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Abstract: When deciding on a kidney tumor’s diagnosis and treatment, it is critical to take its
morphometry into account. It is challenging to undertake a quantitative analysis of the association
between kidney tumor morphology and clinical outcomes due to a paucity of data and the need for
the time-consuming manual measurement of imaging variables. To address this issue, an autonomous
kidney segmentation technique, namely SegTGAN, is proposed in this paper, which is based on
a conventional generative adversarial network model. Its core framework includes a discriminator
network with multi-scale feature extraction and a fully convolutional generator network made up of
densely linked blocks. For qualitative and quantitative comparisons with the SegTGAN technique,
the widely used and related medical image segmentation networks U-Net, FCN, and SegAN are
used. The experimental results show that the Dice similarity coefficient (DSC), volumetric overlap
error (VOE), accuracy (ACC), and average surface distance (ASD) of SegTGAN on the Kits19 dataset
reach 92.28%, 16.17%, 97.28%, and 0.61 mm, respectively. SegTGAN outscores all the other neural
networks, which indicates that our proposed model has the potential to improve the accuracy of
CT-based kidney segmentation.

Keywords: kidney segmentation; generative adversarial networks; dense block

1. Introduction

One of the most common cancers of the urinary system is the renal tumor. The
majority of these tumors are cancerous, and their occurrence rate is rising yearly. There
were 208,000 diagnoses and 102,000 fatalities of kidney cancer in 2002 [1], while in 2018
there were more than 400,000 diagnoses and more than 175,000 deaths [2]. The incidence
increases between the ages of 60 and 70 years, and it is greater in industrialized nations than
in developing nations [3]. Spiral CT is frequently used for the clinical diagnosis of lesions
that occupy renal space, and the scan time is fairly quick. The substantial enlargement of
the kidney is the primary indicator of renal cell carcinoma in a CT imaging evaluation. The
patient’s soft tissue is significantly thickened at the same time that the tumor develops
and expands outward. Adipose tissue’s functionality is uncertain. The accuracy of kidney
segmentation may need to be further enhanced because the quality of the segmentation
results will affect the efficacy and side effects of radiation for kidney cancer.

In the past, segmenting renal CT data by hand required a skilled observer and was
a laborious operation that took time. Different segmentation techniques for renal CT images
have been developed to address this. Many researchers have suggested that by combin-
ing prior knowledge of human anatomy (such as the relative position or morphological
characteristics of the kidney), and according to the method of kidney positioning first
and then kidney segmentation, the degree of segmentation automation can be improved.
Yan et al. segmented the kidney using an improved region growth algorithm based on
multi-scale morphology and a labeling algorithm after using the spine as a marker and the
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connected region labeling algorithm based on image intensity to determine the kidney’s
position [4]. With the connected region labeling technique, Abirami et al. also identi-
fied the location of the kidney by using the spine as a marker. Based on this, the kidney
area was removed using the adaptive region growth method [5]. Anatomical details and
morphology were suggested by Berlgherbi et al. as a way to identify and segment the
kidney. The target area and mark are acquired after the spine has been removed using
a threshold and other picture adjustments. According to the picture gradient and mark
control watershed method, the kidney is segmented [6]. To achieve kidney segmentation
and tissue classification, Khalifa et al. developed a random forest approach based on prior
information concerning the kidney shape and high-order feature information [7]. A coarse
to fine method for segmenting the kidney from a CT picture in two phases was proposed
by Song et al. The approximate range of the kidney is first determined using the fuzzy c-
means clustering algorithm based on spatial information, and then the improved use of the
GrowCut algorithm results in fine segmentation [8]. There is a need for a complementary
approach through the combination of various segmentation algorithms because a single
segmentation method cannot satisfy the needs of CT image kidney segmentation. In order
to reliably and quickly extract renal lesions from CT images, Kaur et al. introduced a hybrid
segmentation approach that combines fuzzy c-means clustering based on spatial informa-
tion with distance regularized level set evolution (DRLSE). Fuzzy c-means clustering using
picture spatial information and hesitation is used to first obtain the target’s initial contour,
and then a distance regularization level set technique is used to segment the focus [9]. To
segment the kidney and renal cortex in an improved CT picture, Chen et al. utilized the
Intelligent Scissors algorithm, image cutting algorithm, and other active appearance model
methods [10]. A multimap technique integrating picture intensity and form constraints
was presented by Kim. Segmenting the kidney from a CT scan, predicting renal function
from the change in the renal volume, and helping the doctor come up with a treatment
plan for patients who have undergone partial nephrectomy are all possible [11].

