. Table 1 shows the main Convolutional Neural Network applications for Deep
segmentation models.

Table 1. Summary of literature.

Reference Technique Dataset Accuracy (%)

[5] CNN Mendeley 80.72

[6] Mask RCNN CSI 2014 93.05

[7] U-Net MRI scans 96.23

[8] SPM Mendeley 88.03

[9] SegNet VerSe2020 93.37

[10] Iterative FCN X-ray images 96.66

[12] DABU-Net
DenseMCW1-Net MRI scans 95.45

[13] CNN MRI scans 88.23

[14] Mask RCNN CSI 2016 96.77

[15] CNN CSI 2016 89.36

[16] DNN Mendeley 96.43

[17] FCN deep probabilistic regression CSI 2016 95.58

[18] CNN CSI 2016 90.48

[19] CNN CSI 2016 92.47

3. Proposed Model

Based on the literature review, it can be observed that a wide variety of machine learn-
ing models have been proposed by researchers for high-efficiency and low-computational-
time spinal cord segmentation and tumor classification scenarios. However, these models
were developed for particular portions of the spine, making them applicable only in a
specific spinal cord segmentation application scenario. To overcome this limitation, a novel
augmented model for spinal cord segmentation and tumor classification using deep nets
is discussed in this section, wherein segmentation results from Multiple Mask Regional
Convolutional Neural Networks (MRCNNs) are combined with VGGNet 19, YoLo V2,
ResNet 101, and GoogLeNet classification models.

Multiple Mask Regional Convolutional Neural Networks (MMRCNN) are a type of
deep learning architecture used for image recognition and object detection tasks. It is an
extension of the popular Faster R-CNN algorithm, which uses a Region Proposal Network
(RPN) to generate region proposals for objects in an image, and a Region of Interest (ROI)
pooling layer to extract features from the proposed regions. MMRCNN improves upon
Faster R-CNN by introducing multiple masks for each region proposal, instead of a single
ROI pooling layer. These masks are used to refine object boundaries and improve the
accuracy of object detection. The network also includes an additional branch for predicting
object masks, which helps in segmentation tasks. In MMRCNN, the RPN generates region
proposals, which are then passed through several convolutional layers to generate features
for each proposed region. These features are then fed into multiple ROI pooling layers,
each of which generates a mask for the proposed region. The resulting masks are combined
to refine the object boundaries, and the final output is a set of object proposals along with
their corresponding masks.
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Each of these models is trained for a particular segment of spinal cord, which assists
in achieving better classification performance. The overall flow of the proposed method is
depicted in Figure 2, wherein different MRCNNs segmentation models are combined with
CNN models to achieve final segmentation. From the flow, it can be observed that a tagged
database of spinal cord images is segmented via different MRCNN models, which assists in
identification of different regions with better segmentation performance. These segmented
images are classified using an augmentation of VGGNet 19, YoLo V2, ResNet 101, and
GoogLeNet classifiers. Data augmentation is a technique used in deep learning to increase
the size of a dataset by generating new samples from existing ones, typically through a
series of random transformations. This technique helps to improve the robustness and
generalization ability of deep learning models by introducing more variations and diversity
into the training data. The results of these classifiers are combined using an aggregation
layer, which assists in the final estimation of spinal cord conditions. These conditions are
validated via a correlation layer, which is used for continuous database update operations.
Due to use of this continuous update layer, the model is capable of incrementally improving
its performance with respect to the number of evaluations.
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Each of these blocks, along with their internal design details are discussed in separate
sub-sections of this text. Researchers can implement these models in part(s) or as a full
system depending upon their application requirements.

3.1. Design of the MRCNN Model for Segmentation of Different Spinal Cord Regions

The input spinal cord images are initially segmented using a MRCNN model that uses
eXplanation with Ranked Area Integrals (XRAI) for region-based analysis. Ranked area
integrals are a type of mathematical technique used to calculate the area under a curve. The
basic idea behind this technique is to divide the region under the curve into small strips
or rectangles, calculate the area of each strip, and then add up the areas of all the strips to
obtain the total area.
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Using the XRAI method, medical images are segmented, and their Regions of In-
terest (RoIs) are extracted from raw images. To perform this task, the entropy for each
pixel is evaluated via convolutional processing and bit plane slicing models. To extract
these features, convolutional operations are performed, which assist in high-variance
feature representation.

