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Abstract: There are different breast cancer molecular subtypes with differences in incidence, treatment
response and outcome. They are roughly divided into estrogen and progesterone receptor (ER and PR)
negative and positive cancers. In this retrospective study, we included 185 patients augmented with
25 SMOTE patients and divided them into two groups: the training group consisted of 150 patients
and the validation cohort consisted of 60 patients. Tumors were manually delineated and whole-
volume tumor segmentation was used to extract first-order radiomic features. The ADC-based
radiomics model reached an AUC of 0.81 in the training cohort and was confirmed in the validation
set, which yielded an AUC of 0.93, in differentiating ER/PR positive from ER/PR negative status.
We also tested a combined model using radiomics data together with ki67% proliferation index and
histological grade, and obtained a higher AUC of 0.93, which was also confirmed in the validation
group. In conclusion, whole-volume ADC texture analysis is able to predict hormonal status in breast
cancer masses.

Keywords: ADC; radiomics; prediction; receptor; breast cancer

1. Introduction

Nowadays, it is widely accepted that breast cancer is a multifactorial disease driven
by genetic changes and traditional classifications based on tumor histology, size, grade and
receptor status no longer capture all its characteristics. Gene expression profiling (GEP)
revealed four main intrinsic molecular breast cancer subtypes with differences in incidence,
treatment response, outcome and prognosis [1–3]. However, GEP is expensive and not
widely available. Immunohistochemistry (IHC) procedures using protein expression have
been employed as a method for subtyping breast cancer in clinical practice [4]. IHC
describes surrogate breast cancer subtypes classified based on the presence or absence
of estrogen (ER) and progesterone (PR) receptors, ki67% proliferation index and HER2
status. The five surrogate subtypes consist of luminal A and luminal B (HER2 negative and
HER2 positive), which are positive for ER and/or PR, HER2 positives, which are negative
for ER/PR and triple negative, ER/PR and HER2 negative. The latter use estrogen and
progesterone receptor status and ki67% proliferation index to differentiate between the five
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types of cancers and do not rely on the genetic method. IHC has been widely accepted
because it is faster and more cost-effective. However, IHC analysis can be limited, first, as
biopsy captures only a small part of the breast tumor, and second, because high variability
was reported across different laboratories when reporting receptor status [5,6].

The emerging field of radiomics relies on extracting imaging features that human eyes
are not able to assess or quantify. Previous breast cancer studies which used radiomics
to predict molecular subtypes were primarily focused on dynamic contrast-enhanced
MRI (DCE-MRI) [7–11]. Less is known about radiomic features derived from diffusion-
weighted imaging (DWI) with apparent diffusion coefficient (ADC). Furthermore, the
results reported for the last method are still inconclusive, with some authors reporting
lower ADC values and positive correlations with molecular subtypes, but with modest
AUCs of 0.68–0.718 [12–14], and other authors reporting no correlation with pathology
characteristics [15]. The conflicting results may be due to different acquisition techniques
(different b-values), different segmentation techniques (single/multiple region-of-interest
(ROI) versus whole-volume ADC) and small sample sizes. Furthermore, due to the recent
concerns about the safety of gadolinium-based contrast agents, there is an increasing
interest in developing unenhanced MRI techniques that are able to characterize breast
cancer masses [16].

Our study aims to assess the diagnostic performance of radiomic features extracted
from whole-tumor ADC texture analysis using standardized DWI acquisition in order to
predict breast cancer receptor status and molecular subtypes.

2. Materials and Methods
2.1. Patients

This retrospective study was approved by the Institutional Ethics Committee
(NR10/15092022, from 15 September 2022) and the need for informed consent was waived.
We included patients with breast cancer (regardless of disease stage) who presented to our
clinic (MBC) from January to September 2022. All patients underwent breast MRIs prior to
any treatment with a standardized protocol consisting of DWI/ADC, T1/T2WI and DCE
sequences. Clinical data and pathology reports were also retrieved from the system and
reviewed for the study.

Exclusion criteria were patients with inadequate or incomplete MR images and pathol-
ogy and immunohistochemistry reports. A total of 185 patients were included in the study,
together with an additional 25 patients from the SMOTE augmentation method (Figure 1).

