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Abstract: Medical image analysis and classification is an important application of computer vision
wherein disease prediction based on an input image is provided to assist healthcare professionals.
There are many deep learning architectures that accept the different medical image modalities
and provide the decisions about the diagnosis of various cancers, including breast cancer, cervical
cancer, etc. The Pap-smear test is the commonly used diagnostic procedure for early identification
of cervical cancer, but it has a high rate of false-positive results due to human error. Therefore,
computer-aided diagnostic systems based on deep learning need to be further researched to classify
the pap-smear images accurately. A fuzzy min–max neural network is a neuro fuzzy architecture that
has many advantages, such as training with a minimum number of passes, handling overlapping class
classification, supporting online training and adaptation, etc. This paper has proposed a novel hybrid
technique that combines the deep learning architectures with machine learning classifiers and fuzzy
min–max neural network for feature extraction and Pap-smear image classification, respectively. The
deep learning pretrained models used are Alexnet, ResNet-18, ResNet-50, and GoogleNet. Benchmark
datasets used for the experimentation are Herlev and Sipakmed. The highest classification accuracy
of 95.33% is obtained using Resnet-50 fine-tuned architecture followed by Alexnet on Sipakmed
dataset. In addition to the improved accuracies, the proposed model has utilized the advantages of
fuzzy min–max neural network classifiers mentioned in the literature.

Keywords: convolutional neural networks; machine learning; fuzzy min–max neural network
(FMMN); cytology image classification; pre-trained models; transfer learning

1. Introduction

Cervical cancer is a type of cancer that develops in the cells of the cervix, which is the
lower part of the uterus that connects to the vagina. Cervical cancer is usually caused by
a human papillomavirus (HPV) infection, which is a sexually transmitted infection. HPV is
a very common virus that can cause abnormal changes in the cells of the cervix, which can
eventually lead to cancer if left untreated [1].

Cervical carcinoma is the most prevalent cancer diagnosed in 23 countries and the
primary cause of mortality in 36 nations [1,2]. Furthermore, 85 percent of cervical cancers
were encountered in the late stages. It is the fourth most frequent cancer in women as
well as the leading cause of death, with an approximate 604,000 reported incidents and
342,000 deaths worldwide in 2020 [1]. Figure 1 depicts the mortality age-standardized rates
and region-specific incidence for cervical cancer in 2020. The (W) world age standardized
incidence rate is shown in descending order, and the highest national age-standardized
incidence and mortality rates are overlaid. In such areas, it is critical to ensure that resource-
intensive vaccination and screening programs are carried out to improve the situation [2].
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Pap smear, liquid based cytology, and colposcopy are the main screening methods for
cervical cancer diagnosis. In a Pap-smear test, cell samples are collected from the trans-
formation zone of the cervix, and for abnormalities, it is examined under the microscope.
The colposcopy examination deals with examining abnormalities in the cervix with the
help of the colposcope; it is a direct visual examination done by gynecologists [3]. Regular
screening of women over 30 years of age is advisable for early detection and treatment.

The human-based smear analysis is difficult, laborious, time consuming, costly, and
prone to errors since each smear slide consists of approximately 3 million cells with varying
overlapping and orientation, necessitating the development of a computerized system
capable of analyzing the Pap smear effectively and efficiently [4]. Extensive research has
been conducted to assist pathologists in tracking cervical cancer with the development
of computer-aided diagnostic (CAD) systems. This type of system consists of different
steps, including image preprocessing, segmentation, feature extraction, feature selection,
and classification. To enhance the image quality, filtering-based preprocessing is carried
out. Much work is carried out to segment the nucleus and cytoplasm using different
image-processing techniques [5]. The images are used to extract texture, morphological,
and color metric features. The feature selection techniques are applied for the identification
of the most discriminant features, and then, classifiers are designed to classify the cervical
cytology cell images [6].

The above mentioned workflow necessitates multiple steps for processing the data.
The handcrafted features lack the guarantee superior classification performance, highlight-
ing the inadequacy of automatic learning. Deep learning methods have demonstrated
success in a variety of applications over the last decade, including object recognition, nat-
ural language processing, signal processing, image classification, segmentation, and so
on [7–10]. The deep network architecture has the ability to learn features automatically
based on the spatial relationships among the pixels. The multiple layers with simple
nonlinear activation functions are used to transform input data from abstract to specific at
multiple levels of feature representation.

