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Abstract: We propose a dual-domain deep learning technique for accelerating compressed sensing
magnetic resonance image reconstruction. An advanced convolutional neural network with residual
connectivity and an attention mechanism was developed for frequency and image domains. First,
the sensor domain subnetwork estimates the unmeasured frequencies of k-space to reduce aliasing
artifacts. Second, the image domain subnetwork performs a pixel-wise operation to remove blur and
noisy artifacts. The skip connections efficiently concatenate the feature maps to alleviate the vanishing
gradient problem. An attention gate in each decoder layer enhances network generalizability and
speeds up image reconstruction by eliminating irrelevant activations. The proposed technique
reconstructs real-valued clinical images from sparsely sampled k-spaces that are identical to the
reference images. The performance of this novel approach was compared with state-of-the-art direct
mapping, single-domain, and multi-domain methods. With acceleration factors (AFs) of 4 and 5,
our method improved the mean peak signal-to-noise ratio (PSNR) to 8.67 and 9.23, respectively,
compared with the single-domain Unet model; similarly, our approach increased the average PSNR
to 3.72 and 4.61, respectively, compared with the multi-domain W-net. Remarkably, using an AF of 6,
it enhanced the PSNR by 9.87 ± 1.55 and 6.60 ± 0.38 compared with Unet and W-net, respectively.

Keywords: MRI reconstruction; attention mechanism; compressed sensing; data augmentation; deep
learning; dual residual CNN

1. Introduction

Magnetic resonance imaging (MRI) is a noninvasive and sophisticated medical imag-
ing method that sheds light on the anatomical structure and operation of the human body
and brain [1] by generating high-quality images. Each tissue’s unique properties can be
recognized using a novel MRI acquisition method. Based on the different tissue signal
diversities, MRI reconstructs quantitative images that are very important for the early
diagnosis of sickness or physical changes. MRI does not entail exposure to harmful radia-
tion [2], unlike X-rays, photoacoustic tomography, and computed tomography. However,
the long image acquisition time [3] makes it challenging to use MRI in time-sensitive
situations, such as in cases of stroke, although acquisition time can be reduced given that
MRI systems allow for comprehensive control of data acquisition. Acquired frequencies in
MRI are stored in k-space instead of image space. K-space is a matrix the same size as the
reconstructed image that stores complex (real and imaginary) raw MRI data. Every point in
this matrix holds a portion of the data needed to create the entire image. The periphery of
k-space possesses high spatial frequency that depicts information concerning image edges,
details, and sharp transitions. On the other hand, the central area of k-space retains the
high spatial frequency that expresses the image at its brightest. Fully sampled k-space is
essential for obtaining high-resolution images but increases acquisition time. Acquiring a
few frequencies is one of the most popular methodologies for rapid MRI reconstruction.
However, due to undersampling, tissue structures are often distorted, and aliasing artifacts

Diagnostics 2023, 13, 1306. https://doi.org/10.3390/diagnostics13071306 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13071306
https://doi.org/10.3390/diagnostics13071306
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-6000-9128
https://orcid.org/0000-0003-0334-504X
https://orcid.org/0000-0002-4631-5353
https://orcid.org/0000-0002-7001-1667
https://orcid.org/0000-0001-8109-2055
https://doi.org/10.3390/diagnostics13071306
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13071306?type=check_update&version=1


Diagnostics 2023, 13, 1306 2 of 18

appear in the images. Compressed sensing (CS) [4] randomly employs an iterative process
to select appropriate frequencies for reconstructing suitable images from sparsely sampled
MRI data. However, these iterative methods are time-consuming, which makes them
challenging to use in conjunction with fast MRI.

Deep learning (DL) has been effectively applied for the analysis of medical images [5,6].
Deep neural networks have emerged in medical image reconstruction, classification, and
computer-based disease identification [7]. The early detection of a tumor is more important
for effective treatment, especially when seeking to avoid surgery and reduce the risk of
death. DL in computer-aided diagnosis (CAD) systems increases the accuracy and efficiency
of diagnosing the normal (non-tumor zone) and abnormal (tumor zone) tissues at different
stages that can be used in smart healthcare systems. Recently, DL has been used to address
the shortcomings of iterative conventional CS techniques. DL is crucial for the efficient
generation of high-quality images from undersampled k-spaces and obviates the need for
repeated processing after the model has been appropriately trained by providing it with
both fully and partially sampled k-spaces from corresponding images. A neural network [8]
is first utilized to lessen aliasing artifacts in multi-coil MRI [9]. DL-based repetitive unrolled
optimization approaches [10–12] can then be applied for CS-MRI reconstruction to better
learn image features; however, the processing times for the iteration are relatively long and
the ill-posed inverse problem remains to be solved. Several strategies [13–22] have been
used to enhance the quality of distorted images. Distorted images can be reconstructed
from sparse spatial frequencies using an inverse fast Fourier transform (IFFT); however, the
visual characteristics may be restored incorrectly when frequencies are significantly sparse.
Frequency domain networks [23–26] estimate the unknown missing k-space frequencies
before image conversion; these networks also tend to recover low-importance sensor data
that increase their reconstruction time. Direct mapping networks [27,28] straightforwardly
convert the frequency into an image; however, they only work for relatively small images
(<128 × 128 pixels) due to the large memory requirements. Single-domain networks are
usually applied to the sensor or image domain, but the resulting reconstructed images
contain significant artifacts that obscure the image’s content.