Deep convolutional neural networks (CNNs) have frequently been used to separate
medical images in recent years [12–15]. For instance, the fully convolution network (FCN)
proposed by Shelhamer et al. [16] is an end-to-end network that solves the issue of semantic
segmentation by classifying images at the pixel level. Instead, Ronneberger et al. [17] used
a U-Net network to segment medical images. A contracting path is utilized in U-Net to
collect contextual data from images, while an expanding path is used to precisely pinpoint
the segmented target. To the same end, V-Net is a three-dimensional (3D) end-to-end
medical segmentation algorithm that was created by Milletari et al. [18]. This network uses
a residual learning approach to speed up convergence and adds the Dice coefficient as
a novel objective function. Among these, Pedraza et al. [19] used pretrained AlexNet to
distinguish between glomerulus and non-glomerulus. A total of 10,600 region of interest
(ROI) photos from 40 whole slide images were used in the investigation. Moreover, 244 CT
images of people with Autosomal Dominant Polycystic Kidney Disease (ADPKD) were
used in an investigation by Sharma et al. [20]. On slice-wise axial CT slices, they trained
a fully convolutional network for segmentation. Using multi-channel FCN on CT images,
where the feature vector was produced by the fusing of features from various channels,
Sun et al. [21] and Ruan et al. [22] combined a multi-scale feature extractor and a finder
of the area of interest with GAN. Furthermore, Sandfort et al. [23] and Conze et al. [24]
employed GAN to automatically segment numerous organs in abdominal CT and MR
images. This allowed for the efficient simultaneous segmentation of many organs. The
prostate, a male-specific reproductive organ located in the pelvic cavity, was segmented by
Wang et al. [25] using GAN. Based on [26], Yuan et al. [27] achieved 3D image segmentation
of abdominal organs and brain tumors, thereby breaking the 2D segmentation constraint.
In summary, the pros and cons of the above representative methods have been listed in
Table 1. On the public kidney data set Kits19, these approaches have so far undergone
testing and performed well. However, renal segmentation is made more challenging by the
intricacy of renal CT, particularly in the center of the left and right kidneys, where there is
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a small collecting system that does not belong to the kidney and no useful edge information.
As a result, we anticipate that the developed algorithm will be able to pick up more image
features and perform well when segmenting distinct slices of a kidney CT image.

Table 1. Pros and cons of several representative methods.

Reference Year Method Advantage Disadvantage

Yan et al. [4] 2010
Connected component
labeling algorithm and

region growing approach

Leverage
morphological features Long and time consuming

Ronneberger et al. [17] 2015 U-Net Multi-scale feature fusion Prone to underfitting

Shelhamer et al. [16] 2017 FCN Enable
end-to-end segmentation

Poor detail in
segmentation results

Pedraza et al. [19] 2017 AlexNet
First successful application of
Trick such as ReLU, Dropout,

and LRN in CNN

Increase in computational
volume; redundancy of some

feature information

Conze et al. [24] 2021 GAN
No need to design models

that follow any kind
of factorization

Non-convergence;
collapse problem

As a new end-to-end architecture for segmenting the kidney region, we suggest the
SegTGAN technique in this study, which draws inspiration from the SegAN model [28]. The
generational adversarial network (GAN) has decent generating abilities and can partially
capture data distribution. In this study, we adjusted the GAN network structure and
optimized the goal function to increase the kidney segmentation accuracy. The following
are the specific contributions of this work:

• The network used to generate the segmentation result images in the generator network
is an end-to-end complete convolutional network with a U-Net-like topology.