The network can learn such hierarchical feature representations from a large scale of
training data in an unsupervised or supervised manner. In many practical applications,
such learned hierarchical features have outperformed handcrafted designs [11].
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Lotfi A. Zadeh [12] proposed a fuzzy logic data analysis approach and an engineering
approach. Fuzzy set theory is the basis for fuzzy logic which deals with reasoning that is
approximate rather than precise in classical two-valued logic. As a result, it is a technique
for formalizing the human capacity for imprecise reasoning. Such reasoning exemplifies
the human ability to reason roughly and make decisions in the face of uncertainty [12].
Fuzzy set theory is considered a good framework for classification problems because of the
inherent fuzziness in the cluster. FMMN has been used in many applications, including fault
detection, lung cancer detection, breast cancer detection, medical data analysis, etc. [13–15].

This paper presents a hybrid method for the classification of cytology Pap-smear
images into abnormal and normal. The machine learning classifiers and fuzzy min–max
neural network are trained for two-class problems using the features to extract by fine
tuning the deep learning pre-trained models. The following are the main contributions of
the proposed work.

(1) Presents a novel and hybrid approach by leveraging the strengths of pre-trained
deep learning models with machine learning classifiers and fuzzy min–max neural net-
works.

(2) Fine tunes the pretrained CNN architectures, including Alexnet, ResNet-18,
ResNet-50, and GoogleNet, to overcome the dataset limitations.

(3) Extracts the learned and specific features from Pap-smear images, which are proven
to be more effective than handcrafted features and classify by using different machine
learning classifiers and enhancing the classification performance using fuzzy min-max
neural network.

(4) Provides improved accuracy with the advantages of different properties of the
fuzzy min–max neural network classifier given by Simpson [16].

2. Literature Review

To classify the cervical cytology images, various deep learning and machine learning-
based techniques are used, for example, researchers in [17,18] make use of local binary
pattern, texture, histogram features, local binary pattern, and grey level features. The
features are then given as input to a hybrid classifier system that combines SVM and
a neuro-fuzzy for classification of the cervical images [19].

Jyothi Priyankaa et al. (2021) [20] consider Pap smear test images for cancerous cell
prediction combined with deep learning techniques for more efficient results. The ResNet50
pre-trained model of convolutional neural networks (CNNs) for the prediction of cancerous
cells produces accurate results. Except for the final layer, which is trained according to
the requirements, all the layers in the proposed work are considered as they are. This
methodology correctly classifies all classes with 74.04 percent accuracy.

Deep transfer learning was used by Anurag Tripathi et al. (2021) [21] to aid in the
diagnosis of cervical cancer. They used the SIPAKMED dataset for this purpose. Dyskera-
totic, koilocytotic, metaplastic, parabasal, and superficial intermediate were the five classes
used. The testing accuracy of ResNet50 is 93.87 percent. The ResNet-152 model achieved
an accuracy of 94.89 percent. VGG-16 performed best with parabasal cells, achieving the
lowest accuracy of all four models at 92.85 percent. The testing accuracy of VGG-19 was
slightly higher than that of VGG-16, which was 94.38 percent.

Wafa Mousser et al. (2019) [22] used deep neural networks and optimized MLP
classifiers for the classification of Herlev Pap-smear images. Feature extraction is done
using deep neural networks and classification using optimized MLP classifiers. The ability
of feature extraction from four different pre-trained models to classify Pap-smear images
was investigated. The comparisons concluded that ResNet50 outperforms the VGGs and
the InceptionV3 by 15% in Pap-smear image classification.

Kurnianingsih et al. (2019) [23] applied mask R-CNN to the whole slide cell image,
outperforming the previous segmentation method in precision, recall, and ZSI. For clas-
sification, a VGG-like net is used on whole segmented cells. Results shown for binary
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classification problem had 98.1% accuracy and for the seven-class problem accuracy of
95.9% is obtained.

Sornapudi et al. (2019) [24] proposed a method for automatically classifying cervical
cell images by generating labelled patch data, fine-tuning convolutional neural networks
for the extraction of deep hierarchical features and the novel graph-based cell detection
approach for cellular level evaluation. The results demonstrated that the proposed pipeline
could classify images of single cells as well as overlapping cells. The VGG-19 model
performed accurately at classifying cervical cytology patch data, with a precision-recall
curve of 95%.

The deep learning approach reviewed in Swati Shinde et al. (2022) [25] can directly
process raw images and offers automated learning of features based on specific objective
functions, such as detection, segmentation, and classification. Different existing pre-trained
models, such as ResNet-50, ResNet-152, and VGG are used in the literature for the clas-
sification of Pap-smear images for the diagnosis of cervical cancer. Table 1 shows the
summarization of the different papers studied and analyzed.

Table 1. Summarization of Prevailing Research Work.

