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Abstract: Imaging data fusion is becoming a bottleneck in clinical applications and translational
research in medical imaging. This study aims to incorporate a novel multimodality medical image
fusion technique into the shearlet domain. The proposed method uses the non-subsampled shearlet
transform (NSST) to extract both low- and high-frequency image components. A novel approach is
proposed for fusing low-frequency components using a modified sum-modified Laplacian (MSML)-
based clustered dictionary learning technique. In the NSST domain, directed contrast can be used to
fuse high-frequency coefficients. Using the inverse NSST method, a multimodal medical image is
obtained. Compared to state-of-the-art fusion techniques, the proposed method provides superior
edge preservation. According to performance metrics, the proposed method is shown to be approx-
imately 10% better than existing methods in terms of standard deviation, mutual information, etc.
Additionally, the proposed method produces excellent visual results regarding edge preservation,
texture preservation, and more information.

Keywords: clustered dictionary learning; shearlet domain; sum-modified Laplacian; medical
imaging; bioelectronics

1. Introduction

Computational methods of image processing are often used to achieve image fusion.
The primary goal of image fusion is to reduce the volume of data produced with a sharp,
comprehensive image that can be useful in clinical and scientific research. Compared to
integrating separate modalities, synthesis outcomes between two or more modalities in a
single image are more comprehensible, correct, and high quality [1]. Due to multimodality
medical image fusion, a new medical image can be reconstructed via fusion algorithms.
Multimodal image fusion aims to merge multiple input images into a single coherent whole.
This fused image contains more medical information than individual medical images.
Single sensor, multisensor, multi-view, multi-model, and multi-focus fusions are only a few
types of image fusion. One sensor, part of a unified sensor fusion system, can take many
sequential images from different viewpoints and fuse them into a single, unified image.
Using many sensors, a system creates several distinct scene video sequences, which are
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combined to form a single video. Fusion imaging uses many camera angles to take images
of the same scene from different vantage points [2]. By piecing together the individual
photos, a whole image can be made.

By combining the images from several different medical imaging models, we can
obtain a single image that is consistent throughout. When there are several input images
of the same scene, each with a varied depth of focus [3–5], multi-focus fusion systems are
used to combine the information from all of the images into one. Image fusion techniques
are used for image processing in a wide variety of application fields, some of which
include medical image fusion and sensor networks used for area surveillance, tracking, and
environmental monitoring. These are only two examples of the many possible application
areas. Under the context of this scenario, the team is required to make substantial use of
diagnostic imaging data, which may include results from CT scans, MRIs, and other tests.
There are situations when a single diagnostic test might not be sufficient, necessitating
additional multimodal medical imaging. Even though there are a variety of different
solutions available, this method of processing medical images is still widely utilized [6–8].
The combination of two or more medical image components results in an increased number
of newly created medical images being made available for use. In this paper, a new fusion
approach in the shearlet domain is presented for the purpose of integrating a wide variety
of medical image types [9].

The study of image fusion has recently gained popularity due to its utility in diverse
advancing fields, such as medicine, remote sensing, and defense. This technique continues
to produce vital data for image fusion since it is inexpensive, resilient, and provides high-
resolution images. However, obtaining crucial data for image fusion is a common and
challenging issue due to the high cost of devices and the amount of blur data.

Image fusion is the process of combining two or more images, each of which may be
different from the others or identical, to create a new image that incorporates features from
each original image. This new image should keep maximum information from the original
images while also minimizing any artifacts that may have been introduced during the fusion
process, as is the case in many practical applications [10]. The fundamental objective of
fusion is to create a single high-resolution image from a collection of lower-resolution ones.
Sharp images are necessary for diagnosing diseases, such as coronary artery disease (CAD),
which develops when the heart does not receive adequate oxygen. In addition, neurologists
play an important role in the prognosis of brain tumor conditions; hence, image fusion is
used to analyze brain scans from different modalities. Each researcher’s motivations might
make image fusion an intriguing and novel problem. Satellite imaging, medical imaging,
aviation, the detection of concealed weapons, the use of digital cameras for battlefield
monitoring and situational awareness, the tracking of targets with surveillance cameras,
and the authentication of individuals in the geo-informatics industry are just a few of the
many modern applications of image fusion [11]. Reading the literature has numerous
benefits, such as dictionary learning, cluster analysis, sum-modified Laplacian (SML), and
contrast-based fusion.