Dual-domain methods [29–33] work in both the frequency and image domains by
connecting inverse or direct Fourier transforms (IFT and FT, respectively) and benefit from
the complementary characteristics of the two spaces. The performance of some cross-
domain approaches has surpassed that of deep cascade convolutional neural networks
(DC-CNNs) [34]. KIKI-net [29] deploys four CNNs sequentially for iteration, whereas a
hybrid cascade [30] uses six cascade CNNs with six IFT/FT blocks. A hybrid W-net [35]
combines a Unet [36] for the image domain with a residual Unet for the k-space through
an IFFT; however, this model lacks data consistency measures. The use of a residual CNN
in the sensor domain and a dense CNN in the image domain has been demonstrated [31].
IKWI-net [32] applies a CNN to zero-filled images first, as opposed to raw MRI data. The
dual-task approach [33] uses two data consistency blocks with IFT and FT operations
and performs unsupervised reconstruction using two Unet blocks. State-of-the-art multi-
domain networks commonly use either Unet or residual Unet architectures. However,
due to the multiple FT/IFT blocks with cascade CNNs, training and testing times must
be adjusted for different sampling rates. Moreover, these multi-domain methods split
the real and imaginary components into two channels instead of using complex-valued
networks. This procedure does not preserve the data’s phase information. Thus, the
development of complex-valued networks is essential for quantitative and qualitative
images. A comparison of non-residual and residual CNNs for MRI reconstruction was
conducted [37]; the findings have since been incorporated into more recent models [38].
A fundamental block diagram of non-residual and residual CNNs is shown in Figure 1.
Traditional CNNs have a severe flaw in that they must learn the total feature map, which
requires a large number of parameters. As a result, they are costly to train and slow to run.
Residual networks (ResNets) are a type of neural network developed as an enhancement
over regular CNNs. It is a form of CNN in which the previous layer’s input is added to
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the current layer’s output. This skip connection facilitates network learning and leads to
improved performance. The ResNet architecture has demonstrated performance in various
tasks, including image classification, object detection, and semantic segmentation.
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Figure 1. The fundamental structure of the convolutional neural network (CNN): (a) traditional CNN
and (b) residual CNN.

Here, we introduce an advanced dual-domain MRI reconstruction approach that uses a
complex-valued residual attention convolutional neural network (RA-CNN) to modify the
multi-domain W-net architecture through residual connectivity and attention mechanisms
for frequency and image domains. Recently, the attention mechanism has been effectively
used for computer-based medical diagnosis. CNNs can easily incorporate this mechanism
to automatically highlight salient elements. The proposed complex-valued RA-CNN is
comprised of two subnetworks: one each for the sensor and image domains. First, the
sensor domain subnetwork predicts the unmeasured frequencies of k-space to reduce
aliasing artifacts. Second, the image domain subnetwork performs a pixel-wise operation
to remove blur and noise artifacts. Skip connections efficiently concatenate the feature maps
to alleviate the vanishing gradient problem that occurs as network depth increases, thus
preventing interruption of the network training procedure. Integration and communication
between the two subnetworks promotes data consistency and more efficient learning of the
features from both domains. At the same time, the attention gate (AG) in each decoder layer
enhances network generalizability and speeds up image reconstruction by eliminating
irrelevant activations, without an iteration process. Therefore, the proposed technique
reconstructs real-valued clinical images from sparsely sampled k-space that are identical
to the fully sampled k-space images. These images appear to be of higher quality than
those produced using other dual-domain cascade networks or single-domain methods.
Complex-valued data augmentation (DA) is also applied to overcome data scarcity issues.
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2. Proposed Methodology