• To make dense connections, we decided to employ densely connected blocks between
the posterior layers and all the anterior layers, which ease the gradient vanishing prob-
lem, improve feature propagation, and significantly reduce the number of parameters.
By connecting the features in the channel dimension, they enable feature reuse.

• To avoid model overfitting and more reliably guarantee sparsity, multi-scale feature
connections are created in discriminator networks, and the L1 parametric form of the
mean absolute error is included as a regular term to the objective function.

2. Materials and Methods

A generator G network and a discriminator D network make up our segmentation
method, SegTGAN. The generator is made to pick up on the actual data distribution and
produce kidney-region images that are comparable to it. The discriminator generates
discriminating results by separating the images generated by the generator from the images
that represent the ground truth. In order to bring the two networks into conflict, the
discrimination results are sent back to the generator. As a result, the images produced by
the generator are closer to the real-world images. Figures 1–3 depict the network structure.

2.1. SegTGAN Architecture
2.1.1. Generator

As seen in Figure 1, the generator G is an end-to-end segmentation network. The
overall structure of G is based on the encoder-decoder structure of the U-Net [17], which
is based on a fully convolutional network [16]. Both up-sampling and down-sampling
techniques are used in this network. Three maximum pooling layers, three densely con-
nected blocks, and a convolutional layer with 3 × 3 convolution kernels make up the
down-sampling process. Three deconvolution layers, three densely connected blocks, and
a 1 × 1 convolution kernel are all included in the up-sampling process. Skip connections
between the two are added, making the network comparable to an autoencoder. With this
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design, it is possible to extract picture features at various sizes during down-sampling
and to provide a view at the same size as the input image during up-sampling, which is
comparable to reconstructing the output at the same size as the input. It can also learn
potential representations.

In order to achieve feature reuse by connecting the features in the channel dimension,
alleviate the gradient disappearance problem, and enhance the network performance,
a dense block structure is introduced into the generator network. This structure establishes
dense connections between the back layer and all of the front layers. According to the
dashed box in Figure 1, which depicts a structure with four layers, the underlying structure
is comparable to that of DenseNet [29]. Batch normalization, a rectified linear unit, and
a 3 × 3 convolution kernel are all included in each layer.
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Figure 1. The structure of the generator network model. The structure of the dense block is shown in
the box below.

2.1.2. Discriminator

The multi-dimensional feature extraction network with six layers is called discrimina-
tor D. Convolutional, BN, and leaky ReLU activation layers are all included in each layer.
The sizes of the convolutional kernels are 7 × 7, 5 × 5, 4 × 4, and 3 × 3. The discriminator
D’s structural details and the elements of the convolutional layers are shown in Figure 2.
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2.1.3. SegTGAN

The generator, which supplies the segmentation masks through the encoding and
decoding layers, and the discriminator, which determines if a given segmentation mask
is synthetic or genuine and then assesses it, make up the overall SegTGAN architecture
(Figure 3). Therefore, in order to encourage the generator to produce segmentation masks
that are as comparable as feasible, the adversarial network is trained to differentiate between
actual and artificial signals.
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2.2. Objective Function

The objective function of conventional GANs is defined as:

min
G

max
D

V(G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[1− log(D(G(x)))] (1)

where x represents the actual data and pdata(x) represents its probability distribution. The
random noise distribution pz(z) is typically satisfied by the noise data z. D(x) represents
the likelihood that the input image x originates from the training sample as opposed to the
one produced by the generator. The generator’s differentiation function is indicated by
the letter G(z).

The objective function of SegTGAN should comprise two elements, the first of which
is the mapping term of the generator. This is in line with both the objective function of
traditional GAN and our goal of applying a GAN network to kidney segmentation. The
discriminator’s decision result term is the second term. The generator is used to binary
mask image y from the original CT image x. For each data point, the discriminator D
produces a binary image categorization {0, 1}k. In this classification, k denotes the number
of decisions, 1 denotes that y is a ground-truth image from the training sample, and
0 indicates that y is a G-generated image. The Dice coefficient is a crucial indicator for
assessing how well segmentation is working. We improved the goal function’s training
outcomes by including a Dice coefficient control.