Paper Data Set Pre-Processing Feature Extraction/
Classification Results

[20] Herlev
University Hospital

Resize, Color to Grey,
Expansion

of dimensions
RESNET-50 Accuracy 74.04%

[21] SIPAKMED Resize 244 × 244
RESNET-50,
RESNET-152,

VGG-16, VGG-19

Highest 94.89% accuracy was obtained
with ResNet-152

[22] Herlev
University Hospital Data Augmentation

VGG16. InceptionV3
VGG19, ResNet50

Classification—MLP
classifier

ResNet-50 89%

[23] Herlev
University Hospital

Data Augmentation
Segmentation—Mask

R-CNN
VGGNet

Mask R-CNN segmentation produces
the best average performance, i.e.,

0.92 ± 0.06 precision, 0.91 ± 0.05 recall
and 0.91 ± 0.04 ZSI and 0.83 ± 0.10

Binary classification problem
98.1% accuracy

Seven-class problem high accuracy
of 95.9%

[24] Herlev
University Hospital

Subtraction of blue
color space from red

color space,
skeletonizing and

refining boundaries

VGG-19, ResNet-50,
DenseNet-120,

and Inception_v3
VGG-19—88% Accuracy

[25]
Herlev University

Hospital,
SIPAKMED, LBC

Data Augmentation
XceptionNet,

VGGNet, ResNet50 and
Ensemble of classifiers

Accuracy 97%, 99%, and 100%

[26] Herlev
University Hospital Resize 256 × 256 DCT and

Haar transform
Highest 81.11% accuracy was

obtained with DCT

3. Proposed Methodology

In this paper, a hybrid convolutional neural network classification technique is pro-
posed to classify the cervical cytology images into abnormal and normal. Figure 2 shows
the block diagram of the proposed work. The offered hybrid CNN framework is divided
into two major phases. In the first phase, a pre-trained deep learning model for feature
extraction is used. Successive layers, such as FC6 and FC7, are used to extract features. In
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the second phase, machine learning classifiers and fuzzy min–max neural network is used
for the classification process [27].
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3.1. Module 1
3.1.1. Feature Extraction Using Pre-Trained Models

For medical image analysis, deep learning architecture is most prevalent. To train
a convolutional neural network, a massive quantity of data and high computational re-
sources are required, as well as a longer training time. Transfer learning (TL) is a solution
to this problem because it aids in the creation of an accurate model by beginning to learn
from previous patterns of knowledge on solving various problems instead of starting from
scratch [28,29]. As a result, TL is a technique in artificial intelligence that allows us to
transfer knowledge from one model to another [30]. A TL process consists of two steps.

Step 1: Choose a pre-trained model that is trained on large-scale data that is relevant
to the problem at hand.

Step 2: Fine-tune a pre-trained model based on the similarity of our dataset.
AlexNet, GoogleNet, ResNet-18, and ResNet-50 are different pre-trained deep learning

architectures that have been experimented with using the proposed hybrid technique.
AlexNet, GoogleNet, ResNet-18, and ResNet-50 networks are utilized in the transfer learn-
ing process, with the weights pre-trained on the ImageNet dataset [31]. ImageNet is made
up of 1 million training images, 50,000 validation images, and 100,000 testing images from
1000 different classes. The earlier layers of the pre-trained models are frozen, which capture
more low-level features. Alexnet fc7 layer, ResNet-18 pool 5 layer, ResNet-50 fc1000 layer,
and Googlenet loss3-classifier layer are used as features. Figure 2 shows the overall process
carried out where feature extraction is carried out using AlexNet. Similarly, GoogleNet,
ResNet-18, and ResNet-50 are used. For the machine learning classifiers in Module 2, the
number of features is fed for training and testing, as mentioned in Table 2.
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Table 2. Number of Features Extracted from Pre-Trained Models.

Pre-Trained Model Alexnet Googlenet Resnet-18 Resnet-50

Number of Features 4096 1000 512 1000

3.1.2. Min–Max Normalization

Along with the various machine learning algorithms, the fuzzy min–max neural
network is also tested. For classification, the features are normalized and fed into a fuzzy
min–max neural network. One of the most common methods for normalizing data is min–
max normalization. For each feature, the minimum value is converted to 0, the maximum
value is converted to 1, and all other values are converted to a decimal between 0 and 1.
The following equation is used to normalize the features [32].

Xnew = (X− Xmin)/(Xmax − Xmin) (1)

where X is the set is of feature values obtained,

Xmin is minimum value in X, and
Xmax is maximum value in X.