A high-variance feature representation refers to a set of features in a dataset that
exhibit a wide range of values or variability. In other words, the values of these features
can vary significantly from one data point to another. High-variance features can be useful
in some machine learning tasks, such as classification or regression, because they may
contain important information for distinguishing between different classes or predicting
an outcome. However, they can also pose challenges, as they may be more susceptible
to overfitting, where a model learns to fit the noise in the training data rather than the
underlying patterns. In this paper, we used this technique to reduce redundancies and
unique values in image features so high variance feature representation is used. Image
pixels are initially processed via an entropy evaluation layer, which estimates energy levels
of pixels. Entropy of images is evaluated via Equation (1), wherein pixel levels and their
logarithmic intensities are averaged to form final image entropy.

E fi
= −

N

∑
r=1

M

∑
c=1

N ∗M

p(Ir,ci) ∗ log
(

1
p(Ir,ci)

) (1)

where p(Ir,ci) represents image pixel value at r, c location, and i represents slice number
of the raw input image. Based on these entropy levels, pixels with values above E fi

are
termed foreground, while others are marked as background and supressed from the output.
This process is performed at slice level, and these slices are combined to form the final
segmented image set. This process is termed Saliency extraction, and an example of it
can be observed in Figure 3, wherein the input image and its corresponding saliency map
are visualized.
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The extracted regions are processed via a Masked Region CNN model, which assists
in classification of each pixel set into different spinal cord segments. Masked Region CNN
(Convolutional Neural Network) is a type of neural network that is designed to process
images or visual data with a particular focus on regions of interest (ROIs) in the image.
It is also known as Mask R-CNN. Mask R-CNN is an extension of Faster R-CNN, which
is a two-stage object detection algorithm that uses a region proposal network (RPN) to
generate candidate regions in an image, followed by a classification and regression network
to classify each region and refine the bounding box coordinates. Mask R-CNN builds on
top of this architecture by adding a third branch to the network that generates a binary
mask for each ROI, indicating which pixels belong to the object and which do not. In
addition to object detection and instance segmentation, Mask R-CNN can also be used
for semantic segmentation by treating each object in the image as a separate class. This
allows the network to assign a semantic label to each pixel in the image, which can be
useful for tasks such as image segmentation and scene understanding. Mask R-CNN
has achieved state-of-the-art results on several benchmark datasets for object detection
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and instance segmentation, and it has been widely adopted in computer vision research
and applications.

The masked RCNN model is depicted in Figure 4, wherein different convolutional
layers, along with their interconnections, are visualized. It can be observed that the
MRCNN Model is trained for different types of spinal cord segments, and then evaluated
at pixel level. Due to which individual Region Proposal Networks (RPNs) are trained and
evaluated for different spinal cord segments. Each RPN layer consists of different inception
and mapping modules, which assist in separating pixels of one segment from others.
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To perform this task, masks for different regions are convoluted with the Saliency
Map image, which assists in obtaining segment-level images. This assists in separating
the input image into different sub-components, which increases the efficiency of the tumor
classification process. The results of RPN are evaluated using Equation (2):

Segout(p) = ∑ log(SM(I) ∗Mask(p)) (2)

where SM(I), and Mask(p) represent the Saliency Map image and the Mask for the current
part of spine segment, respectively. The equation signifies the summation of the Saliency
Map image and the Mask for the current part of spine segment. Due to the complexity of
spinal structures, multiple masks are combined to form the final segmented (Segout) image.
These masks, along with their filter-level concatenation process, can be visualized using
Figure 5, where masks of different shapes and sizes are combined to form the final output
image set.
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The final filter mask can be represented via Equation (3), wherein different smaller sized
masks are combined for each region, which assists in achieving better segmentation performance.