The L1 parametric loss, sometimes referred to as the mean absolute error (MAE)
loss, determines the average of the total absolute discrepancies between the actual and
predicted values. When there are outliers in the distribution of the target variable, the MAE
loss is more resistant to them. Adding L1 regularization is equivalent to adding a priori
knowledge to the model: the weights obey the zero-mean Laplace distribution. Moreover,
L1 regularization makes the weights of the neural network as small as possible, convergent
to zero, which is equivalent to reducing the complexity of the network and preventing
overfitting. The model’s capacity to generalize is enhanced by the fact that it has a lower



Diagnostics 2023, 13, 1358 6 of 12

level of complexity and so is more robust to noise and outliers. Thus, the following is the
final definition of objective function:

min
G

max
D

V(G, D) =
λ

N

N

∑
i=1

Edice(G(xi), yi) +
δ

N

N

∑
i=1

Emae( fD(xi, yi), fD(xi, G(xi))) (2)

Edice(xi, yi) = −
2∑N

i=1 xiyi + ε

∑N
i=1 (xi + yi) + ε

(3)

Emae(xi, yi) =
1
N

N

∑
i=1
‖xi − yi‖

1

(4)

where xi and yi refer to the input CT images and ground truth images, respectively, and N
is the number of training images. The input data xi is utilized to extract the hierarchical
features using the discriminator function fD. The smoothing term, ε, ensures that the
denominator is not zero. In addition, λ and δ are both adjusting variables to maximize the
weight effect.

2.3. Experimental Configuration and Evaluation Criteria
2.3.1. Data

The 2019 Kidney Tumor Segmentation Challenge provided the public dataset Kits19,
which is used in the model. The candidates for inclusion in this database were all patients
who underwent partial or radical nephrectomy for one or more kidney tumors at the
University of Minnesota Medical Center between 2010 and 2018. A total of 300 examples
were chosen at random from the group. Medical students working under the direction
of Dr. Christopher Weight, clinical chair, provided the manual segmentation labels. The
data of 150 randomly chosen subjects serve as the neural network training set, the data
of 60 subjects serve as the neural network validation set, and the remaining 90 subjects’
data serve as the neural network’s final test set. In preprocessing, a binning analysis
is performed using 16 × 128 × 128 slices without pixel value normalization but using
12 × 32 × 32 overlapping slices for the full data enhancement. The original scanned picture
resolution was 512 × 512. Blank facets are skipped during training, and overlapping facets
are produced for the prediction.

2.3.2. Implementation

The segmentation models in this paper are programmed using Python, TensorFlow,
and Keras. All the experiments are carried out on a personal workstation with a Nvidia
GeForce RTX 3080 GPU, which has a learning rate of 0.0001, weight decay of 0.0001, and
momentum of 0.9.

2.3.3. Performance Metrics

As an evaluation criterion for the network segmentation performance, several metrics,
including the Dice similarity coefficient (DSC), volumetric overlap error (VOE), aver-
age surface distance (ASD) [30], accuracy (ACC), sensitivity (SEN), and specificity (SPE),
are introduced.

The following definition is used for the DSC, an ensemble similarity measure function
that determines the contour similarity of a specific region in two images:

DSC =
2|A ∩ B|
|A|+ |B| =

2× TP
2× TP + FP + FN

(5)

where A and B, respectively, represent the segmentation results and the ground truth.
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The following is the approach used by the VOE to calculate the ratio between the
intersection and joint points of two images:

VOE(A, B) = (1− |A ∩ B|
|A ∪ B| )× 100% (6)

The average surface distance (ASD) between binary items in two pictures is calculated
and defined as follows:

ASD =
1

|S(A) + S(B)| (∑a∈S(A)
d(a, S(B)) + ∑b∈S(B) d(b, S(A))) (7)

where S(A) and S(B) are the surface voxels of the segmentation results and ground truth
masks, respectively. The value d(·) indicates the proximity of two images’ voxels by the
shortest distance.