In the present study, low-frequency fusion sub-bands with a new SR method use
coincidental instances that allow DTCWT and SR simultaneously. Patches in the source
image were found using structural similarities, which were then classified and grouped
into clusters. All the condensed sub-dictionaries in the cluster are compressed and merged
to form an adaptive, clustered, and condensed sub-dictionary (ACCD). The fusion algo-
rithm forms a one-of-a-kind algorithm known as the modified sum-modified Laplacian
(MSML), which is based on the LARS algorithm and synthesizes sparse coefficients from
the synthetic sparse vectors that are formed using the fusion algorithm. An example of
this is the employment of a sub-band fusion approach, which combines the usage of the
high-frequency maximal complete ruling, and consistency affirmation working together
in an instance. More information about the patient’s health can be gleaned through the
fusion of data from many medical imaging modalities. The evidence synthesis in radio-
graphic images is one example of the multimodal approach to a medical diagnosis that
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recent advances in the field have favored. To better understand the patient’s blood flow
and metabolic rate, it is necessary to segment all the medical images depending on their
relatively inadequate functional image spatial resolution. The physical structure is assumed
to obtain a reasonably high spatial resolution.

With these motivations, a new multimodality medical image fusion method is pro-
posed. The major contributions of the paper include:

i. A dictionary learning method based on cluster analysis is introduced in low-frequency
sub-band fusion. In this technique, structural image patch attributes are pooled and
mathematically connected to increase computation efficiency;

ii. For low sub-band fusion, the modified sum-modified Laplacian (MSML) constructs
artificially sparse vectors by employing saliency features to calculate low-frequency
sub-band local features;

iii. A directive contrast-based fusion is introduced by calculating the local facts of high-
frequency sub-band MSML.

The rest of this paper is organized as: In Section 2, related work is discussed. Section 3
shows the methods that are utilized in the proposed work. In Section 4, the proposed
work is discussed. Section 5 shows the result and the discussion. Finally, Section 6
draws conclusions.

2. Related Work

Zhang et al. [12] proposed a multimodality medical image fusion method where mul-
tiscale morphology gradient-weighted local energy and a visual saliency map are used to
improve the results of existing state-of-the-art methods. The results are good in terms of
the statistical methods and visual appearance. However, the contrast of the fused image is
not up to the mark for many complex images. Ramlal et al. [13] introduced a method using
a hybrid combination of non-subsampled contourlet transform and stationary wavelet
transform for medical image fusion. The results are also good regarding visual appearance
and performance metrics. However, due to more multiple transforms, the computation
cost is increased. To combine medical images from different modalities, Dogra et al. [14]
proposed utilizing guided filters and image statistics in the multidirectional shearlet trans-
form domain. Multimodality medical picture fusion was proposed by Ullah et al. [15],
who suggested using local features fuzzy sets in conjunction with a novel sum-modified
Laplacian in a non-subsampled shearlet transform domain. The non-subsampled shearlet
transform and the activity measure were proposed by Huang et al. [16] as a method for
optimizing information gain during picture fusion. Shearlet-domain-based fusions pro-
duce good results generally, but their lack of contrast in high-texture photos is suboptimal.
Multimodality medical image fusion was proposed by Liu et al. [17], using an image de-
composition framework, non-subsampled shearlet transformation, and a weighted fusion
function. Mehta et al. [18] proposed using a guided filter in the NSCT domain to achieve
more comprehensive informatics outcomes in multimodality medical image fusion. Though
the guided filter produces respectable outcomes overall, its performance falls short for
images with a dense texture in terms of edge retention.