Mask(p) =

√√√√ (a ∗ B(p) + c) ∗
(

P(p)
f + d

)
f

(3)

where a, c, d, and f represent mask-level constants, and can be tuned as per the input
dataset, P(p) and B(p) represent the pixel-level mask and the binary mask for the current
part of the spinal cord. These pixel-level masks are pre-set by the MRCNN model and
are used for the final segmentation process. Multiple RCNN modules are connected
individually, assisting in the extraction of different spinal cord segments. All of these
masks and their generated segments are individually given to different CNN models for
classification of segment level tumors.

3.2. Design of the CNN Model for Tumor Classification

Individual extracted spinal cord segments are given to different CNN models for
tumor classification. During evaluation, it was observed that VGGNet-19 showcased higher
efficiency for the classification of thoracic tumors and cervical-region tumors, YoLo V2
had better performance for lumbar-region tumors, ResNet 101 achieved higher accuracy
for sacral-region tumors, and GoogLeNet performed better for coccygeal-region tumors,
achieving high performance accuracy. A typical CNN model is depicted in Figure 6,
wherein different convolutional operations are cascaded with maximum feature pooling
(Max Pool) and drop-out layers. A Max Pool layer is a type of pooling layer commonly
used in convolutional neural networks (CNNs) for image recognition tasks.

The main function of a max pooling layer is to reduce the spatial dimensionality (i.e.,
the height and width) of the input volume (i.e., the output of a convolutional layer) while
retaining the most important features. It works by sliding a fixed-size window (called
the pooling window or filter) over the input volume and outputting the maximum value
within each window. In this paper, an elaboration of the design of the max pooling layer is
given in order to obtain a clear picture of the convolutional neural network. It works by
sliding a fixed-size window (called the pooling window or filter) over the input volume
and outputting the maximum value within each window.
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To process spinal cord segments, the CNN models extract a large number of convo-
lutional features, which assist in obtaining a high-accuracy image representation of the
input images. Based on these convolutions, different statistical measures including mean,
max, standard deviation, kurtosis, entropy, variance, and correlation coefficient values are
estimated at block level. Thus, each input image segment is divided into different blocks,
and each block is processed by means of windowing and padding constants. An instance
of these convolutions is evaluated in Equation (4), wherein input image pixels are activated
via Leaky ReLU (rectilinear unit) kernels.

Convouti,j =

m
2

∑
a=−m

2

n
2

∑
b=− n

2

LReLU
(m

2
+ a,

n
2
+ b
)
∗ SCcomp(i− a, j− b) (4)

where LReLU, SCcomp represents the Leaky ReLU kernel and the spinal cord component,
respectively, while m, n represent the window size across the rows and columns of the
input image, respectively. These convolutional features are evaluated for each window size
and assist in the estimation of a large number of features. The features extracted from each
convolutional layer of the CNN are checked to reveal some internal working mechanisms
of the CNN and explain the specific meanings of some features. Due to the variation in
different padding, stride, and kernel sizes, this model is able to extract a large number of
features from any spinal cord image. However, with increasing numbers of convolutional
layers, the total number of features extracted per spinal cord segment also increases.

The number of features extracted by these layers is evaluated using Equation (5):

N fextract =
N finput

+ 2 ∗ p− k

s
+ 1 (5)

where N fextract and N finput
represent the extracted and input features for the given convo-

lutional layer, p, k, s represent the padding size used during convolution, the stride size
used during convolution, and the kernel size used during convolution in the current
layer, respectively.

The features extracted from each convolutional layer of the CNN are checked to reveal
some internal working mechanisms of the CNN and explain the specific meanings of some
features. Due to the variations in different padding, stride, and kernel sizes, this model
is able to extract a large number of features from any spinal cord image. However, with
increasing numbers of convolutional layers, the total number of features extracted per
spinal cord segment also increases. To cut these redundant positions, each convolutional
layer is followed by a Max Pool layer. These layers calculate the variance threshold for each
extracted feature set and choose the features with the highest variation levels on the basis
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of this variance threshold. The variance threshold for each Max Pool layer is evaluated
using Equation (6):

fth =

(
∑

x∈Xk

si
xpv

)p−1
v

(6)

where si represents variance for the given feature set, x represents extracted features, and
pv represents the probability of variance for the given feature set.