2.2. Pathology and Immunohistochemistry Reports

All patients underwent a core-needle biopsy evaluation by pathologists using immuno-
histochemical (IHC) analyses. Pathology data were retrieved from the medical records,
and tumor type (“no special type” (NST) or special types such as mucinous or medullary)
and IHC characteristics ER, PR and HER2 status and ki67% proliferation index. ER and PR
status were recognized as positive if at least 1% positive tumor nuclei were present in the
sample, otherwise they were deemed negative. Ki67 expression level ≥20% was defined
as high, otherwise it was defined as low. Human epidermal growth factor (HER2) status
was considered positive if IHC showed 3+, otherwise the fluorescence in situ hybridization
(FISH) test was used to check HER2/neu gene status.



Diagnostics 2023, 13, 1414 3 of 12
Diagnostics 2023, 13, x FOR PEER REVIEW 3 of 13 
 

 

 
Figure 1. Study population. 

2.2. Pathology and Immunohistochemistry Reports 
All patients underwent a core-needle biopsy evaluation by pathologists using im-

munohistochemical (IHC) analyses. Pathology data were retrieved from the medical rec-
ords, and tumor type (“no special type” (NST) or special types such as mucinous or me-
dullary) and IHC characteristics ER, PR and HER2 status and ki67% proliferation index. 
ER and PR status were recognized as positive if at least 1% positive tumor nuclei were 
present in the sample, otherwise they were deemed negative. Ki67 expression level ≥20% 
was defined as high, otherwise it was defined as low. Human epidermal growth factor 
(HER2) status was considered positive if IHC showed 3+, otherwise the fluorescence in 
situ hybridization (FISH) test was used to check HER2/neu gene status. 

2.3. MR Acquisition 
All MRI examinations were performed using two 1.5 Tesla MRI machines (Siemens 

Magnetom Symphony TIM and Altea) with a dedicated 18-channel phased-array breast 
coil as a receiver. 

The breast MRI protocol included five sequences. The DWI sequence was a 2D, sin-
gle-shot, dual spin echo-planar sequence with standardized parameters of TR 4870 ms 
and minimum TE, with a flip angle of 90°. We used a 192 × 192 acquisition matrix for DWI 
sequence with a FOV of 38 cm, a slice thickness of 4 mm and a slice gap between 0 and 1 
mm. The acquisition time was approximately 2 min for 5 b-values of 0, 200, 400, 600 and 
800. We automatically calculated ADC-derived maps using the method provided by the 
vendor. All breast MRIs included a nonenhanced T1WI, T2WI sequence with a resolution 
of 0.6 mm × 0.6 mm, a slice thickness of 2 mm and TIRM sequence. Dynamic contrast-
enhanced (DCE) images were obtained using a T1WI vibe fat sat dynamic sequence with 
a nonenhanced and five post-contrast phases after gadolinium administration. The DCE 
sequence parameters were as follows: TR = 4.66 ms, TE = 2.3 ms, slice thickness of 1,3 mm, 
with a gadolinium dose of 0.2 mL/kg and a debit of 3 mL/s. 

2.4. Tumor Segmentation and Radiomic Feature Extraction 
Whole-tumor segmentation and radiomic feature extractions from ADC maps were 

performed using the publicly available 3D Slicer Software (version 4.10.2, available at: 
https://www.slicer.org/, accessed on 11 March 2023). One breast radiologist (M.S.) with 
more than 7 years of experience performed all the segmentations. The segmented area 
corresponded to the tumor drawn directly along the visible tumor margins on the ADC 
maps. DCE-MRI was used to confirm tumor localization in cases that were equivocal on 

Figure 1. Study population.

2.3. MR Acquisition

All MRI examinations were performed using two 1.5 Tesla MRI machines (Siemens
Magnetom Symphony TIM and Altea) with a dedicated 18-channel phased-array breast
coil as a receiver.

The breast MRI protocol included five sequences. The DWI sequence was a 2D, single-
shot, dual spin echo-planar sequence with standardized parameters of TR 4870 ms and
minimum TE, with a flip angle of 90◦. We used a 192 × 192 acquisition matrix for DWI
sequence with a FOV of 38 cm, a slice thickness of 4 mm and a slice gap between 0 and
1 mm. The acquisition time was approximately 2 min for 5 b-values of 0, 200, 400, 600 and
800. We automatically calculated ADC-derived maps using the method provided by the
vendor. All breast MRIs included a nonenhanced T1WI, T2WI sequence with a resolution
of 0.6 mm × 0.6 mm, a slice thickness of 2 mm and TIRM sequence. Dynamic contrast-
enhanced (DCE) images were obtained using a T1WI vibe fat sat dynamic sequence with
a nonenhanced and five post-contrast phases after gadolinium administration. The DCE
sequence parameters were as follows: TR = 4.66 ms, TE = 2.3 ms, slice thickness of 1.3 mm,
with a gadolinium dose of 0.2 mL/kg and a debit of 3 mL/s.