Contrast-based fusion rules are also employed for fusion purposes, and local energy is
given to the reactor. Because of this, edges are more reliably found and stabilized when
the decomposition approach is employed. In [19], a new layer-based fusion approach
considers layer differences by separating the base and detail layers while using saliency
characteristics that seek coincidences. Using the characteristics’ ability to highlight impor-
tant regions of relevance, crisp and smooth fusion outcomes may be achieved with minimal
effort. Over the last year, SR-based fusion approaches have suffered a significant drop in
popularity in the multisensor image fusion sector. This SR-based fusion technology is only
successful if the dictionary is overflowing with components and the best-in-class fusion
algorithm is constructed. DCT, DWT, Gabor, and Ridgelet are some of the sparse fusion
methods often used [20–22]. Another image that is frequently used is that of dictionary
learning. Dictionary entries become significantly more difficult when working with images
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with complicated structures. An intelligent learner merges all the patches from the input
images using a heuristic dictionary, proving his or her intelligence. Because the choice
of a dictionary is crucial in SR, researchers have referred to the image patch clustering
technique. Despite this, a large number of images remain unsolved [23–25]. The computa-
tion costs of dictionary learning [26–30] and sparse coding are higher than wavelet-based
fusion methods.

The use of a suitable fusion rule enables the successful synthesis of a sparse artificial
set of coefficients, which is observed in the following cases: A dictionary-based learning
approach requires two parameters to be effective for individuals who do not desire to
calculate words in advance: how long it takes to build the data and how many steps the
learner repeats in the process of creating the data. Because the ideal learning parameter
in classical techniques, such as the K-SVD, is decided by the set of rules, it is difficult to
manage learning time. Furthermore, sparse coding may incur additional expenses since
it may need an evaluation cost less than the input datas’ size. Sparse representation: the
number of patches increases in proportion to the size of the input data. On the other hand,
SR-based fusion techniques have historically met difficulties because the rules used are
rarely relevant in the current temporal context of the experiment. Fusion algorithms, which
are commonly used to find visible images in an infrared image algorithm, produce images
that are visible in the IR results when applied to the IR results.

The importance of medical imaging, in both medical research and clinical practice
with an intent to achieve high image quality, is increasing and demands representation
or simulation. In certain situations, the complete spectrum structure of digital image
processing can aid in medical diagnosis. Radiologists can diagnose organs or illnesses
effectively, with a combination of images of the organs or diseases involved. It is noted
that the type and model of the instruments used in medical imaging also restrict their
ability to offer such information. The presence of vital organs or living tissues is referred to
as “heterogeneity” in medical imaging. The differences in size and shape can occur even
when the same modality is used to gather the data due to factors such as the object’s
shape, internal structure, or even just the fact that separate images of the same patient were
acquired at various times. The boundary between foreground and background cannot
be erased in the study of biological anatomy. The outcomes of automatic medical image
analysis are dependent on several factors. Photo blending has been proven to enhance
image quality drastically. The error- and redundancy-free multimodality medical image
fusion technique aims to improve image quality [31–36].

Wadhwa et al. suggested a mechanism for predicting the lockdown period to be
implemented to successfully contain the spread of COVID-19 in India [37]. Four methods
were employed to create an epidemic alarm system, including Random Forest Regression,
Decision Tree Regression, Support Vector Regression, and Multiple Linear Regression [38].
Dhaka et al. [39] analyzed the differences between the stationary wavelet transform (SWT)
and the discrete wavelet transform (DWT) for different applications and found SWT outper-
forms DWT. According to a study by Dhaundiyal [40], a novel SWT-based multimodality
fusion approach was presented for medical image fusion. In this method, the source images
are first decomposed into an approximation layer (coarse layer) and a detail layer using the
SWT scheme and then the Fuzzy Local Information C-Means Clustering (FLICM) and local
contrast fusion approach are applied to the distinct layers to counteract the blurring effect,
maintain sensitivity, and preserve quality evaluation. The suggested approach [41] uses a
non-subsampled shearlet transform (NSST) to extract low and high-frequency components
from input images. Low-frequency components are fused using a co-occurrence filter (CoF),
and a unique process is employed to deconstruct and merge the base layers and detail
layers using the local extrema (LE) approach. Sum-modified Laplacian (SML) is used to
fuse the high-frequency coefficients in an edge-preserving image fusion approach [41].
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3. Preliminaries

This section presents an overview of the methods that are used in the proposed work.
Some of the main methods are discussed here in the subsections below.