According to the Nyquist–Shannon theorem [39], discrete Fourier methods can only
access information when the sampling rate is double the bandwidth of the recorded
continuous-time signal. MRI relies heavily on this Nyquist rate. If pertinent preced-
ing information is acquirable, reconstruction techniques other than Fourier analysis can be
used to retrieve valuable information from sparsely sampled data below this rate. Hence,
we developed an RA-CNN technique that calculates intrinsic correlations between fully
sampled and undersampled k-spaces, along with their reconstructions. The RA-CNN
consists of two neural subnetworks: sensor domain and image domain networks. These
subnetworks are trained from end to end through sparsely sampled complex-valued MRI
data. The skip connections of residual CNNs perform better than traditional CNNs and
execute much faster. Added novel attention gates with each skip connection help to extract
the more important features from both the signals and images. The k-spaces and images
reconstructed by these subnetworks are similar to fully sampled k-spaces and images.
Figure 2 shows the workflow of our proposed multi-domain MRI reconstruction method,
i.e., the RA-CNN, which uses two RA Unet blocks connected by an IFFT.
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Figure 2. Flowchart of the proposed dual-domain magnetic resonance imaging (MRI) reconstruction
technique.

The undersampled k-space (Ku) is generated by elementwise multiplication between
the entire k-space (K) and the sub-sampling mask (U). First, the sensor/frequency network
Snet tries to estimate the unmeasured frequencies by reducing frequency loss between the

fully sampled and reconstructed k-space. The initial image
^
I0 is then reconstructed by IFFT

from the output of the first network. Finally, blurring and noise artifacts are removed by the
image/spatial domain network Inet, which is achieved by reducing pixel disparity between
the reconstructed final output (R) and the fully sampled reference image (T).

2.1. Deep Learning

DL methods accelerate MRI reconstruction and improve image quality through the
signal projection of undefined regions. This interpolation removes aliasing artifacts by
satisfying the Nyquist rate. Here, a DL model reconstructs unique suitable images by fitting
the sparsely sampled data. Notably, our approach does not generalize the signal to inde-
terminable regions, unlike conventional band-limited signal extrapolation techniques [40]
and low-rank modeling of local k-space neighborhoods [41].

The proposed method is described below in terms of the sensor domain network, IFFT
operation, and image domain network.

2.1.1. Sensor Domain Network

The sensor domain network, Snet, attempts to fully regain the k-space,
^
Knorm, from the

undersampled k-space, Ku. Mathematically, this is represented as

^
Knorm = Snet(K unorm) (1)
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where Kunorm represents the normalized undersampled k-space and is expressed by

Kunorm =
Ku− µKutrain

σKutrain
(2)

where µKutrain and σKutrain represent the mean and standard deviation (SD) of the given
undersampled k-spaces, respectively. This network uses complex, normalized, two-channel
(real and imaginary), and sparsely sampled raw MRI data as input and outputs the complex
k-space.

2.1.2. Inverse Fast Fourier Transform

The reconstructed k-space of the sensor domain network is denormalized before IFFT.
The normalization can be reversed by

^
K = Kunorm × σKutrain + µKutrain (3)

After denormalization of the reconstructed k-space to yield
^
K, it is transformed into

images using the IFFT (F−1) operation:

^
I0 = F−1

(
^
K
)

(4)

where
^
I0 indicates the initial reconstructed image. There are no trainable parameters for

this section.

2.1.3. Image Domain Network

The image domain network Inet takes the abovementioned initial reconstructed image
as input, which is renormalized to increase the convergence speed of the network:

^
I0norm =

^
I0 − µI0train
σI0train

(5)

where µI0train and σI0train represent the mean and SD of the elementary reconstructed
image, respectively. This normalized image then traverses the network to generate the final
output image, R:

R =Inet

(
^
I0norm

)
(6)

This network also uses a residual attention Unet architecture through concatenation
with the undersampled input k-space.

3. Proposed Network Architecture

Our advanced RA-CNN was designed based on residual connectivity and modification
of the AG [42]. Batch normalization [43] speeds up the training process compared with the
baseline Unet. Unet possesses 23 layers, whereas the RA-CNN possesses 81 convolutional
and deconvolutional layers. The gradient details must pass across many tiers and could
dissipate before they reach subsequent layers, which causes the vanishing gradient problem.
Residual connectivity lessens the likelihood of a vanishing gradient and simplifies the
network train.