2.4. Tumor Segmentation and Radiomic Feature Extraction

Whole-tumor segmentation and radiomic feature extractions from ADC maps were
performed using the publicly available 3D Slicer Software (version 4.10.2, available at:
https://www.slicer.org/, accessed on 11 March 2023). One breast radiologist (M.S.) with
more than 7 years of experience performed all the segmentations. The segmented area
corresponded to the tumor drawn directly along the visible tumor margins on the ADC
maps. DCE-MRI was used to confirm tumor localization in cases that were equivocal on
DWI alone. Artifacts have always been excluded from segmentation and a distance of at
least 2 mm from the metal clips marker was maintained. Radiomic analysis included the
calculation of features derived from first-order histogram (Figure 2).

2.5. Statistical Analysis

Statistical analysis was conducted using MedCalc (version 19.2.6, Ostend, Belgium)
and R software version 3.6.3. Univariate analysis using the Mann–Whitney U-test identified
statistically significant differences in features between the ER/PR positive and ER/PR
negative groups. Statistically significant features were further included in the multivariate
analysis, using binary logistic regression (enter method) to identify independent predictors
of ER/PR status and to build the radiomics model. We considered p values < 0.05 as
statistically significant. Further, pathological and IHC data were added to the radiomics
model in order to obtain a combined model. The ROC (receiver operating characteristic)

https://www.slicer.org/
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curve with derived AUC (area under the curve), sensitivity, specificity and accuracy were
used to evaluate the performance of individual radiomics features, radiomics score and
combined radiomic model for the prediction of ER/PR status in both training and validation
sets. Comparisons of the ROC curves were conducted using the DeLong method.
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Figure 2. Breast tumor segmentation: A 34-year-old patient with ER/PR/HER2 negative (triple
negative) breast cancer mass, segmented on axial (A), coronal (B) and sagittal (C) ADC images. The
whole-tumor volume is highlighted in image (D).

3. Results
3.1. Patient Characteristics

Synthetic Minority Oversampling Technique (SMOTE) was used to improve random
oversampling and to augment the 185 patients with 25 more patients. A total of 210 patients
(mean age 46.3) were included in the study. The patients were randomly divided into
training (150 patients) and validation (60 patients) groups, in a 3:1 ratio. In the training
group, 84 (56%) patients were ER/PR positive and 66 (44%) were ER/PR negative, while in
the validation group, 29 (48%) patients were ER/PR negative and 31 (52%) were ER/PR
positive. Patient characteristics, pathology and IHC data are summarized in Table 1. In the
training group, pathology tumor type, histological grade and ki67% proliferation index
values were significantly different between ER/PR negative and ER/PR positive patients,
and this was confirmed in the validation dataset.

3.2. Feature Selection and Radiomics Score Construction: Training Set

A total of 18 radiomic features were extracted from the ADC images of each tu-
mor/patient using MEdCalc. To develop the radiomics model, we started by performing
univariate analyses of individual radiomic features between the ER/PR positive and ER/PR
negative groups. We selected 14 features with p-value < 0.05 for the next step (Appendix A:
Table A1).

We constructed the radiomics scores by including the 14 radiomics features and their
coefficients in a multivariate logistic regression analysis (Appendix A: Table A2). We added
ki67%, pathology tumor type and histological grade to the radiomics model in order to
obtain a combined model.

Individual radiomic features gave an AUC between 0.59–0.78, while the radiomics
model reached an AUC of 0.81, with a sensitivity of 76% and a specificity of 72%
(p-value < 0.0001) in differentiating ER/PR positive and negative tumors. The combined
radiomics–pathologic model gave a higher AUC of 0.93, a sensitivity of 78% and a speci-
ficity of 95% (p-value < 0.0001), and the difference between ROC curves was statistically
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significant (p-value < 0.0001, 95% CI 0.066-0.18, Std error of 0.03), as shown in Figure 3. The
diagnostic performance of all radiomics features and the radiomics and combined model
are summarized in Table 2.