3.1. Non-Subsampled Shearlet Transform (NSST)

The NSST is not only a practical instrument for multiscale geometric research because
of its amazing ability to discover linear singularities but also a correct description of the
2-D sparse method. This is because of its success in detecting linear singularities. The
shift-invariance and anisotropic direction selectivity of the discrete wavelet transform are
signature features that set it apart from other wavelet transform types. The discrete wavelet
transform is an especially useful tool for deciding the location of point-wise singularities.
Because it uses a non-subsampled Laplacian pyramid filter, the NSST can perform multi-
scale directional localization thanks to this implementation choice. It outperforms NSCT
in several crucial areas, including productivity, flexibility, and stability against orientation
changes, to name a few of these categories. Through NSST, images are decomposed into
two major parts, (i) low-frequency components and (ii) high-frequency components. These
low- and high-frequency components provide the features of the images, which can be
utilized here for multimodality medical image fusion.

3.2. Clustered Dictionary Learning

In this method, the clusters-based dictionary is generated by finding the local features
in terms of patches, which can be further used for image fusion. The previously mentioned
approach shows that the patch Pk ∈ P lies next to edge cluster Ce if its activity level
is more than a threshold. Suppose the patch’s activity level is lower than the lowest
threshold, it refers to a smooth cluster CS, except for when it refers to texture cluster Ct.
This procedure is repeated continuously until all patches in the joint patch set P are arranged.
At last, every cluster in the set of clusters CS is data trained in the online dictionary-based
learning algorithm, and the compressed sub-dictionaries De,Dt, and DS are acquired.
All the acquired sub-dictionaries are integrated to make a dictionary D. Create the Ce,Ct ,
CS-clustered sub-dictionaries and then create the D-clustered combined dictionary where
each of the clusters is trained to apply the ODL algorithm to attain the resulting sub-
dictionaries De,Dt , and DS, respectively, and join each sub-dictionary to make the final
dictionary, such as D = {De,Dt ,DS}, where De, Dt , and DS are the sub-dictionaries of
edge cluster, texture cluster, and set of clusters, respectively.

3.3. Visual Saliency Features

To extract saliency characteristics, the largest symmetric surround saliency method is
employed (MSS). The following is the method that must be used to implement the largest
symmetric surround saliency (MSS) method, as shown in Equation (1).

P(i, j) = ||P1(i, j) − P2(i, j)|| (1)

where P(i, j) are the saliency features, £(i, j) is the average pixel values of all CIELAB, and
|| || is the L2 norm. The average pixel values of all CIELAB are obtained as shown in
Equation (2).

P(i, j) =
1
r

(
∑i+m

x=i−m ∑j+n
y=j−n[P(x, y)]

)
(2)

where m = min(i, w–i), n = min(j, h–j), r = (2i + 1)(2j + 1), w and h are the width and height of
the image, respectively.
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4. Proposed Methodology

In the proposed methodology, two different modality images are utilized as input im-
ages. Initially, NSST is performed over both input images to obtain low- and high-frequency
components. Over the low-frequency components of both input images, a gradient oper-
ator is applied to obtain horizontal and vertical direction for extracting detailed features.
Over these features, saliency features are obtained by utilizing the concept of MSS. Over
these saliency features, a modified SML operation is introduced. These features are further
clustered by performing dictionary-based learning method. Using modified SML operation,
fusion operation is performed on both dictionary-learning-based clusters. On the other side,
high-frequency components are processed using directive contrast-based fusion. Finally,
inverse NSST is performed over both modified low- and high-frequency components. In
proposed work, a dictionary-based learning algorithm is first defined and then the complete
fusion substructure of the concept and the technique connected to the fusion algorithm on
sub-band images are described. The fundamental objective of this study is to develop a
compact, well-organized over-completion dictionary with the optimal structure and high
computational efficiency to compete with existing dictionary-based learning approaches.
To demonstrate the efficacy of the new approach to dictionary creation, a clustering-based
learning mechanism for categorizing input image patches with a geometrically similar
structure is used. Therefore, the following features of the input pictures can be maintained
and exploited for accurate segmentation. The borders, textures, and smooth areas of an
image are the key image components that may alter the overall texture; hence, it is focused
on in the present study. In any given image, the details at the image’s edges and textures
stand out the most. Edges are perceived differently depending on the smoothness of the
component, but they still blend into the background when viewed by a person. The steps
of the proposed algorithm are shown in Figure 1.
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Step 1 (NSST decomposition): Perform NSST decomposition on input images with
parameters c = 1 and d = 8 to obtain low- and high-frequency components on both input
multimodal medical images, as shown in Equation (3).[