3.2. Module 2
3.2.1. Machine Learning Classifiers

Classification is a machine learning method that determines which class a new object
belongs to based on a set of predefined classes. There are numerous classifiers that can
be used to classify data, including decision trees, bays, functions, rules, lazy, meta, and
so on. In this work we used different classifiers belonging to the different families, and
performance comparison is to evaluate the best classifier. We experimented with the
BayesNet, Naive Bayes, random forest, random tree, decision table and part machine
learning classifiers.

3.2.2. Fuzzy Min–Max Neural Network

Simpson pioneered the hyperboxes for pattern classification [16]. FMM learns using
a hyperbox fuzzy set. An expansion parameter theta (θ) controls the size of the hyperbox;
in this case the theta (θ) ranges from values 0 to 1. The maximum (max) and minimum
(min) points in a hyperbox are used to measure how a training sample accommodates in
the hyperbox from a fuzzy membership function [31].

Equation (2) defines a hyperbox fuzzy logic with maximum (HW), minimum (HV),
and unit hypercube In points. Figure 3 depicts a 3-D hyperbox with its maximum point
(HWj) and minimum point (HVj).
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Fuzzy logic Hj can be used to represent each hyperbox as follows [16]:

Hj =
{

HAh, HVj, HWj, f
((

HAh, HVj, HWj
))}

∀ HAh ε In (2)
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where hth represents the input pattern as HAh = (ah1, ah2, . . . , ahn). jth hyperbox minimum
and maximum points are represented as HVj = (hvj1, hvj2, . . . , hvhn) and HWj = (hwj1, hwj2,
. . . , hwhn) respectively.

Fuzzy min–max classifier is made up of three layers. The first is input feature vectors
(FA), the second is the fuzzy hyperbox sets (FB), and the third is the classification nodes (FC).
The fuzzy membership computes the input pattern for various hyperboxes and determines
the pattern’s class label. The feature vector obtained from the feature extraction step is
provided to the input layer, FA. For hyperboxes, the membership function is evaluated
by the nodes (bj) in the fuzzy hyperbox set layer (FB). V and W represent the weights
of connections between layers FA and FB, which are a set of min and max points of
hyperboxes, respectively. The FMMN expansion process [16] is used to update these
parameters. U stores the weights between the nodes in the middle and third layers.
Equation (3) shows the U is computed.

ujk=

{
1 i f Hj is hyperbox f or class CK
0 otherwise

(3)

FMMN calls the membership function when a new input sample is provided. Equation (4)
is used to calculate the membership value.

Hj HAh
1

2n ∑n
i=1

[
max

(
0, 1−max

(
0, γ min

(
1, ahi − hwji

)))
+ max

(
0, 1−max

(
0, γ min

(
1, hvji − ahi

)))]
(4)

where Hj denotes the membership of jth hyper box, HAh is the hth input data, HWji is the
maximum point of Hj, HVji is the minimum point of Hj, and γ indicates the sensitivity
parameter which controls the decrease in speed of membership value as the gap between
HAh and Hj rises. The FMMN classification method is primarily based on expansion test,
overlap test, and contraction test.

Expansion

To include a new input pattern, HAh, in the hyperbox, the following equation is used
to determine if a hyperbox can be expanded.

nθ ≥ ∑n
i=1

(
max

(
hwji, ahi

)
−min

(
hvji, ahi

))
(5)

Overlap Test

If a hyperbox is chosen for expansion, an overlap test is run to determine whether
there is any overlapping between two or more hyperboxes caused by the expansion. If any
of the following conditions are met, overlapping of hyperboxes will occur.

Case 1
HVji < HVki < HWji < HWki δn = min

(
HWji −HVki, δo

)
(6)

Case 2
HVhi < HVki < HWki < HWji δn = min

(
HWki −HVji, δo

)
(7)

Case 3

HVji < HVki < HWki < HWji δn = min
(
min

(
HWji −HVki, HWki −HVji

)
, δo

)
(8)

Case 4

HVki < HVji < HWji < HWki δn = min
(
min

(
HWji −HVki, HWki −HVji

)
, δo

)
(9)

Contraction

A suitable contraction rule is applied to eliminate the overlap between the hyperboxes
if the overlap is detected. The corresponding contraction rules are shown in the following
equations with respect to the overlap test rules as stated in the overlap test.
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Case 1

HVj∆ < HVk∆ < HWj∆ < HWk∆ < HWj∆new = HWk∆new =
(

HWk∆old + HWj∆old
)

/2 (10)

Case 2

HVk∆ < HVj∆ < HWk∆ < HWj∆ < HWk∆new = HVj∆new =
(

HWk∆old + HWj∆old
)

/2 (11)

Case 3(a)

HVj∆ < HVk∆ < HWk∆ < HWj∆ and
(
HWk∆−HVj∆

)
<

(
HWj∆−HVk∆

)
, HVj∆new + HWk∆old (12)