The sensor domain network structure shown in Figure 3 (left side) consists of two main
subdivisions: the down-sampling and up-sampling sections. The down-sampling section
consists of four consecutive convolutional blocks (CBs) used for extracting k-space features.
Every CB contains two 3 × 3 convolutional layers with a rectified linear unit (ReLU) [44]
activation function and padding = 1. The first CB is applied to the 256 × 256 normalized
undersampled k-space with 48 kernels. The channel numbers then gradually increase by
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64, 128, and 256. After each CB, with the exception of the last CB in the decoding section,
a max-pooling operation is performed. At each step, this process doubles the feature
number and halves the input dimension. Up-sampling involves 2 × 2 deconvolution
(upscaling), an AG, and CBs. The up-sampling portion re-establishes the size of the features
and preserves the symmetric form of the encoding portion. The loss of data generated
by the decoding/encoding operation is reduced by this balanced form, which also allows
for the reprocessing of features through their concatenating in the associated layer. The
features of both layers flow through the AG before concatenation. The AG can determine
the correlations between frequencies and create long dependencies to access important
information. The last layer of this section executes a linear 1 × 1 convolutional operation
using two filters. Finally, this network generates complex k-space by concatenating the last
layer’s output and normalizing the undersampled k-space through a residual connection.
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The image domain network structure shown in Figure 3 (right side) also has two main
sections: the down-sampling and up-sampling sections. In the down-sampling section, the
first CB is applied to the 256 × 256 normalized initial reconstructed images with 48 filters.
The filter numbers then gradually increase by 64, 128, and 256. After each CB, a max-
pooling process is executed to extract more specific image features, with the exception of
the last CB in the decoding section. The up-sampling step, in contrast, retains the symmetric
shape of the encoding block and preserves the dimensions of the feature maps. At every
skip connection, the features of upper and lower layers flow via the AG. The AG assembles
the essential features of various types of spatial information. The last layer of this part
performs a linear 1 × 1 convolutional operation with a single filter. The final image is
reconstructed by concatenating the output of the last layer of the network and inputting
the undersampled k-space.

Attention Gate

The attention mechanism [45] for medical image analysis automatically accrues new
information by focusing on target structures of varying size and shape. Models with AGs
intuitively discover the important hidden elements from an input image for a certain
task. To increase model sensitivity and prediction accuracy, AGs may be readily attached
to popular CNNs such as Unet, without any increase in computing complexity. In an
encoder–decoder-based approach, various low-level feature extractions are carried out
during feature interpretation in the first few layers. The redundant features are reduced
through active suppression using AGs at the skip connections. Two inputs, g and x, are
required for every AG. The next bottom layer of the network provides the gating signal, g;
since it comes from a more extensive area of the network, it accurately represents further
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useful features. The input feature, x, is the outcome of skipped connections that arise from
the early phases and, notably, provides better spatial information.

As presented in Figure 4, input features xl
i execute a 1 × 1 convolution operation

with a stride of 2 × 2 to decrease the size (H ×W) by half, whereas gating signals gl+1
i

execute a 1 × 1 convolution operation with a stride of 1 × 1. Consequently, the gating
signals and updated input features maintain the same spatial geometry. Using elementwise
summation, the ReLU activates them before mapping by WT

int into a lower-dimensional
space for gating procedures. The vector in [0, 1] is leveled by the sigmoid function, with
coefficients closer to 1 indicating more important traits. The dimension of the attention
weighting matrix αl

i is then restored to match the pixel intensity of the provided input
features using a trilinear up-sampler. The attention weighting matrix αl

i and input features

xl
i are multiplied elementwise to produce the output

^
x

l

i of the AG, which is then sent to the
regular CBs.
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4. Experimental Details
4.1. Dataset and Undersampling Mask

In this simulation, we used publicly available Calgary–Campinas [46,47] T1-weighted,
fully sampled brain MRI k-space data. The dataset was acquired using a magnetic res-
onance scanner (Discovery MR750; General Electric Healthcare, Waukesha, WI, USA)
via a collaboration between researchers at the University of Calgary’s Vascular Imaging
Lab (Calgary, AB, Canada) and the Medical Image Computing Lab at the University of
Campinas (São Paulo, Brazil). A total of 45 k-spaces were used, where every k-space
had 170 sagittal cross-sectional T1-weighted MRI sequence images (256 × 256). In total,
25 k-spaces (4250 slices) were used during training, 10 k-spaces (1700 slices) were used for
validation, and another 10 k-spaces (1700 slices) were used only for testing. In the training,
validation, and testing phases, there were no repeat object slices. During training, the
zero-filled undersampled k-space was used for network input. The fully sampled k-space
and corresponding fully sampled images were used as the network target outputs. To
train and test each network, two-dimensional Gaussian undersampling sequences were
employed. Simulation analyses were conducted using four-, five-, and six-fold acceleration
factors (AFs).