LNSST
f 1 , HNSST

f 1

]
= NSST

(
Ai,j
)

and
[

LNSST
f 2 , HNSST

f 2

]
= NSST

(
Bi,j
)

(3)
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Step 2 (Low sub-band fusion): The gradient operator is used to obtain horizontal and
vertical orientation across the low-frequency components of both input images in order
to extract finer information. On top of these components, the idea of maximum saliency
(MSS) is used to obtain saliency attributes. A refined SML technique is introduced over
these prominent indicators. We then use a dictionary-based learning approach to further
categorize these traits. We perform a fusion operation on both clusters based on dictionary
learning using a modified SML procedure. Perform the below sub-steps to obtain a low
sub-band fused image.

(a) Find the gradient information GA and GB in horizontal and vertical directions from
both input images;

(b) Estimate modified Laplacian (ML), as shown in Equation (4);

ML(i, j) = abs(P(i, j) ∗ GradH(i, j)) + abs(P(i, j) ∗ GradV(i, j)) (4)

(c) Develop MSML by adding the ML as shown in Equation (5);

MSML(pk) = ∑n

i=1 ∑n

j=1 ML(i, j) (5)

where n×n is the size of pk;
(d) Acquire the Ce,Ct ,CS clusters using MSML:

(i) Separate the source images IA and IB into n×n patches, PA and PB, respec-
tively;

(ii) Combine PA and PB to make a joint patch set P = {PA,PB};
(iii) Search the MSML for every pk ∈ P;
(iv) Fix the thresholds TH1,TH2 by utilizing as shown in Equations (6) and (7):

TH1 = 0.13 ∗ max(MSML(ph)) (6)

0.07 ∗ max(MSML(ph)) (7)

(e) Perform the equation below to make the Ce, Ct, CS clusters. The categorization
approach is described, as shown in Equation (8);

CJ =


Ce, i f MSML (ph) ≥ TH1

Ct , i f TH1 > MSML(ph) ≥ TH2
CS, i f TH2 > MSML(ph)

 (8)

(f) The sum-modified-Laplacian (SML) is a technique that has proven effective in the field
of medical picture fusion. When applied to the altered image, fusion rules based on a
larger SML always lead to either information loss in the fused spatial domain or image
distortion. New filters, the average filter, and the median filter, are available in the
latest version of SML, which is utilized for medical picture fusion. MSML is the main
computation to evaluate all activity levels of the image patch. It elaborates on the
small information, the image constraint. Increasing the value gives more details as it
exists. Suppose MSML (i;LA) and MSML(i;LB) represent the ith patch’s modified
SML of low-frequency sub-images LA and LB, the recommended fusion approach is
described, as shown in Equation (9):

aiLF
=

{
aiLA

, i f MSML(i;LA) ≥ MSML(i;LB)

aiLB
, otherwise

}
(9)

where Vi
LF

= DaiLF
+ mi

LF
and the fusion mean value mi

LF
is followed by

Equation (10),

mi
LF

=

{
mi

LA
, i f aiLF

= aiLA
mi

LB
, otherwise

}
(10)
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Step 3 (High sub-band fusion): The coefficients show that the sub-images with higher
frequencies often have information from the source image. Moreover, because noise is
usually caused by high frequencies, it can mess up calculations for fusion, which can lead to
wrong sharpness values and hurt the quality of the fusion process. To illustrate these results,
a new set of criteria based on the use of directed contrast has been made. According to the
step-by-step approach, the following is an explanation of the complete operation.