Case 3(b)

HVj∆ < HVk∆ < HWk∆ < HWj∆ and
(
HWk∆−HVj∆

)
<

(
HWj∆−HVk∆

)
=, HWj∆new + HVk∆old (13)

Case 4(a)

HVk∆ < HVj∆ < HWj∆ < HWk∆ and
(
HWk∆−HVj∆

)
<

(
HWj∆−HVk∆

)
, HWk∆new = HVj∆old (14)

Case 4(b)

HVk∆ < HVj∆ < HWj∆ < HWjk∆ and
(
HWk∆−HVj∆

)
>

(
HWj∆−HVk∆

)
, HVj∆new = HWk∆old (15)

The training process is completed after successful completion of the preceding three pro-
cesses, which results in a list of hyperboxes to represent the FMM network.

3.3. Algorithm 1

The algorithm for the proposed work is as follows:

Algorithm 1: Algorithm for cervical cancer classification

Input: Herlev dataset, Sipakmed dataset of Pap-smear images
Output: Prediction of classes—normal or abnormal
Begin
Step 1: Pre-process the images
Step 2: Split the dataset into training and testing datasets
Step 3: Pre-trained models= {AlextNet, GoogleNet, ResNet18, ResNet50}
Step 4: For each model in Step 3

Train the model
Extract the feature vector

Step 5: Classifiers = {{machine learning classifiers: simple logistic, Naive Bays, Bayes Net,
decision table, random forest, random tree, PART}, {fuzzy min–max neural network}}
Step 6: For each classifier in Step 5

Train with the feature vector
Evaluate with Testing Set

End

4. Experimentation Environment

The proposed technique is implemented using Matlab software with Intel core i5
processor and 4 GB RAM. To investigate the effectiveness of the proposed techniques, it is
applied to two different standard datasets, namely the Herlev dataset and the Sipakmed
dataset. Both the datasets are rearranged into two classes, normal and abnormal, and the
proposed techniques are used to solve binary classification. The dataset is split into training
and testing.

4.1. Herlev Dataset

It consists of 917 single cell images. Seven classes are converted to normal and
abnormal. The normal class contains 242 images, while 675 images belong to the malignant
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class. Table 3 shows the cell distribution of the dataset and Figure 4 shows sample images
from the Herlev dataset [33].

Table 3. Herlev dataset.

Cell Category Number of Cells

Normal squamous

Normal

74

Intermediate squamous 70

Columnar 98

Mild dysplasia

Abnormal

182

Moderate dysplasia 146

Severe dysplasia 197

Carcinoma in situ 150

Total 917
Diagnostics 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 4. Sample images from Herlev dataset. 

4.2. Sipakmed 
The Sipakmed dataset consists of 4049 images. There are five categories for classifi-

cation of the Sipakmed dataset: dyskeratotic, metaplastic, koilocytotic, parabasal, and su-
perficial-intermediate [34]. The Sipakmed dataset samples are shown in Figure 5. Table 4 
shows the cell distribution of the dataset. 

 
Figure 5. Sample images from Sipakmed dataset. 

Table 4. Sipakmed dataset. 

Cell Category   Number of Cells 

Superficial 
Normal 

831 

Parabasal 787 

Koilocytotic 
Abnormal 

825 

Dyskeratotic 813 

Metaplastic 
Benign 

793 

Total 4049 

4.3. Performance Measures 
Choosing an appropriate evaluation metric is critical for overcoming bias among the 

various algorithms. Accuracy, sensitivity, specificity, precision and F1 Score are different 
performance metrics to evaluate the classification performance. True positive (TP) is the 
number of correctly labelled positive samples, true negative (TN) is the number of cor-
rectly classified negative samples, false positive (FP) is the number of negative samples 
classified as positive, and false negative (FN) is the number of positive instances predicted 
as negative (FN) [35]. Table 5 shows the formula of evaluation metrics. 

Figure 4. Sample images from Herlev dataset.

4.2. Sipakmed

The Sipakmed dataset consists of 4049 images. There are five categories for classi-
fication of the Sipakmed dataset: dyskeratotic, metaplastic, koilocytotic, parabasal, and
superficial-intermediate [34]. The Sipakmed dataset samples are shown in Figure 5. Table 4
shows the cell distribution of the dataset.
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Table 4. Sipakmed dataset.