This probability is tuned during each iteration and assists in achieving better feature
extraction performance. This performance is enhanced through the use of different-sized
convolution layers. In this case, layers with sizes of 3× 3× 512, 7× 7× 256, 16 × 16 × 128,
and 32 × 32 × 64 and 64 × 64 × 32 are used by the CNN models to extract a large number
of highly variant features. These features are processed via a Fully Connected Neural
Network (FCNN), which assists in the identification of tumor classes. The model is able
to differentiate between tumor and non-tumor classes, due to which it is used in binary
classification mode, which assists in achieving higher classification performance when
compared with sparse categorical classifications. To obtain the final class, Equation (7) is
used, wherein a Softmax-based activation layer is deployed to improve feature segregation
into tumor and non-tumor classes. Softmax is a mathematical function that takes a vector
of real numbers as input and returns a probability distribution over the elements of that
vector. It is commonly used in machine learning and deep learning to convert a set of scores
or logits into probabilities that can be used for classification tasks.

Tout = So f tMax

N f

∑
i=1

fi ∗ wi + b

 (7)

where fi represents the values of the extracted convolutional feature vectors, wi represents
weight, b represents bias, and N f represents the total features extracted by the convolutional
layers. Each of these classes is evaluated for the coccygeal, sacral, lumbar, thoracic, and
cervical regions individually. These classes are given to an aggregation layer, which assists
in the identification of the final tumor state for the spinal cord. The design of this layer is
discussed in the next section of this text.

3.3. Design of Aggregation Layer with Correlation Engine for Continuous
Performance Enhancement

The CNN layer assists in the identification of cancer status for different regions of the
spinal cord. These status values are aggregated using Equation (8) to obtain final cancer
spreading probability.

P
(

Cspread

)
=


Tout(Coccygeal) ∗WCoccygeal+

Tout(Sacral) ∗WSacral+
Tout(Lumbar) ∗WLumbar+
Tout(Thoracic) ∗WThoracic+

Tout(Cervical) ∗WCervical


5

(8)

where Wi represents the weight of the current spinal cord segment, and is estimated
using Equation (9):

Wi =
Li

∑5
j=1 Lj

(9)

where Li represents approximate length of spinal cord region for the given patient, and is
estimated using Equation (10):

Li =
Npi

∑5
l=1 Npl

(10)
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where Npl represents the count of the total number of pixels for a given spinal cord segment.
On the basis of this evaluation, the probability of cancer spread across the entire spinal
cord is evaluated. These results are correlated with the actual spread probability values (C)
using Equation (11):

C =
∑N

i=1 Pactuali − Pobtainedi√
∑N

i=1
(

Pactuali − Pobtainedi

)2
(11)

where Pactual , and Pobtained represent the actual and obtained values of probability, while N
represents the total number of images used to perform this evaluation. If correlation with
the actual spread probability value is greater than 0.999, then this image of the spinal cord
regions is added to the training set, on the basis of which the model is able to continuously
improve its performance in terms of both accuracy and precision. Estimation of this
performance is discussed in the next section of this paper, wherein the performance of the
proposed model is compared with various state-of-the-art approaches.

4. Results and Comparison

In order to estimate the classification performance of the proposed NAMSTCD model,
spinal cord images from multiple Mendeley datasets and their ground truth images were
used. These data were obtained from https://data.mendeley.com/datasets/zbf6b4pttk/2
(accessed on 25 December 2022) [20] and are freely available under an open-source license.
The dataset was evaluated using the proposed NAMSTCD model, and the values for
segmentation peak signal-to-noise ratio (PSNR), classification accuracy, and computational
delay were evaluated and compared with the values obtained using CNN [5], SPM [8], and
DNN [16]. The classification accuracy was evaluated using Equation (12), as follows:

A =
Ncorrect

Ntotal
∗ 100 (12)

where N_correct and N_total represent the total number of correctly classified images and
the total number of rated images, respectively. The entire dataset of 5000 images was
split 60:10:30 for training, validation and testing, respectively. The accuracy is listed
in Table 2, below.