(a) Estimate the directive contrast (DL(i, j)) of NSST high-frequency coefficients using
low sub-band coefficients as shown in Equations (11) and (12):

DLA(i, j) =

{
MSML(A(i,j))

A(i,j) i f A(i, j) > 0
MSML(A(i, j)) Otherwise

(11)

Similarly,

DLB(i, j) =

{
MSML(B(i,j))

B(i,j) i f B(i, j) > 0
MSML(B(i, j)) Otherwise

(12)

(b) Apply the following fusion rule to the high-frequency coefficients (H f (i, j)) as shown
in Equation (13):

H f (i, j) =
{

H fA(i, j) i f DLA > DLB
H fB(i, j) Otherwise

(13)

Step 4: Follow the below for obtaining a fused image using inverse NSST as shown in
Equation (14):

R = NSST−1(L f , H f ) (14)

5. Experimental Results

Using the software MATLAB Version 9.4 (R2018a: India), the experimental evaluation
was completed. The proposed methodology for multimodality medical image fusion
was performed.

5.1. Dataset

The analysis was carried out on the entire collection of 210 medical images that
were coupled together. The images were obtained from a public access database Atlas
(http://www.med.harvard.edu/AANLIB/home.html (accessed on 22 May 2022)) [36]. The
multimodal imaging modalities that are frequently used are CT scanning and magnetic
resonance imaging (MRI). The complex make-up of human tissue delivers information that
is more precise and detailed than ever before. The ability of CT scans to supply highly
correct anatomical reconstructions makes them useful not only for diagnosis but also for
treatment. When seen at an oblique angle, more of the inner workings of an organ are
clear. On the other hand, bone, soft tissue, and lung are more beneficial for studying the
skeletal and connective tissue components. One of the methods used to obtain a better
understanding of the human body is the use of windows that allow looking through bone,
soft tissue, or the lungs, i.e., SPECT. SPECT images are used rather often in the field of
CT imaging. These multimodality medical images are further used in our experimental
analysis. All the images used for experimental results had a resolution of 512 × 512. If the
resolution size of both input image is not the same, preprocessing should be applied to
obtain the same resolution of the input images. However, we tested all experiments on the
same resolutions of both input images.

http://www.med.harvard.edu/AANLIB/home.html
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Pairs of medical images are available in the public database (http://www.med.harvard.
edu/AANLIB/home.html (accessed on 22 May 2022)), and they include modalities in-
cluding computed tomography (CT) and magnetic resonance imaging (MRI). There are
numerous multimodality effects seen in Figures 2–5.
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Figure 5. Zoomed results of multimodality medical image fusion; (a) input multimodality medical
image 1; (b) input multimodality medical image 2; (c) Zhang et al. [12]; (d) Ramlal et al. [13];
(e) Dogra et al. [14]; (f) Ullah et al. [15]; (g) Huang et al. [16]; (h) Liu et al. [17]; (i) Mehta et al. [18];
(j) proposed method.

5.2. Results and Discussion

The proposed methodology is compared with recently proposed methods, such as
those of Zhang et al. [12], Ramlal et al. [13], Dogra et al. [14], Ullah et al. [15], Huang et al. [16],
Liu et al. [17], and Mehta et al. [18].

Figure 2a,b are the two input multimodalities CT and MRI. Figure 2c–j are the results
of Zhang et al. [12], Ramlal et al. [13], Dogra et al. [14], Ullah et al. [15], Huang et al. [16],
Liu et al. [17], Mehta et al. [18], and the proposed method, respectively. In Figure 2, the
results are good in terms of edge preservation and providing more informatics clinical
details. In this respect, the results of [12] are good, but the textures in homogenous regions
are not effectively preserved. Similarly, the results of [13] are also not effectively preserved
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in terms of contrast and brightness. The results of [14,17] are well preserved in all the
details, but in highly textured regions, the results are not excellent. The results of [15,16,18]
are good but the high-textured details are not satisfactory. However, in comparison to
others, the proposed method gives the best results in terms of sharpness, smoothness,
texture preservation, and more informatic clinical details.