Cell Category Number of Cells

Superficial
Normal

831

Parabasal 787

Koilocytotic
Abnormal

825

Dyskeratotic 813

Metaplastic
Benign

793

Total 4049
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4.3. Performance Measures

Choosing an appropriate evaluation metric is critical for overcoming bias among the
various algorithms. Accuracy, sensitivity, specificity, precision and F1 Score are different
performance metrics to evaluate the classification performance. True positive (TP) is the
number of correctly labelled positive samples, true negative (TN) is the number of correctly
classified negative samples, false positive (FP) is the number of negative samples classified
as positive, and false negative (FN) is the number of positive instances predicted as negative
(FN) [35]. Table 5 shows the formula of evaluation metrics.

Table 5. Performance Evaluation Metric.

Assessments Formula

Accuracy TP + TN
TP + TN + FP + FN

Sensitivity/Recall TP
TP + FN

Specificity TN
TN + FP

Precision TP
TP + FP

F1 Score 2× Pricision × Recall
Precision + Recall

5. Experiments and Results

The results of an experiment carried out when the AlexNet pretrained model is used
as a feature extractor are shown in Table 6. From the results it can be analyzed that the
highest classification testing accuracy of 88.6% is given by the simple logistic classifier on
the Herlev dataset. With the Sipakmed dataset, 95.14% highest classification accuracy is
given by the simple logistic classifier. Hence, the combination of Alexnet with a simple
logistic classifier among the experimentations has the best performance.

Table 6. Classification accuracy of Alexnet model with machine learning classifiers.

AlexNet

Dataset Classifier Bayes Net Navie
Bayes

Random
Forest

Random
Tree

Decision
Table Part Simple

Logistic

Herlev Testing
Accuracy (%)

83.33 82.24 87.68 81.8 88.04 86.59 88.6

Sipakmed 91. 2 91.6 91.2 90.70 93.23 89.5 95.14

Experimentation carried out with the GoogleNet pre-trained model results are demon-
strated in the following Table 7. Highest testing classification accuracy on Herlev dataset is
obtained with simple logistic of 87.32%. On the Sipakmed dataset, the highest accuracy
obtained is 92.21% with simple logistic classifiers. With the Googlenet also, the simple
logistic is outperforming the other classifiers.

Table 7. Classification accuracy of Googlenet model with machine learning classifiers.

GoogleNet

Dataset Classifier BayeNet Navie
Bayes

Random
Forest

Random
Tree

Decision
Table Part Simple

Logistic

Herlev Testing
Accuracy (%)

83.70 82.97 86.96 81.88 84.06 86.59 87.32

Sipakmed 87.37 85.24 90.24 83.11 87.62 89.75 92.21

Experimentation carried out with the ResNet-18 pre-trained model results are accu-
mulated in the following Table 8. The highest testing classification accuracies of 88.76%
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and 93.85% are obtained with the simple logistic classifier on the Herlev and Sipakmed
datasets, respectively.

Table 8. Classification accuracy of ResNet-18 model with machine learning classifiers.

ResNet-18

Dataset Classifier BayeNet Naive
Bayes

Random
Forest

Random
Tree

Decision
Table Part Simple

Logistic

Herlev Testing
Accuracy (%)

86.59 86.59 87.68 82.6 84.42 79.71 88.76

Sipakmed 90.9 89.26 88.36 80.49 84.75 88.42 93.85

Table 9 shows the experiment carried out when the ResNet-50 pre-trained model is
used as a feature extractor. From the results it can be analyzed that the highest classification
testing accuracies of 92.03% and 93.60% are given by the simple logistic classifier on the
Herlev and Sipakmed datasets, respectively.

Table 9. Classification accuracy of ResNet-50 model with machine learning classifiers.

ResNet-50

Dataset Classifier BayeNet Naive
Bayes

Random
Forest

Random
Tree

Decision
Table Part Simple

Logistic

Herlev Testing
Accuracy (%)

88.04 89.13 88.04 78.62 86.23 81.88 92.03

Sipakmed 89.67 88.19 89.83 81.8 84.75 90 93.60

Binary classification of cervical cytology images is performed using the pre-trained
models, and fuzzy min–max neural networks are elaborated further. Table 10 shows the
results of the AlexNet pre-trained model used as a feature extractor. From the tables it can
be observed that the highest classification accuracy on the Herlev dataset is 90.22% and
good sensitivity of 95% with θ 0.3, whereas the 95.33% is the highest classification accuracy
on the Sipakmed dataset and good sensitivity of 95% with θ 0.5. Along with the accuracy,
sensitivity, specificity, precision, and F1 score are calculated and presented in the table.

Table 10. Performance Evaluation of Alexnet Pre-Trained Model with Fuzzy Min–Max
Neural Network.