From Table 3 and Figure 7, it can be observed that the proposed model has an accuracy
that is 18.1% better than that of CNN [5], 10.5% better than that of SPM [8], and 2.3% better
than that of DNN [16] on the same dataset.

This suggests that the proposed model is highly efficient for large-scale deployments
and can be used in real-time clinical classification applications. Similarly, the PSNR during
segmentation was evaluated for CNN [5], SPM [8] and DNN [16], and compared with the
values obtained for the proposed model; these values are shown in Table 3, below.

It can be seen from Table 3 and Figure 8 that the proposed model presents an improve-
ment in PSNR of 14.6 dB compared to CNN [5], an improvement of 10.5 dB over SPM [8]
and an improvement of 3.4 dB over DNN [16] on the same dataset. This improvement in
PSNR is due to the combination of XRAI and MRCNN, which helps to perform fine-tuned
segmentation. This suggests that the proposed model is highly efficient for large-scale
deployment and can be used to perform real-time clinical segmentation.

Similarly, the computational delay during classification was evaluated for CNN [5],
SPM [8] and DNN [16], and compared with the proposed model. Using MATLAB 2019 b,
the computational delay was taken into account. These values are shown in Table 4, below.

It can be seen from Table 4 and Figure 9 that the proposed model has a computational
delay that is 25.1% lower than CNN [5], 31.4% lower delay than SPM [8] and 39.3% lower
than DNN [16] on the same data set. This reduction in computational delay is due to
the combination of XRAI and MRCNN, which helps to achieve fine-tuned segmentation,
thereby reducing the overall computational delay arising from classification and post-
processing operations.

https://data.mendeley.com/datasets/zbf6b4pttk/2
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Table 2. Percentage accuracy of image classification using different models.

Number of Images
Accuracy (%)

CNN [5] SPM [8] DNN [16] NAMSTCD

35 79.39 81.11 91.72 94.11
70 79.44 82.26 92.40 94.82

103 79.47 82.95 92.81 95.23
138 79.52 83.84 93.35 95.78
172 79.58 84.84 93.95 96.41
207 79.64 85.58 94.41 96.88
241 79.69 85.84 94.59 97.06
276 79.73 85.92 94.66 97.13
310 79.78 86.00 94.73 97.21
345 79.83 86.13 94.84 97.31
517 79.88 86.25 94.93 97.41
690 79.93 86.35 95.01 97.49
862 79.98 86.45 95.10 97.58

1034 80.03 86.56 95.19 97.68
1207 80.08 86.66 95.28 97.77
1379 80.13 86.77 95.37 97.86
1552 80.18 86.87 95.45 97.95
1724 80.23 86.98 95.54 98.04
1897 80.28 87.08 95.63 98.13
2069 80.33 87.19 95.72 98.22
2414 80.37 87.29 95.81 98.31
2759 80.43 87.40 95.89 98.41
3103 80.48 87.51 95.98 98.49
3448 80.53 87.61 96.07 98.58
3793 80.57 87.72 96.16 98.67
4138 80.63 87.82 96.25 98.76
4483 80.67 87.93 96.34 98.86
5000 80.72 88.03 96.43 98.95

Table 3. PSNR of segmentation using different models.

Number of Images
PSNR (dB)

CNN [5] SPM [8] DNN [16] NAM STCD

35 31.76 33.25 41.27 45.17
70 31.77 33.73 41.58 45.51

103 31.78 34.01 41.76 45.71
138 31.81 34.37 42.01 45.97
172 31.83 34.78 42.28 46.27
207 31.86 35.09 42.48 46.50
241 31.88 35.20 42.56 46.59
276 31.89 35.23 42.59 46.63
310 31.92 35.26 42.63 46.66
345 31.94 35.32 42.68 46.71
517 31.95 35.36 42.72 46.76
690 31.97 35.40 42.76 46.80
862 31.99 35.44 42.79 46.84

1034 32.01 35.48 42.83 46.88
1207 32.03 35.53 42.87 46.93
1379 32.05 35.57 42.92 46.97
1552 32.07 35.62 42.96 47.02
1724 32.09 35.66 42.99 47.06
1897 32.11 35.71 43.03 47.11
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Table 3. Cont.