Figure 3a,b display both the MR-T2 image and the SPET image. The findings of [12–18]
as well as the proposed approach are presented in Figure 3c–j, respectively. In Figure 3,
the outcomes are favorable in terms of edge preservation and added clinical data gleaned
through informatics. While [12] achieves outstanding results overall, it does a less than
stellar job of preserving textures in areas with high homogeneity. The brightness and
contrast of the outputs of [13] are likewise not kept very well. The outcomes of [14,17]
are great in low-textured areas and good in high-textured areas, respectively. The results
of [15,16,18] are satisfactory, but the high-textured details are lacking. Sharpness, smooth-
ness, texture preservation, and more informatic clinical features are all improved upon
using the proposed strategy. On the other hand, in contrast to earlier methods, the one that
is proposed yields the best results in terms of sharpness, smoothness, the preservation of
texture, and additional informatics clinical features.

The MR-T2 image as well as the SPET image are presented in Figure 4a,b, respectively.
The results of Zhang et al. [12], Ramlal et al. [13], Dogra et al. [14], Ullah et al. [15],
Huang et al. [16], Liu et al. [17], Mehta et al. [18] are provided in Figure 4c–j, respectively,
along with the suggested methodology. Figure 4 demonstrates that the outcomes are
positive in terms of edge preservation as well as new clinical data obtained through
informatics. The method that has been offered, on the other hand, in contrast to those that
have been used in the past, produces the best results in terms of sharpness, smoothness, the
preservation of texture, and extra informatics clinical aspects. The results of [12] are good in
this instance, but the textures in homogeneous regions are not particularly well preserved.
The results from [13] are similarly poorly preserved in terms of contrast and brightness.
The results from [14,17] are excellent in that all of the details are preserved, but the results
are less than perfect in highly textured regions. Although [15,16,18] produce good results,
the high-textured detail is not particularly satisfactory. The proposed method, however,
produces the best results when compared to other approaches in terms of sharpness,
smoothness, texture preservation, and more clinical informatics information.

Figure 5a,b show zoomed-in regions of input multimodality medical images. Figure 5c–j
show the results of Zhang et al. [12], Ramlal et al. [13], Dogra et al. [14], Ullah et al. [15],
Huang et al. [16], Liu et al. [17], Mehta et al. [18] as well as the suggested technique, re-
spectively. Figure 5 shows that the outcomes in terms of edge preservation and additional
clinical data collected through informatics are both positive. The method presented, on the
other hand, produces the best results in terms of sharpness, smoothness, texture preserva-
tion, and extra informatics clinical characteristics as compared to previous methods. The
findings of [12] are satisfactory in this regard; nonetheless, the textures in the homoge-
nous zones are not kept remarkably. The contrast and brightness of the results of [13] are
likewise not adequately preserved in the same way. The outputs of [14,17] do a good job
of preserving all of the features, but in areas with a lot of texture, their performance is
less than stellar. The results of [15,16,18] are satisfactory; however, the particulars of the
high-textured results are not particularly outstanding. On the other hand, in contrast to
previous methods, the one that is proposed yields the best results in terms of sharpness,
smoothness, the preservation of texture, and additional informatics clinical features.

Visual results were not sufficient for the resulting analysis; hence, the results of the ex-
isting methods were tested and evaluated using performance metrics. To check the accuracy
of the existing methods, some parameters were used, such as MIAB,F, QAB,F, and BSSIM.
The results were tested over 80 pairs of medical images and the average values are shown
in Table 1. From Table 1, it can be analyzed that the transform domain approaches give
better outcomes. The bold values in Table 1 show the best performance metric values for
different image datasets.
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Table 1. The Comparative analysis in terms of performance metrics.