Table 1. Clinical, pathological and IHC characteristics of the study population.

Variable Training Group Validation Group

ER/PR −
(n = 66)

ER/PR +
(n = 84) p-Value ER/PR −

(n = 29)
ER/PR +
(n = 31) p-Value

Age 44.87 ± 8.60 47.16 ± 8.48 0.09 44.37 ± 9.05 49.32 ± 8.88 0.03

Size 17.59 ± 4.39 17.25 ± 5.49 0.63 29.37 ± 15.56 14.41 ± 4.14 <0.001

Pathology
0.04 0.73NST 1 64 69 27 27

Other 2 15 2 4

Ki67% 50.69 ± 25.89 26.16 ± 21.24 <0.001 60.89 ± 25.89 18.96 ± 18.05 <0.001

HER2
0.18 0.78positive 2 8 4 4

negative 64 76 25 27

Histological
grade

<0.001 <0.0011 2 29 1 13
2 4 37 4 15
3 60 18 24 3

1 NST = No special type, e.g., invasive carcinoma; other = invasive carcinoma with special features such as
mucinous, medullar, papillary, lobular.
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Table 2. Diagnostic performance of radiomics features, radiomics model and combined model at
predicting ER/PR positive tumors from negative tumors.

Variable Cut-Off Value AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

10th Percentile ≤764.4 0.716 (0.636–0.786) 60.71 (49.5–71.2) 74.24 (62.0–84.2) 75.0 (63.0–84.7) 59.8 (48.3–70.4)
90th Percentile ≤1389.8 0.763 (0.687–0.829) 89.29 (80.6–95.0) 54.55 (41.8–66.9) 71.4 (61.8–79.8) 80.0 (65.4–90.4)

Energy ≤94,304,540 0.634 (0.552–0.711) 83.33 (73.6–90.6) 39.39 (27.6–52.2) 63.6 (53.9–72.6) 65.0 (48.3–79.4)
Interquartile Range ≤264.25 0.639 (0.557–0.716) 73.81 (63.1–82.8) 60.61 (47.8–72.4) 70.5 (59.8–79.7) 64.5 (51.3–76.3)

Maximum ≤1377 0.731 (0.652–0.800) 57.14 (45.9–67.9) 83.33 (72.1–91.4) 81.4 (69.1–90.3) 60.4 (49.6–70.5)
Mean ≤1015 0.766 (0.690–0.832) 76.19 (65.7–84.8) 66.67 (54.0–77.8) 74.4 (63.9–83.2) 68.7 (55.9–79.8)

Mean Absolute
Deviation ≤122.1356 0.667 (0.585–0.741) 50.00 (38.9–61.1) 78.79 (67.0–87.9) 75.0 (61.6–85.6) 55.3 (44.7–65.6)

Median ≤997 0.766 (0.690–0.832) 71.43 (60.5–80.8) 72.73 (60.4–83.0) 76.9 (66.0–85.7) 66.7 (54.6–77.3)
Range ≤874 0.665 (0.584–0.740) 60.71 (49.5–71.2) 69.70 (57.1–80.4) 71.8 (59.9–81.9) 58.2 (46.6–69.2)

Robust Mean
Absolute Deviation ≤105.75 0.624 (0.541–0.702) 69.05 (58.0–78.7) 54.55 (41.8–66.9) 65.9 (55.0–75.7) 58.1 (44.8–70.5)

Root Mean Squared ≤1037.9215 0.780 (0.705–0.844) 77.38 (67.0–85.8) 71.21 (58.7–81.7) 77.4 (67.0–85.8) 71.2 (58.7–81.7)
Total Energy ≤502,487,200 0.649 (0.567–0.725) 46.43 (35.5–57.6) 80.30 (68.7–89.1) 75.0 (61.1–86.0) 54.1 (43.7–64)
Uniformity >0.0455 0.596 (0.513–0.675) 89.29 (80.6–95.0) 28.79 (18.3–41.3) 61.5 (52.2–70.1) 67.9 (47.6–84.1)