Data Augmentation

DL models require large amounts of training data to avoid overfitting and underfitting
issues. However, it can be expensive and time-consuming to gather well-annotated medical
data. DA [48] is frequently used in DL to enhance the size and heterogeneity of the training
set and thus significantly improve efficiency while decreasing generalization errors in
DL-based models. DA strategies are less popular for image reconstruction applications and
are also considerably more challenging due to the extensive measurements (i.e., complex
data) involved [49]. By providing fully sampled complex MRI scans, augmented training
data can be generated that include the undersampled k-space along with reference images
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and the associated k-space. The following augmentation processes were applied using the
proposed RA-CNN method:

• Rotation range = 40 degrees;
• Height shift range = 0.075%;
• Width shift range = 0.075%;
• Zoom range = 0.25%;
• Shear range = 0.25%;
• Vertical flip = true;
• Horizontal flip = true;
• Fill mode = nearest.

The visual effects of the augmented k-spaces and their corresponding images are
shown in Figure 5. Notably, the field strengths of the MRI scanners used for acquisition
may have differed. DA impacts the ability to generalize new MRI scanner models (i.e.,
those not available during training). On unknown scanner sequences, DA can enhance
reconstruction quality.
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4.2. Evaluation Metrics

Network performance was evaluated using three parameters: the structural similarity
index measure (SSIM) [50], normalized root mean square error (NRMSE), and peak signal-
to-noise ratio (PSNR). The SSIM perceptual index measures the similarity between two
images by comparing the reciprocal dependencies between neighboring pixels with respect
to contrast, structural characteristics, and brightness. The SSIM between the desired image
(T) and reconstructed image (R) is given by

SSIM (T, R) =
(2µTµR+c1)(2σTR+c1)(
µ2

T+µ
2
R+c1

)(
σ2

T+σ
2
R+c1

) (7)
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where µT and µR are the average values of T and R, respectively, σ2
T and σ2

R represent the
respective pixel variance values, and σTR is the covariance value. c1 and c2 are calculated
to assist with data division:

c1 = (0 .01b)2, c2 = (0 .03b)2

with b = max(T)–min(T)

NRMSE compares pixel disparities between the network predictions and reference
values, which is calculated as follows:

NRMSE(T, R) =

√
1
N ∑N

i = 1 (T i–Ri)
2

max(T)–min(R)
(8)

where Ti and Ri represent the fully sampled and reconstructed images, respectively, and
N represents the size of the images. PSNR measures the relationship between the signal’s
peak potential power and the noise that degrades fidelity:

PSNR(T, R) = 20 log10

 255√
1
N ∑N

i = 1 (T i–Ri)
2

 (9)

These metrics were chosen because they are frequently applied for image reconstruc-
tion assessment. Higher SSIM and PSNR values denote a better outcome. On the other
hand, smaller NRMSE values indicate better images.

4.3. Loss Function

The loss function assesses the difference between the fully sampled and sub-sampled
images. The main objective of the proposed method is to reduce the value of this loss
function, in which a smaller difference between the fully sampled and undersampled
images indicates efficient reconstruction. Reconstruction performance can be enhanced
using an appropriate loss function that provides precise gradient data for network training.
The weighted sum of the NRMSE in each domain was used as the loss function to compute
frequency and pixel-wise disparities and is expressed as

Loss =
1
M

M

∑
i=1
{ω × NMRSE (Ki,

^
Ki) +(1−ω) × NRMSE (T i, Ri)} (10)

where Ki and
^
Ki represent the target and reconstructed k-spaces in the sensor domain,

respectively; Ti and Ri denote the target and reconstructed images in the spatial domain
of the i-th instance in the training dataset, respectively; and M is the number of training
instances. With our method, the initial weight (ω) was 0.001; this value was updated
continuously to minimize loss.

4.4. Experimental Setup

A Windows 10 Pro 64-bit computer with an Intel core i7-9800X 3.80 GHz processor,
128 GB of RAM, and an NVIDIA GeForce RTX 2080 Ti graphics processing unit was used
for model training and testing. The TensorFlow v2.4 and Keras v2.4 open-source libraries
were utilized to implement the models in Python 3.8 and PyCharm environments. In the
RA-CNN, the loss function was reduced by an Adam optimizer using the momentum of
β1 = 0.9 and β2 = 0.999. The initial learning rate was 10−3 but was subsequently reduced to
10−7. A small batch size (n = 16) was used, and 1500 epochs were employed for training the
proposed RA-CNN. The proposed network’s training and validation losses are illustrated
in Figure 6; the measurements show that the normalizing effect of the residual connection
reduces the probability of overfitting.
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5. Results and Discussion