Parameter Dataset Zhang
et al. [12]

Ramlal
et al. [13]

Dogra
et al. [14]

Ullah
et al. [15]

Huang
et al. [16]

Liu
et al. [17]

Mehta
et al. [18]

Proposed
Method

Mutual
information

(MI)

#1 2.1298 2.7849 3.0512 3.4810 3.3952 3.2967 3.1719 3.4917

#2 2.7972 3.1168 2.4757 2.5788 2.2534 3.1270 3.5670 3.7710

#3 2.5610 2.6513 2.8315 2.4103 2.4124 2.7109 2.3709 2.8709

#4 2.1268 2.3103 2.2330 2.6150 2.2612 2.7120 2.1720 2.8710

#5 2.2111 2.2171 2.3212 2.1167 2.1019 2.1418 2.1178 2.6418

Standard
deviation

(SD)

#1 66.2122 81.0191 75.9053 84.2526 82.8310 81.0198 82.0498 85.0563

#2 58.5118 72.0111 72.8118 75.1325 76.4587 77.1798 78.1448 78.7798

#3 55.2596 71.2195 71.1124 71.2723 71.1187 71.2272 71.2710 72.2350

#4 58.5555 72.5422 71.1446 73.3550 74.2444 75.0320 72.2320 75.1180

#5 67.8141 66.1515 69.0115 71.5219 72.2217 71.8761 72.8716 73.2276

QAB/F

#1 0.5101 0.5115 0.5202 0.5113 0.5218 0.5103 0.5301 0.5397

#2 0.5183 0.5140 0.5178 0.5218 0.5187 0.5251 0.5211 0.5288

#3 0.5919 0.6151 0.6281 0.6271 0.6171 0.6311 0.6351 0.6398

#4 0.6141 0.6117 0.6220 0.6217 0.6428 0.6363 0.6151 0.6486

#5 0.6171 0.6312 0.6151 0.6222 0.6123 0.6454 0.6352 0.6510

Spatial
frequency

(SF)

#1 23.1212 27.7511 25.5710 26.8186 26.714 27.0110 27.5504 27.9822

#2 21.1113 22.7833 22.6141 21.6113 21.5422 22.4123 22.7233 22.8123

#3 19.0926 21.1813 21.0111 20.1818 20.0718 20.0019 21.0019 21.3319

#4 17.3556 18.2313 18.1112 20.1122 19.4554 20.0013 20.1313 20.2923

#5 20.0961 18.8329 21.4140 18.3431 19.9129 18.2390 19.0120 21.4190

Mean

#1 49.3249 58.2346 53.8543 57.1209 56.0238 57.5120 57.5121 58.5350

#2 44.1433 51.7246 47.4440 51.3356 52.1270 53.8219 51.3409 53.9609

#3 41.3453 41.1233 39.1753 41.0125 39.1241 38.1240 38.2134 42.7970

#4 40.4680 41.3643 39.1233 41.3430 38.3252 41.1122 41.1414 41.8324

#5 33.1282 36.8872 35.9921 34.4503 35.5453 33.4657 36.4457 37.0057

6. Conclusions

A diagnostic image analysis based on multimodality is presented in the present study.
Advanced human data should be sensitive to better contrast (high), pixel density, edge
detail, contrast focus, view dependencies, fusion device edge, and texture detection.

The proposed method gives better results in terms of visual results such as smoothness
and sharpness in high-textured images. Other than the visual results, performance metrics
are also evaluated where the values of the performance metrics show better results in
comparison to existing methods. The study discusses several forms of errors in imaging
data. Moreover, it showcases the lack of noise and the improvement in the information
presented in the fused image and compares the data obtained for calculation from the
original image. The findings suggest that current transform domain methods have better
outcomes than using other spatial domain structures. The performance metrics also prove
that in addition to visual effects, techniques using transform domain strategies provide
enhanced results compared to analogous spatial domain schemes.
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Abbreviations

NSST Non-subsampled shearlet transform
MSML Modified sum-modified Laplacian
CAD Coronary artery disease
ACCD Adaptive, clustered, and condensed sub-dictionary
SWT Stationary wavelet transform
DWT Discrete wavelet transform
FLICM Fuzzy Local Information C-Means Clustering
SML Sum-modified Laplacian
CoF Co-occurrence filter
LE Local extrema
NSCT Non-subsampled contourlet transform
ML Modified Laplacian
MRI Magnetic resonance imaging
CT Computed tomography
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