Number of Images
PSNR (dB)

CNN [5] SPM [8] DNN [16] NAM STCD

2069 32.13 35.75 43.07 47.15
2414 32.15 35.79 43.12 47.19
2759 32.17 35.83 43.16 47.23
3103 32.19 35.87 43.19 47.27
3448 32.21 35.92 43.23 47.32
3793 32.23 35.96 43.27 47.37
4138 32.25 36.00 43.32 47.41
4483 32.27 36.05 43.35 47.45
5000 32.29 36.27 43.50 47.62
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Table 4. Computational delay of different models.

Number of Images
Computational Delay (s)

CNN [5] SPM [8] DNN [16] NAM STCD

35 16.84 17.37 20.00 10.00
70 27.89 28.95 33.16 16.75

103 38.95 41.05 46.84 23.50
138 50.00 53.16 60.53 30.50
172 61.58 65.79 74.74 37.50
207 72.63 78.42 88.95 44.25
241 83.68 90.53 102.63 51.00
276 94.74 103.16 116.32 58.00
310 105.79 115.26 130.53 65.00
345 139.47 151.58 172.11 85.50
517 195.79 212.63 241.05 119.75
690 252.11 273.68 310.00 154.25
862 307.89 335.26 378.95 188.75

1034 364.21 396.84 448.42 223.25
1207 420.53 458.42 517.89 257.75
1379 476.84 520.00 587.37 292.25
1552 533.16 581.58 657.37 327.00
1724 589.47 643.68 727.37 361.75
1897 646.32 705.79 797.37 396.50
2069 731.05 798.95 902.11 448.75
2414 843.68 923.16 1041.58 518.25
2759 956.84 1047.37 1181.58 588.00
3103 1070.53 1172.11 1322.11 657.75
3448 1183.68 1297.37 1462.63 727.50
3793 1296.84 1422.63 1603.16 797.75
4138 1410.53 1547.89 1744.21 868.00
4483 1552.63 1704.74 1920.53 955.50
5000 1489.79 1634.74 1842.18 916.44
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These improvements make the proposed model useful for a wide range of real-time
clinical classification applications. It also identifies the likelihood of tumor spread, which
further helps to improve its scalability and applicability to a wide range of clinical scenarios.

5. Conclusions

The proposed NAMSTCD model uses MRCNN-based segmentation in combination
with CNN classification to assist in region-based image extraction and cancer probability
analysis. The model also uses a continuous learning mechanism that helps to gradually
improve the classification performance. Due to these characteristics, the proposed model is
able to achieve a classification accuracy of 98.95%, a segmentation PSNR of 47.62 dB, and
a delay of less than 900 s for input sets with a large number of images. This performance
was compared with various state-of-the-art models, and it was observed that the proposed
model had an accuracy that was 18.1% better than CNN [5], 10.5% better than SPM [8] and
2.3% better than DNN [16] on the same dataset. It also demonstrated an improvement in
PSNR of 14.6 dB compared to CNN [5], an improvement of 10.5 dB compared to SPM [8]
and an improvement of 3.4 dB over DNN [16], with a delay 25.1% lower than CNN [5],
31.4% lower than SPM [8] and 39.3% lower than DNN [16] on the same dataset. This
improvement was achieved through the development of better segmentation, classification
and post-processing model designs. In the future, researchers can verify the performance of
this model on other datasets, which will help to estimate its scalability and applicability to a
wider range of images. In addition, researchers can also replace CNN models with recurrent
NN (RNN) models to further improve classification the capabilities for larger datasets. This
will help achieve better deployment performance for different clinical scenarios.
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