Theta 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alexnet

Herlev
Dataset

Accuracy 87.32 84.06 84.06 90.22 82.97 84.78 85.14 88.04 84.78 39.86 34.78

Sensitivity 0.90 0.94 0.86 0.95 0.85 0.90 0.91 0.97 0.91 0.19 0.11

Specificity 0.81 0.58 0.78 0.77 0.77 0.70 0.70 0.64 0.68 0.99 1.00

Precision 0.93 0.86 0.92 0.92 0.91 0.89 0.89 0.88 0.89 0.97 1.00

F1 Score 0.91 0.90 0.89 0.93 0.88 0.90 0.90 0.92 0.90 0.31 0.20

Sipakmed
Dataset

Accuracy 92.62 93.20 95.08 95.00 93.93 95.33 94.92 93.69 90.82 80.66 80.00

Sensitivity 0.95 0.93 0.94 0.94 0.93 0.95 0.95 0.94 0.95 0.99 0.99

Specificity 0.90 0.93 0.96 0.97 0.95 0.96 0.95 0.93 0.85 0.54 0.52

Precision 0.93 0.95 0.97 0.98 0.97 0.97 0.97 0.95 0.90 0.76 0.76

F1 Score 0.94 0.94 0.96 0.96 0.95 0.96 0.96 0.95 0.93 0.86 0.86

Table 11 represents the results of the Googlenet pre-trained model. From the tables it
can be observed that highest classification accuracy on the Herlev dataset is 89.49% and
good sensitivity of 97% with θ 0.6, whereas 92.13% is the highest classification accuracy on
the Sipakmed dataset and good sensitivity of 91% with θ 0.3.
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Table 11. Performance Evaluation of Googlenet Pre-Trained Model with Fuzzy Min–Max
Neural Network.

Theta 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Googlenet

Herlev
Dataset

Accuracy 82.25 86.23 83.70 84.78 86.96 88.41 89.49 88.04 86.96 82.25 82.25

Sensitivity 0.87 0.93 0.89 0.89 0.92 0.98 0.97 0.97 0.95 0.87 0.87

Specificity 0.68 0.67 0.70 0.74 0.74 0.62 0.70 0.63 0.64 0.70 0.70

Precision 0.89 0.89 0.89 0.90 0.91 0.88 0.90 0.88 0.88 0.89 0.89

F1 Score 0.88 0.91 0.89 0.90 0.91 0.93 0.93 0.92 0.91 0.88 0.88

Sipakmed
Dataset

Accuracy 89.34 90.66 90.66 92.13 91.15 91.80 91.15 88.52 85.16 83.03 82.79

Sensitivity 0.91 0.91 0.92 0.91 0.89 0.91 0.90 0.86 0.86 0.96 0.93

Specificity 0.86 0.90 0.89 0.94 0.94 0.92 0.93 0.92 0.84 0.64 0.68

Precision 0.91 0.93 0.93 0.96 0.96 0.95 0.95 0.94 0.89 0.80 0.81

F1 Score 0.91 0.92 0.92 0.93 0.92 0.93 0.92 0.90 0.87 0.87 0.87

The results of the RestNet-18 model are shown in Table 12. The highest classification
accuracy on the Herlev dataset is 91.67% and good sensitivity of 99% with θ 0.5, whereas
92.87% is the highest classification accuracy on the Sipakmed dataset and good sensitivity
of 93% with θ 0.4.

Table 12. Performance Evaluation of ResNet-18 Pre-Trained Model with Fuzzy Min–Max
Neural Network.

Theta 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ResNet-18

Herlev

Accuracy 88.77 75.00 89.49 89.13 91.30 91.67 88.04 86.96 86.23 86.96 86.96

Sensitivity 0.92 0.92 0.91 0.91 0.97 0.99 0.97 0.94 0.94 0.95 0.95

Specificity 0.81 0.27 0.86 0.85 0.75 0.73 0.64 0.67 0.64 0.66 0.66

Precision 0.93 0.78 0.95 0.94 0.92 0.91 0.88 0.89 0.88 0.88 0.88

F1 Score 0.92 0.84 0.93 0.92 0.94 0.95 0.92 0.91 0.91 0.91 0.91

Sipakmed

Accuracy 91.48 90.82 91.31 92.79 92.87 93.77 90.90 86.80 81.72 77.21 72.46

Sensitivity 0.93 0.92 0.92 0.92 0.93 0.93 0.93 0.92 0.91 0.93 0.96

Specificity 0.89 0.88 0.90 0.94 0.93 0.95 0.87 0.79 0.67 0.53 0.36

Precision 0.93 0.92 0.93 0.96 0.95 0.96 0.92 0.87 0.81 0.75 0.70

F1 Score 0.93 0.92 0.93 0.94 0.94 0.95 0.93 0.89 0.86 0.83 0.81

The results of the RestNet-50 model are shown in Table 13. The highest classification
accuracy on the Herlev dataset is 88.77% and good sensitivity of 91%, whereas 95.33% is
the highest classification accuracy on the Sipakmed dataset and good sensitivity of 95%
with 0 and 0.5, respectively.