The effectiveness of our proposed RA-CNN was compared with direct mapping and
single- and multi-domain networks. Unet [36], the de-aliasing generative adversarial
network (DAGAN) [13], RefineGAN [14], the projection-based cascade Unet (PBCU) [51],
and the fully dense attention (FDA)-CNN [52] are single-domain techniques, while the
DC-CNN [34], KIKI-net [29], W-net [35], the hybrid cascade [30], and the dual-encoder
Unet [53] are multi-domain approaches. The GAN-based DAGAN applies a residual Unet
architecture for the generator and combined adversarial and innovative content losses.
RefineGAN measures cyclic loss using a residual Wasserstein GAN [54]. PBCU uses five
consecutive Unet blocks, and the FDA-CNN employs attention mechanisms with a densely
connected CNN. The DC-CNN utilizes multiple cascading CNNs for MRI image enhance-
ment. KIKI-net uses four Unet blocks, which sequentially operate in k-space, image space,
k-space, and image space. W-net uses two Unet blocks, and the hybrid cascade uses six
Unet blocks. The dual-encoder Unet applies decomposing automated transform by mani-
fold approximation (dAUTOMAP) [28] and two encoders within the Unet framework. The
implementation and hyperparameters were based on original research for each approach.
Simulations were conducted to test the performance of the proposed RA-CNN when using
the abovementioned state-of-the-art techniques; SSIM, NRMSE, and PSNR values were
evaluated through numerical analysis as performance metrics.

An AF of 4 was used to train the networks, which were evaluated using four-, five-,
and six-fold AFs (AFs 4–6, respectively). Visual assessment of the tested k-spaces and
reconstruction images for AFs 4 and 5 are shown in Figures 7 and 8, respectively. In the
figures, the first row shows the fully sampled reference image (a), undersampled k-space
(b), and reconstructed undersampled image (c). The second row shows the images recon-
structed by the Unet (d), W-net (e), and RA-CNN (f) networks using the undersampled
k-space. The undersampled image was generated using an IFT; the image exhibited unnat-
ural inconsistent artifacts and blurred edges. The single-domain network Unet enhanced
the qualitative values of the initial zero-filling image. The hybrid W-net performed bet-
ter than Unet and improved the image quality and quantitative values. Moreover, the
RA-CNN more accurately reconstructed the undersampled k-space as the target image
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than the single- and multi-domain networks. Specifically, the RA-CNN focused on the
features essential for diagnosis during image reconstruction and performed better than the
other techniques in terms of the elimination of artifacts. The RA-CNN produced superior
quantitative values for a specific slice (No. 100) of the reconstructed image compared to the
single- and multi-domain networks.
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sampled reference image and (b) undersampled k-space. Image reconstructed by the (c) inverse fast
Fourier transform (IFFT), (d) Unet, (e) W-net, and (f) RA-CNN methods.
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image and (b) undersampled k-space. Image reconstructed by the (c) IFFT, (d) Unet, (e) W-net, and
(f) RA-CNN methods.

The mean and standard deviation SSIM, NMRSE, and PSNR values obtained using
the various state-of-the-art methods for AFs 4 and 5 are shown in Table 1. Along with
these quantitative results, clinical parameters such as edge sharpness, motion fidelity,
artifacts, image distortion, and diagnostic score are essential for accurately diagnosing
the reconstructed images. To assess statistically significant changes, we utilized one-way
analysis of variance (ANOVA) and post hoc paired t-tests. Statistical importance was
determined using a p-value < 0.01. The one-way ANOVA testing revealed differences
(p < 0.01) with statistical significance among all measurements and acceleration parameters.
Multi-domain networks generated more accurate quantitative results than single-image-
domain networks. These observations and numerical analyses showed that the proposed
RA-CNN generated the most accurate SSIM and PSNR values, although that was not the
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case for the NRMSE values. The hybrid cascade approach yielded better NRMSE values
under both sampling rates, although the difference in performance from the RA-CNN was
very small in this respect. The paired t-tests revealed that the RA-CNN outperformed the
other approaches in these assessments.

Table 1. Mean ± standard deviation SSIM, NRMSE, and PSNR values obtained using the state-of-
the-art methods with different AFs.