The accuracy (ACC), sensitivity (SEN), and specificity (SPE) are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(8)

Sensitivity =
TP

TP + FN
(9)

Speci f icity =
TN

TN + FP
(10)

3. Results

Firstly, the training and validation datasets are employed to update the weights and
decide the optimal hyper-parameters of SegTGAN, respectively. Then, the performances
of SegTGAN on the Kits19 and Kits21 testing datasets are measured. The ACC, DSC,
and SEN of SegTGAN on the Kits19 and Kits21 datasets are 0.9728/0.9526/0.9539 and
0.9676/0.9507/0.9344, respectively. Some segmentation results of SegTGAN on Kits21 are
shown in Figure 4.
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SegTGAN is an enhanced generative adversarial segmentation model. In order to force
the development of segmentation results that resemble the ground truth, the generator uses
a dense block. To guarantee more accurate results, it is supplied to the discriminator along
with the labels. To verify that the enhanced generative adversarial network framework
can improve the segmentation performance, the performance of four network structures,
namely U-Net, FCN, SegAN, and SegTGAN, are compared. The final metric results are
obtained by computing each two-dimensional slice and averaging the results.
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3.1. Qualitative Evaluation

The SegTGAN model and the additional neural networks U-Net, FCN, and SegAN
were used to segment the experimental data, as shown in Figure 5. The segmentation results
demonstrate the presence of kidneys in various slices, including the right kidney alone, the
left kidney alone, and both the left and right kidneys. The fifth column in Figure 5 displays
the segmentation outcomes that the SegTGAN model examined. In comparison to the other
network segmentation outcomes, our model not only segments the outer contour well but
also segments the inside hollow region with good results. Figure 6 depicts the changes in the
loss function and Dice coefficients during training and validation. The loss functions of the
training and validating sets steadily diminish over the model training period, and the Dice
coefficients gradually rise as the number of training rounds rises. These trends imply that our
SegTGAN algorithm may enhance kidney segmentation accuracy based on all the CT slices.
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Figure 5. The segmentation results of each network in different slices on the Kits19 dataset. For
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truth labels are displayed in the first column, and the kidney contours produced using U-Net, FCN,
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The segmented kidney’s outline is the area that the colored curve has encircled.
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Figure 6. (a) Loss function of SegTGAN on Kits19; and (b) Dice coefficient of SegTGAN on Kits19.

3.2. Quantitative Evaluation

As indicated in Tables 2 and 3, the VOE, ASD, DSC, ACC, and SEN of U-Net are
0.1874/1.09/0.8968/0.9688/0.9146 and 0.2626/1.12/0.7522/0.9568/0.9296 on the Kits19
and Kits21 testing datasets, respectively. The results of FCN on the Kits19 and Kits21 test-
ing datasets are 0.2101/0.87/0.8758/0.9693/0.8985 and 0.2521/1.09/0.8418/0.9564/0.9294,
respectively. Moreover, the VOE, ASD, DSC, ACC, and SEN of the SegTGAN on the Kits19
and Kits21 testing datasets are 0.1617/0.61/0.9228/0.9728/0.9529 and 0.2260/1.03/0.9507/
0.9301/0.9676/0.9344, respectively. The results of U-Net, FCN, and SegTGAN indicate that
a single segmentation model cannot segment the kidney with ideal performance. Compared
with the SegTGAN, the VOE, ASD, DSC, ACC, and SEN of SegAN on the Kits19 and Kits21
testing datasets are 0.1736/0.68/0.9014/0.9717/0.9250 and 0.2343/1.07/0.8960/0.9671/0.9268,
respectively. The results verify that the introduction of a dense block structure into gen-
erative adversarial networks in this paper can improve the performance of the kidney
segmentation task. To determine whether there was a statistically significant performance
difference between our segmentation approach and the others, we performed a Wilcoxon
signed rank test. Our model performs significantly better than the other models in relation
to the majority of indicators (p-value < 0.05).