Variance ≤42,112.37 0.677 (0.595–0.751) 70.24 (59.3–79.7) 59.09 (46.3–71.0) 68.6 (57.7–78.2) 60.9 (47.9–72.9)
Radiomics Model >0.5699 0.811 (0.739–0.870) 76.19 (65.7–84.8) 72.73 (60.4–83.0) 78.0 67.5–86.4 70.6 (58.3–81.0)
Combined Model >0.6631 0.938 (0.887–0.971) 78.57 (68.3–86.8) 95.45 (87.3–99.1) 95.7 (87.8–99.1) 77.8 (67.2–86.3)

3.3. Testing the Radiomics and Combined Model: Validation Set

We repeated the multivariate analysis using the validation set (Appendix A: Table A2).
The performance of the radiomics model in predicting ER/PR status in breast cancer
patients was confirmed using the validation set, yielding an AUC of 0.93 (95% CI, 0.84–0.98,
std error of 0.02) (Figure 4).
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In the training group, we obtained a cut-off value of 0.56; however, the validation
group reached a sensitivity of 83.87 (95% CI: 66.3–94.5), a specificity of 93.18 (95% CI:
77.2–99.2), PPV of 92.9 (95% CI: 76.5–99.1) and NPV of 84.4 (95% CI: 67.2–94.7).

The performance of the combined model at predicting ER/PR-positive breast cancer
patients was higher in the validation set, yielding an AUC of 1.00 (95% CI: 0.94–1.00).
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4. Discussion

The present study aimed to assess the value of ADC texture analysis in predicting
the ER/PR status of breast cancer. We observed that radiomic features performed well at
differentiating ER/PR positive from ER/PR negative tumors.

The differences in incidence, response to treatment, outcome and prognosis of different
types of breast cancers make this a topic of increasing interest even today, more than 15 years
after their intrinsic, genetic definition. Genetic tests are not widely available and still remain
expensive, and IHC has a high percentage of variability, especially in reporting hormonal
status (ER and PR), thus more and more studies are focusing on the role of imaging in
predicting breast cancer molecular status.

Furthermore, radiomics of data extracted from breast ultrasound images showed
promising results in differentiating ER/PR negative tumors from ER/PR positive tumors.
The AUC reached 0.83, with a sensitivity of 69% and a specificity of 91.4% in predicting
triple-negative breast cancer (ER/PR/HER2 negative) [17]. We obtained a higher accuracy
(AUC 0.98), explained by the fact that we used MR images. It is well known that MR images
have better resolution, thus more features can be extracted.

With the increasing use of breast MRIs, authors have focused more on predicting
hormonal status from MR images. Studies analyzing DCE-MRI values such as Ktrans,
Ve—volume of extravascular leakage space—or Kep—diffusion of contrast medium back
to plasma)—reported contradictory results, with some authors reporting associations with
ER/PR status and other authors failing to identify a surrogate marker for predicting
hormone receptor status [18,19]. In addition, Ktrans and Kep are difficult and laborious to
calculate and may require special processing software.

Radiomics based on DCE-MRI images reported highly variable AUCs (0.73–0.85) when
predicting ER-positive status using a method that based on multiple intra-and peri-tumoral
region-of-interest (ROI) [10]. The high variability in AUC values could be explained
precisely by the use of ROI and not the entire tumor volume. Intratumoral heterogeneity
is well known, with cystic, necrotic and hemorrhagic areas altering ADC data. While
recent bleeding may contribute to lower values, cystic areas (necrotic or special tumors
e.g., mucinous type) may have higher ADC values, even benign. Ideally, only solid, viable
tumor parts should be included in the analysis, but here too are discussions (how large
the ROI should be and where it should be placed) and the lack of standardization makes
this almost impossible. Thus, analyzing the whole tumor is the best option that provides a
more realistic value.

One unsupervised model based on DCE-MR was able to identify three novel breast
cancer subtypes with distinct clinical outcomes and biological characteristics [11], but the
fact that these were not perfectly matched with known molecular subtypes makes the study
of limited clinical applicability. Furthermore, in terms of histology and IHC parameters,
only ki67% was positively correlated with these novel subtypes.

However, the recent controversy about the safety of gadolinium-based contrast agents [16]
has further prompted researchers to analyze the role of non-contrast sequences such as DWI
and ADC.