AFs Methods Type SSIM NRMSE PSNR

Zero-filling 0.654 ± 0.04 0.038 ± 0.08 23.93 ± 2.62
dAUTOMAP DM 0.849 ± 0.04 0.025 ± 0.02 27.87 ± 1.93

Unet SD 0.977 ± 0.06 0.023 ± 0.01 33.28 ± 3.14
DAGAN SD 0.963 ± 0.10 0.029 ± 0.02 31.33 ± 3.11

RefineGAN SD 0.979 ± 0.07 0.019 ± 0.01 35.44 ± 3.71
PBCU SD 0.983 ± 0.06 0.018 ± 0.03 34.69 ± 3.97

4× FDA-CNN SD 0.981 ± 0.05 0.012 ± 0.01 38.86 ± 4.05
DC-CNN DD 0.986 ± 0.05 0.012 ± 0.01 39.51 ± 3.35
KIKI-net DD 0.986 ± 0.06 0.012 ± 0.01 39.64 ± 3.35

W-net DD 0.985 ± 0.06 0.014 ± 0.01 38.23 ± 3.32
Hybrid cascade DD 0.986 ± 0.03 0.012 ± 0.01 39.87 ± 3.38

Dual-encoder Unet DD 0.980 ± 0.05 0.018 ± 0.02 34.53 ± 1.35
RA-CNN DD 0.989 ± 0.03 0.013 ± 0.00 41.95 ± 3.21

Zero-filling 0.593 ± 0.05 0.055 ± 0.01 23.63 ± 2.67
dAUTOMAP DM 0.823 ± 0.02 0.051 ± 0.25 27.20 ± 1.51

Unet SD 0.966 ± 0.10 0.027 ± 0.02 31.88 ± 3.13
DAGAN SD 0.949 ± 0.11 0.039 ± 0.01 28.69 ± 2.66

RefineGAN SD 0.973 ± 0.08 0.023 ± 0.01 33.84 ± 3.83
PBCU SD 0.983 ± 0.06 0.021 ± 0.02 33.25 ± 2.76

5× FDA-CNN SD 0.976 ± 0.05 0.016 ± 0.01 33.31 ± 4.06
DC-CNN DD 0.982 ± 0.07 0.015 ± 0.01 37.67 ± 3.20
KIKI-net DD 0.982 ± 0.07 0.015 ± 0.02 37.67 ± 3.22

W-net DD 0.981 ± 0.06 0.017 ± 0.01 36.50 ± 3.21
Hybrid cascade DD 0.982 ± 0.08 0.014 ± 0.02 37.88 ± 3.25

Dual-encoder Unet DD 0.975 ± 0.04 0.025 ± 0.03 33.24 ± 1.70
RA-CNN DD 0.986 ± 0.04 0.015 ± 0.01 41.11 ± 3.23

DM: direct mapping; SD: single-domain network; DD: dual-domain network. dAUTOMAP: decomposing
automated transform by manifold approximation; DAGAN: de-aliasing generative adversarial network; PBCU:
projection-based cascade Unet; CNN: convolutional neural network; FDA-CNN: fully dense attention CNN; DC-
CNN: deep cascade CNN; RA-CNN: residual attention CNN; AF: acceleration factor; SSIM: structural similarity
index measure; NRMSE: normalized root mean square error; PSNR: peak signal-to-noise ratio.

Figure 9 depicts a fully sampled slice (No. 100) (a) and its corresponding undersampled
k-space (b) for AF 6. The zero-filling image (c) contains severe noise and blur artifacts. Unet
(d) showed a slight improvement in qualitative value, and the hybrid W-net (e) performed
better than Unet. The output image of the RA-CNN was of higher quality than the images
of other models, and the details were better restored. This appropriate reconstruction
with artifact-free high temporal resolution is essential for a number of medical image
post-processing activities such as classification and segmentation.

The mean and standard deviation SSIM, NMRSE, and PSNR values obtained using
the various state-of-the-art methods for AF 6 are shown in Table 2, along with the number
of parameters for each network. According to these data, the RA-CNN outperformed all of
the other networks, followed by the FDA-CNN with the AG. The cascade CNN showed
higher qualitative values for the measured metrics. Compared to the standard Unet and
cascade CNN models, the proposed RA-CNN improved the mean PSNR value by 9.87 and
6.11 dB, respectively. The paired t-tests revealed that the RA-CNN outperformed the other
approaches in this acceleration factor. Direct mapping dAUTOMAP computes only 0.16 M
parameters. On the other hand, the FDA-CNN and dual-encoder Unet have almost 1 M
trainable parameters. Attention mechanism-based models require fewer parameters than
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the more sophisticated Unet-based cascade networks; specifically, Unet, Wnet, and PBCU
have approximately 3.13 million (M), 1.13 M, and 3.15 M parameters, respectively, whereas
the RA-CNN has 0.68 M parameters. A compromise between scan time and image quality
results in an MR exploration. Optimizing an MR exploration procedure and its sequence
parameters will be necessary based on the organs and disease.
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Figure 9. MRI images from the test dataset (slice No. 100) for AF 6: (a) fully sampled reference
image and (b) undersampled k-space. Image reconstructed by the (c) IFFT, (d) Unet, (e) W-net, and
(f) RA-CNN methods.