Table 2. Comparison of U-Net, FCN, SegAN, and SegTGAN on the Kits19 dataset.

Model VOE ASD DSC ACC SEN SPE

(mm) Max Min Mean

U-Net 18.74% ± 6.75% 1.09 ± 0.46 93.12% 54.23% 89.68% ± 4.30% 96.88% 91.46% 95.29%
FCN 21.01% ± 5.82% 0.87 ± 0.50 91.98% 48.11% 87.58% ± 7.54% 96.93% 89.85% 95.46%

SegAN 17.36% ± 2.43% 0.68 ± 0.20 94.72% 63.16% 90.14% ± 6.71% 97.17% 92.50% 95.54%
SegTGAN 16.17% ± 2.13% 0.61 ± 0.17 95.26% 58.30% 92.28% ± 3.24% 97.28% 95.39% 96.12%

Table 3. Comparison of U-Net, FCN, SegAN, and SegTGAN on the Kits21 dataset.

Model VOE ASD DSC ACC SEN SPE

(mm) Max Min Mean

U-Net 26.26% ± 0.10% 1.12 ± 0.62 81.61% 50.30% 75.22% ± 5.01% 95.68% 92.96% 98.49%
FCN 25.21% ± 0.12% 1.09 ± 0.65 88.37% 55.12% 84.18% ± 3.93% 95.64% 92.94% 98.41%

SegAN 23.43% ± 0.10% 1.07 ± 0.57 92.30% 58.40% 89.60% ± 4.87% 96.71% 92.68% 98.58%
SegTGAN 22.60%± 0.10% 1.03±0.52 95.07% 59.02% 93.01% ± 2.55% 96.76% 93.44% 98.62%



Diagnostics 2023, 13, 1358 10 of 12

4. Discussion

In an abdominal CT scan, renal segmentation refers to the kidney organ’s complete
marginal segmentation. The findings of the segmentation process demonstrate that some
photos require additional analysis using more sophisticated methods. In this study, we
developed a SegTGAN segmentation model and compared it to existing segmentation
techniques. The adversarial nature of the network as a whole is what the model depends
on. The generator processes the incoming CT picture and produces segmentation results
that resemble real labels. These results are given to the discriminator at the same time as
the labels. The discriminator network filters the input and produces a binary result that
can be trained in an antagonistic way to the generator and, eventually, achieve equilibrium.

This research has several restrictions. Even though the method has a high accuracy,
the accuracy is limited because the study employed a publicly available dataset and
the practical situation has a low amount of data. In future work, we will further tune
the network and test it on different datasets and clinical data to improve its robustness.
Moreover, we will try to apply the model to the segmentation of MRI images.

5. Conclusions

A novel deep neural network, namely SegTGAN, is proposed in this paper. The
contributions of this work are as follows. First, in this model, the generator network is
constructed using densely connected blocks and an encoder-decoder structure, while the
discriminator network is constructed using a multi-scale convolutional network. Second,
it is suggested that the corresponding loss functions for the two networks be used to
optimize the objective function and boost the segmentation performance. In the kidney
segmentation of CT scans from the Kits19 and Kits21 datasets, the segmentation results
of SegTGAN are fairly close to the actual data (ground truth). Compared to U-Net, FCN,
and SegAN, the DSC and SEN on the Kits19 testing dataset of SegTGAN are improved
by 2.6%/3.93%, 4.7%/5.54%, and 2.14%/2.89%, respectively, while the DSC and SEN on
the Kits21 testing dataset are improved of SegTGAN by 17.79%/0.48%, 8.83%/0.5%, and
3.41%/0.76%, respectively. In comparison to the other models, SegTGAN is more effective
at segmenting medical images. The SegTGAN model can be evaluated for inclusion in
practical applications because it is a more effective and reliable CT segmentation algorithm
for kidneys when qualitative and quantitative characteristics are compared.
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