Several studies assessed 2D ROIs on ADC maps to predict breast cancer molecular
subtypes. HER2-positive tumors had higher ADC means compared with HER2-negative
tumors, but with a modest AUC of only 0.605. The same authors reported no statistically
significant differences between ER/PR positive and negative tumors in the quantitative
histogram analysis based on ADC maps and in the qualitative visual assessment of DWI
heterogeneity [20]. Our study observed a difference between negative and positive ER/PR,
results that could be explained by the larger number of patients (165 versus 91) and the
inclusion of the entire tumor volume (3D versus 2D). We chose not to qualitatively assess
tumor heterogeneity on DWI precisely because of the high risk of non-reproducibility.

One study where tumors were segmented on DWI and segmentation ROIs were
propagated onto ADC maps reported high accuracy in predicting hormonal status and
some molecular types such as luminal B [21,22]. In addition, Leithner et al. [21] reported
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better results when first-order histogram parameters were obtained from ADC maps.
However, due to the small number of patients in the above-mentioned study, the tumors
were segmented on only one slice (with the largest tumor diameter) and the small number
of patients prevented them from having a training group and a validation group.

In our study, the radiomics model was built on the training group and tested on an
independent validation group. In addition, the breast tumors were segmented in 3D; thus,
we obtained a whole-tumor volume from which we extracted radiomics data. The AUC
of the radiomics model reached an AUC of 0.81 in the training cohort and was confirmed
in the validation set, yielding an AUC of 0.92. We also tested a combined model based
on radiomics data together with Ki67% proliferation index and histological grade and
obtained a higher AUC of 0.93, which was also confirmed in the validation group. We
chose not to analyze all five molecular subtypes, as a much larger number of patients is
needed to obtain meaningful results. In addition, breast cancer treatment is guided by the
presence or absence of hormone receptors (hormonal treatment) and there are no treatment
guidelines focused strictly on the molecular subtypes of breast cancer. Their importance
lies particularly in their impact on prognosis.

Other authors reported combined models using whole-tumor histogram (ADC90) with
margins and enhancement in differentiating triple-negative breast cancers (ER/PR/HER2-
negative) from other subtypes, with an AUC of 0.83 [23]. The lower AUC could be explained
by the smaller study population or the addition of HER status to the analysis.

Consistent with our study, it was reported that the whole-volume apparent diffusion
coefficient (ADC) histogram correlated with ki67% expression in breast masses [24]. How-
ever, the study focused on the benign–malignant differentiation of breast masses and not
on different types of breast cancers, thus the study of ER and PR receptors was not possible.
In addition, the ki67% proliferation index and histological grade do not have such a high
variability compared with hormonal status (ER and PR); however, the former could still be
used in combined models to further increase diagnostic accuracy.

There are limited studies that have included more than two molecular types of breast
cancers in their analysis. Fan M. et al. extracted data from the tumor and the peritumoral
stroma [14] and generated combined models from all regions. They achieved an overall
AUC of 0.80 in the classification of four tumor subtypes: luminal A, luminal B, HER2
enriched and triple-negative basal-like.

Encouraging results have been reported in the use of other imaging methods in the
diagnosis and characterization of breast tumors, suggesting the potential clinical value
of mammography-based radiomics. However, in a recently published scoping review
in which predicting breast cancer characteristics with radiomics is included, the final
conclusion was that further efforts are required to standardize radiomics and select relevant
mammographic radiomic features [25].

As regards contrast-enhanced spectral mammography (CESM), La Forgia et al. ex-
tracted histogram and texture parameters from 68 lesions on CESM and, using a multivari-
ate linear discriminant analysis, found that for the tasks to differentiate ER status, PR status,
Ki67, grade, TNBC status, and HER status, AUC values of 83.79%, 75.50%, 84.80%, 79.85%,
76.80%, and 90.89%, respectively, had to be achieved [26]. In another study conducted by
Marino et al., tumor features extracted from CESM were classified using a machine learning
classification method with the aim of characterizing breast lesions. The authors showed
in their retrospective study of 103 breast cancer samples that radiomics analysis of CESM
was able to differentiate invasive from non-invasive tumors and to define their hormone
receptor status and tumor grades [27]. A recently published study by Dominique C et al.
goes a step further and evaluates a deep learning model based on CESM to determine
the receptor status and molecular type of breast cancer. The model was able to identify
ER, but not PR, status. Furthermore, the models developed in this study seem to take
their decision on the ring of the dual-energy subtracted images (DES) and the ill-defined
or spiculated margins of the low-energy (LE) images even though the results obtained
from the LE images were comparable to the full field digital mammography, while those
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obtained from the DES images were globally similar, with no obvious improvement in the
results obtained by combining them with the majority voting system. Furthermore, the
authors raise an interesting question regarding the need for contrast in selected patients
(such as those with triple-negative tumors) [28].