The results demonstrate that the RA-CNN was superior in terms of generating aliasing
artifact- and blur-free images. Our multi-domain approach uses two residual Unet archi-
tectures with AGs and maintains symmetric encoders and decoders on either side of the
network. The first advantage of this framework is that it establishes long-range connections
between the encoder and equivalent decoder parts, thus allowing for the merging of various
pieces of hierarchical information from the encoder and decoder and thereby increasing the
network’s precision and scalability. Unet, Wnet, and PBCU have 23, 43, and 74 convolu-
tional layers, respectively, whereas the RA-CNN has 81 convolution and deconvolution
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layers. The vanishing gradient issue in a neural network such as the RA-CNN poses a
challenge with respect to the training results obtained during backpropagation; however,
the shallow residual connection solves this issue. Model performance is enhanced by the
residual units, which directly convey features from the early to end stage of convolution.
As demonstrated in Figure 6, the regularization effect of residual connections decreases
the risk of overfitting the training data. However, if the steps used for obtaining consistent
cascade data are applied, computing time and costs increase. AGs merge lower and higher
spatial data to identify meaningful features during a single computation. Consequently,
the RA-CNN model requires fewer parameters than the single- and dual-domain networks.
The single-domain models require 0.6–1.0 s (s) for each slice reconstruction. The cascade
dual-domain methods require > 1 s per image reconstruction. The proposed RA-CNN
generates better images within an average of 0.6 s. Therefore, computation time and cost
are reduced. Notably, the results showed that the AG-based methods performed better than
the other single and cascade networks at higher AFs. Even though we are currently just
testing our method with brain data and different sampling rates, not with other types of
MRI datasets involving areas such as the knee or abdomen, the results are still significant.

Table 2. Mean ± standard deviation SSIM, NRMSE, and PSNR values of the state-of-the-art methods
obtained using AF 6.

Methods SSIM NRMSE PSNR Parameters (M)

Zero-filling 0.651 ± 0.09 0.071 ± 0.08 20.63 ± 3.15 -
dAutomap 0.692 ± 0.09 0.033 ± 0.03 24.73 ± 3.01 0.16

Unet 0.701 ± 0.09 0.031 ± 0.02 27.43 ± 2.49 3.13
PBCU 0.801 ± 0.05 0.035 ± 0.07 31.25 ± 1.43 3.15

FDA-CNN 0.816 ± 0.18 0.022 ± 0.02 31.88 ± 4.00 1.01
DC-CNN 0.779 ± 0.12 0.030 ± 0.03 30.31 ± 3.40 1.39
KIKI-net 0.756 ± 0.05 0.026 ± 0.09 30.93 ± 1.49 1.25

W-net 0.731 ± 0.07 0.038 ± 0.02 30.70 ± 3.66 1.13
Hybrid cascade 0.813 ± 0.11 0.025 ± 0.12 31.19 ± 2.40 1.66

Dual-encoder Unet 0.751 ± 0.08 0.024 ± 0.02 25.68 ± 3.00 0.99
RA-CNN 0.848 ± 0.19 0.021 ± 0.04 37.30 ± 4.04 0.68

M = million.

6. Conclusions

The proposed dual-domain RA-CNN reconstructs MRI images from sparsely sampled
k-space data using two neural networks. The first CNN in the sensor domain predicts
unacquired frequencies and then applies the second CNN in the image domain for image
enhancement. Furthermore, each network has a unique impact on MRI reconstruction.
Edge content and geometry are restored more effectively from undersampled k-space
using this multi-domain CNN. As a CNN is used directly to retrieve the sensor data, some
lower frequencies might be recoverable. Consequently, this method is capable of extracting
realistic visual features and reconstructing images that are identical to real images. Since the
visual characteristics are preserved, radiologists can interpret data accurately and rapidly.
Residual connection significantly enhances feature reuse and network data flow. Moreover,
AGs mix lower and higher spatial data to identify valuable features while using fewer
parameters than the other sophisticated Unet-based methods. Although network training
takes a long time, images can be generated rapidly after training.

We show that the aggregation of two domains has an impact on MRI reconstruction
performance. In end-to-end reconstruction based on residual and attention mechanisms, the
RA-CNN performed better than several alternative single- and multi-domain networks, as
reflected in the PSNR and SSIM values under various sampling rates. In future research, we
will apply our strategy for interactive temperature-based MRI reconstruction for real-time
diagnostics and therapy.
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