Performance Analysis

The result analysis discussed above shows that the proposed techniques give overall
good classification accuracy. Comparing the performance of the different pretrained mod-
els, the best classification accuracy obtained by the experimented pre-trained models is
shown in Figure 6. The performance comparison demonstrated with the best classification
accuracy, RestNet-50 followed by Alexnet, has performed better than other models with
best accuracies of 95.33% and 95.32%, respectively.
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Table 13. Performance Evaluation of ResNet-50 Pre-Trained Model with Fuzzy Min–Max
Neural Network.

Theta 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ResNet50

Herlev

Accuracy 88.77 86.23 87.32 88.04 87.32 87.32 85.87 87.32 86.96 82.25 81.88

Sensitivity 0.91 0.93 0.91 0.90 0.90 0.93 0.89 0.93 0.91 0.83 0.85

Specificity 0.84 0.68 0.78 0.82 0.79 0.73 0.77 0.73 0.77 0.81 0.73

Precision 0.94 0.89 0.92 0.93 0.92 0.90 0.91 0.90 0.92 0.92 0.90

F1 Score 0.92 0.91 0.91 0.92 0.91 0.91 0.90 0.91 0.91 0.87 0.87

Sipakmed

Accuracy 92.05 92.62 92.70 94.18 95.25 95.33 94.18 89.10 84.02 80.82 72.70

Sensitivity 0.93 0.93 0.94 0.95 0.94 0.95 0.94 0.85 0.82 0.95 0.99

Specificity 0.90 0.92 0.91 0.93 0.97 0.96 0.95 0.96 0.87 0.60 0.32

Precision 0.93 0.95 0.94 0.95 0.98 0.97 0.96 0.97 0.91 0.78 0.69

F1 Score 0.93 0.94 0.94 0.95 0.96 0.96 0.95 0.90 0.86 0.86 0.81
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The performance comparison between the machine learning classifiers and the FMMN
for classification shows that overall, the performance of the FMMN outperforms the ma-
chine learning classifier. Table 14 shows the comparative analysis.

Table 14. Best Classification Accuracy (%) of Two Datasets.

AlexNet GoogleNet ResNet18 ResNet50

Herlev 90.22 (FMMN) 89.49 (FMMN) 91.67 (FMMN) 92.03
(Simple logistic)

Sipakmed 95.32 (FMMN) 92.21
(Simple logistic)

93.85
(Simple logistic) 95.33 (FMMN)

Comparing the two datasets with the classification accuracy obtained, it can be ob-
served from Figure 7 that the Sipakmed dataset average classification accuracy with all the
pre-trained models have outperformed over the Herlev dataset. As mentioned, the convo-
lutional neural networks need large amounts of data to train the models, and the Sipakmed
dataset has a considerably large number of images as compared to the Herlev dataset.
Table 15 shows the comparative study outcomes with the results of the existing studies on
cervical cancer diagnosis that uses Pap-smear images using computer-aided applications.
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Table 15. Comparison Between the Proposed Method with the Existing Studies.

Approach Accuracy

Deep Learning (Resnet-50) [20] 74.04%

ResNet-152 [21] 94.89%

ResNet-50 [22] 89%

VGG-19 [24] 88%

Proposed Model [Hybrid CNN] ResNet50 95.33%

The advantage of the proposed method is it has given a significant good accuracy and
sensitivity for the cervical cancer image classification compared with the existing methods.
However, the limitation is FMMN is a complex architecture that requires a significant
amount of computational resources and training data.

6. Conclusions

A novel hybrid deep learning technique is proposed to solve the problem of cervical
cytology image classification to aid pathologists to carry out the smear test with good accu-
racy and less time. The proposed hybrid technique is based on deep learning pretrained
models, transfer learning, machine learning classifiers, and fuzzy min–max neural network.
Attempts are made to compare the performance of different deep learning models. The
highest classification accuracy is given by the ResNet-50 classifier of 95.33% with theta
value 0.5. Experimentation is performed on two different datasets to evaluate the perfor-
mance. Results obtained on the Sipakmed dataset were better than those obtained on the
Herlev dataset.

The future scope is to use the modified versions of the fuzzy min–max neural network
to improve the classification accuracy. The seven-class, five-class problem for classifica-
tion can be experimented with the proposed techniques to evaluate the performance for
multiclass classification problem.
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