It is well known that MRI has a higher sensitivity in detecting breast cancer compared
with mammography, independent of tumor histology, tumor grading, single receptor status
and molecular subtype [29]. However, there are no studies comparing radiomics data
extracted from mammograms or MRIs.

The Androgen Receptor (AR) is emerging as an important factor in the pathogenesis
of breast cancer (BC) and represents the latest addition to the worldwide IHC panel. AR is
expressed in 70–90% of breast cancer cases, but its function seems to vary among different
breast cancer subtypes [30]. The fact that AR inhibitors have recently been approved for
the treatment of prostate cancer and could be a therapeutic tool for certain subgroups of
breast cancer will increase the focus on their study (including radiomics).

One issue on the SMOTE analysis must be addressed. This synthetic minority over-
sampling technique proposed by Chawla et al. [31] is a well-known over-sampling method
employed in data pre-processing and has been used, with good results, in several stud-
ies [32–34]. Even if the CSC (cost-sensitive classifier) technique outperformed SMOTE,
the latter proved that it can improve the predictive performance of models by solving
imbalanced patient classification data [35]. We used SMOTE to synthetically augment our
dataset with 50 more instances that were randomly distributed between the training and
validation groups. The radiomics model achieved an AUC of 0.92 for the training cohort
and correctly identified ER/PR status in the validation group (AUC of 1). A plausible
explanation would be secondary to the SMOTE analysis and a higher incidence of synthetic
data in the validation group, which may have, to some degree, homogenized the data;
however, this hypothesis has not yet been tested.

Several research directions may result from the present study: (1) Studies comparing
results obtained by radiomics-based MRI versus mammography versus ultrasound. (2) Inclu-
sion of ARs (androgen receptors) in prediction models. (3) Cautious use of data augmentation
methods and critical interpretation of results validated by larger population studies.

The current study has some limitations of note: (1) Although we had a larger study
population compared with previously published studies, we still considered the group
insufficient for analysis of all molecular subtypes. Thus, we opted only for differentiation
based on hormonal status, which has major implications for treatment. (2) The study
was unicentric. (3) All breast cancers were segmented manually (by M.S.), which might
have introduced a certain level of observer-dependency and may not be feasible when
analyzing large datasets; furthermore, because the segmentation was performed by a single
radiologist, it was not possible to assess intra-and interobserver variability. (4) AR status
was not available for all patients and therefore was not included in the current study.

5. Conclusions

Radiomic features extracted from ADC maps are able to predict the ER/PR status of
breast cancer. Furthermore, a combined model (radiomics plus ki67% and tumoral grade)
differentiated ER/PR positive tumors with greater accuracy. However, to confirm our
results, both radiomics and combined models need to be externally validated in larger,
multicentric studies.
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Appendix A

Table A1. Univariate analysis of radiomic features.

Variable Training Group Validation Group

ER/PR −
(n = 66)

ER/PR +
(n = 84) p-Value ER/PR −

(n = 29)
ER/PR +
(n = 31) p-Value

10th percentile 858.76 ± 152.69 703.54 ± 257.58 <0.001 751.01 ± 236.85 618.69 ± 298.62 0.06
90th Percentile 1404.14 ± 278.01 1147.33 ± 244.14 <0.001 1271.67 ± 265.68 1146.55 ± 259.51 0.07

Energy 154,079,091.87 ±
187,947,003.67

64,601,088.59 ±
70,687,481.87 0.005 383,070,294.27 ±

640,219,396.08
100,544,142.77 ±

241,933,338.28 0.02

Entropy 4.27 ± 0.65 4.03 ± 0.65 0.05 4.61 ± 0.60 3.96 ± 0.97 0.003
Interquartile

Range 296.92 ± 122.50 242.24 ± 124.70 0.003 278.17 ± 142.01 279.01 ± 167.82 0.98

Kurtosis 3.50 ± 1.20 3.31 ± 1.23 0.17 3.66 ± 1.25 2.88 ± 0.86 0.007
Maximum 1698.28 ± 424.94 1390.76 ± 336.63 <0.001 1664.58 ± 361.44 1360.29 ± 322.37 0.001

Mean Absolute
Deviation 182.88 ± 71.28 146.99 ± 67.02 <0.001 168.64 ± 71.25 173.44 ± 87.70 0.81

Mean 1109.55 ± 181.18 915.11 ± 228.80 <0.001 997.24 ± 230.44 873.56 ± 250.53 0.04
Median 1104.13 ± 191.24 902.88 ± 230.35 <0.001 974.86 ± 207.09 873.66 ± 260.92 0.11

Minimum 598.79 ± 236.58 541.33 ± 297.31 0.09 497.65 ± 320.07 472.00 ± 341.73 0.76
Range 1119.47 ± 527.31 849.42 ± 389.35 0.001 1166.93 ± 500.50 888.29 ± 455.84 0.02

Robust Mean
Absolute
Deviation

116.80 ± 46.24 100.41 ± 49.95 0.009 117.56 ± 58.57 116.58 ± 67.18 0.95

Root Mean
Squared 1153.30 ± 196.44 938.48 ± 222.09 <0.001 1024.29 ± 217.98 908.51 ± 238.39 0.05

Skewness 0.028 ± 0.81 0.28 ± 0.56 0.06 0.46 ± 0.61 0.25 ± 0.62 0.19

Total Energy 2,405,590,407.93 ±
2,892,922,045.66

910,894,640.46 ±
839,674,754.21 0.002 6,238,029,521.44 ±

10,954,711,473.74
827,194,014.58 ±
1,298,673,230.16 0.008

Uniformity 0.067 ± 0.03 0.07 ± 0.04 0.04 0.05 ± 0.02 0.09 ± 0.07 0.006

Variance 66,273.47 ±
57,143.64

40,332.36 ±
38,935.60 <0.001 52,022.41 ±

47,979.07
56,528.80 ±

58,645.87 0.74

Table A2. Multivariate analysis of radiomic features.

Variable Training Group Validation Group

Coefficient p-Value Odds Ratio (95% CI) Coefficient p-Value Odds Ratio (95% CI)

10th percentile 0.000 0.975 1.00 (0.99–1.00) 0.017 0.490 1.02 (0.96–1.06)
90th Percentile −0.002 0.56 0.99 (0.99–1.00) 0.032 0.225 1.03 (0.98–1.08)

Energy 0.000 0.379 1.00 (1.00–1.00) 0.00 0.526 1.00 (1.00-1.00)
Interquartile Range 0.000 0.977 0.9998 (0.98–1.01) 0.005 0.869 1.005 (0.94–1.07)

Maximum 0.004 0.031 1.00 (1.00–1.00) 0.006 0.297 1.006 (0.99–1.02)
Mean Absolute

Deviation −0.019 0.118 0.98 (0.95–1.00) 0.144 0.266 1.15 (0.89–1.49)
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Table A2. Cont.

Variable Training Group Validation Group

Coefficient p-Value Odds Ratio (95% CI) Coefficient p-Value Odds Ratio (95% CI)

Mean 0.002 0.567 1.00 (0.99–1.01) −0.0002 0.998 0.99 (0.81–1.23)
Median −0.002 0.493 0.99 (0.99–1.00) 0.072 0.023 1.07 (1.00–1.14)
Range −0.001 0.308 0.99 (0.99–1.00) −0.012 0.065 0.98 (0.97–1.00)

Robust Mean
Absolute Deviation 0.026 0.094 1.02 (0.99–1.05) −0.100 0.387 0.90 (0.71–1.13)

Root Mean Squared −0.006 0.195 0.99 (0.98–1.00) −0.136 0.177 0.98 (0.715–1.063)
Total Energy 0.000 0.039 1.00 (1.00–1.00) 0.00 0.440 1.00 (1.00–1.00)

Uniformity −2.694 0.649 0.06(0.00–7446.19) 42.990 0.185 4.68 × 1018 (1.01509 ×
10−9–21.59172 × 1045)

Variance 0.000 0.709 1.00 (1.00–1.00) 0.00001 0.849 1.00 (0.99–1.00)
Constant 4.454 −0.9538
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