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Abstract: Early detection of pre-diabetes (pre-DM) can prevent DM and related complications.
This review examined studies on non-laboratory-based pre-DM risk prediction tools to identify
important predictors and evaluate their performance. PubMed, Embase, MEDLINE, CINAHL were
searched in February 2023. Studies that developed tools with: (1) pre-DM as a prediction outcome,
(2) fasting/post-prandial blood glucose/HbA1c as outcome measures, and (3) non-laboratory predic-
tors only were included. The studies’ quality was assessed using the CASP Clinical Prediction Rule
Checklist. Data on pre-DM definitions, predictors, validation methods, performances of the tools
were extracted for narrative synthesis. A total of 6398 titles were identified and screened. Twenty-four
studies were included with satisfactory quality. Eight studies (33.3%) developed pre-DM risk tools
and sixteen studies (66.7%) focused on pre-DM and DM risks. Age, family history of DM, diagnosed
hypertension and obesity measured by BMI and/or WC were the most common non-laboratory
predictors. Existing tools showed satisfactory internal discrimination (AUROC: 0.68–0.82), sensitivity
(0.60–0.89), and specificity (0.50–0.74). Only twelve studies (50.0%) had validated their tools externally,
with a variance in the external discrimination (AUROC: 0.31–0.79) and sensitivity (0.31–0.92). Most
non-laboratory-based risk tools for pre-DM detection showed satisfactory performance in their study
populations. The generalisability of these tools was unclear since most lacked external validation.

Keywords: pre-diabetes; early detection; risk prediction tools; non-laboratory-based

1. Introduction

In 2021, type 2 diabetes mellitus (T2DM) accounted for up to 6.7 million deaths, while
impacting the lives of 537 million individuals globally [1]. T2DM is often preceded by a
stage of sub-DM hyperglycaemia, known as pre-diabetes (pre-DM), which lasts for several
years and can be reversible [2]. Indeed, with timely intervention, the blood glucose levels
of pre-DM individuals can return to within the normal range [3]. Therefore, cost-effective
methods that use the clinical and/or anthropometric characteristics of individuals to predict
their pre-DM risks have gained a lot of attention among researchers and clinicians. Such
methods can include risk prediction tools, models or algorithms.

To our knowledge, only one review, published in 2014, has evaluated pre-DM risk
tools and included studies up to 2013 [4]. The review found that existing pre-DM tools
offered similar internal predictive performances despite varying development methods
and different numbers of predictors included [4]. However, it is important to note that
the majority of studies included in this review used laboratory biomarkers (e.g., blood
triglyceride levels) as predictors in the models [4], which limits the applicability for case-
finding in general and primary care populations. Pre-DM risk prediction tools are intended
to be simple, low-cost and non-laboratory-based in order to save unnecessary blood tests.
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The inclusion of laboratory biomarkers cannot be cost-effective as the amount of time
and cost incurred for an individual to obtain the required laboratory variable would be
similar to performing a pre-DM and DM diagnostic blood test directly. Notably, recent
studies have reported the association between DM risks and other less common, modifiable
lifestyle factors, e.g., the level of alcohol consumption [5] and the quantity of sleep [6].
As a result, there has been increasing attention on using modifiable predictors to develop
risk prediction tools. For instance, despite being developed by different methods, both of
the non-laboratory-based risk prediction tools developed by Dong et al. in 2022 included
sleeping hours as one of the predictors [7], which could indicate the clinical and statistical
significance of such predictors in predicting pre-DM risks. Having said that, the effects of
such lifestyle predictors on the prediction accuracy and performance of non-laboratory-
based pre-DM risk prediction tools has not been reviewed. Furthermore, due to recent
technological advancements, a number of recent studies that used novel methods, such
as artificial intelligence and machine learning (ML), to develop prediction tools have been
published since Barber et al.’s 2014 review [4].

The current study therefore aimed to systematically review existing non-laboratory-
based pre-DM tools published in the literature, focusing on identifying important non-
laboratory predictors and evaluating the performance of these tools to provide an update
on the current evidence.

2. Materials and Methods
2.1. Search Strategy

Separate searches were conducted on three medical databases (PubMed, Embase,
MEDLINE), and on one nursing-related database (CINAHL), from 1946 until February
2023 to identify available studies. Embase and MEDLINE were searched via Ovid, while
CINAHL was searched via EBSCOhost. In order to avoid missing potential studies, ci-
tation searching on reference lists of selected studies, and internet manual searching on
Google Scholar were conducted. The detailed search strategy is listed in Table S1 of the
Supplementary Material.

2.2. Screening and Selection of Studies

Studies were included if they met all of the following criteria:

1. Included pre-DM as the only, or one of the, main outcome(s) of the risk prediction tool;
2. Reported the main outcome using: (i) fasting glucose, (ii) 2-h post-prandial glucose,

or (iii) haemoglobin A1c (HbA1c);
3. Provided a detailed methodology for the development of their tool;
4. Only utilised non-laboratory predictors as their prediction variables;
5. Developed tools that were for adults (≥18 years old) in the general population;
6. Published in the English language with full-text available.

Conversely, studies were excluded if they met any of the following:

1. Included gestational DM or Type 1 DM as the outcome(s) of risk prediction;
2. Only investigated associations between predictors and outcomes;
3. Only aimed to develop or test theoretical algorithms without the intention of imple-

mentation in clinical practice;
4. Utilised any laboratory or genetic predictors as their prediction variables;
5. Developed the tool for a specific population, e.g., pregnant women, children, patients

of a specific disease group, or older people;
6. Commentaries, editorials, conference abstracts, and systematic reviews.

EndNote X9 and EndNote 20 were used to store and manage identified studies. Fol-
lowing the removal of duplicates, two reviewers (W.C. and Y.M.) independently screened
the titles and abstracts to select eligible studies based on the inclusion and exclusion criteria.
Full texts of selected studies were then retrieved and independently reviewed. Disagree-
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ments or discrepancies were resolved through discussion to reach an agreement between
the two reviewers.

2.3. Data Extraction and Quality Assessment

Data from the selected studies were extracted and tabulated into a Google Spreadsheet
for the narrative synthesis, according to the following list: (1) study region, (2) study sample
size, (3) data source for the study sample, (4) prediction outcome and its measurements,
(5) methods used for tool development, (6) methods used for predictors selection, (7) predic-
tors included in the final tool, and (8) performance evaluation measures in internal and/or
external validation, including area under the Receiver-Operating Characteristic curve (AU-
ROC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value
(NPV), with their respective 95% confidence intervals if reported. For ease of interpretation,
extracted predictors were categorised into three groups: (i) socio-demographic factors,
(ii) clinical factors, and (iii) lifestyle factors. Furthermore, predictors of a similar nature
were combined under one broad umbrella term. For instance, (i) the predictor variable
“hypertension” in this review included use of antihypertensive medications, history of
hypertension, and duration of hypertension, but excluding ‘systolic/diastolic blood pres-
sure levels’ as ‘blood pressure’ was counted as a standalone predictor; (ii) “history of
hyperglycaemia” referred to past episodes of hyperglycaemia confirmed by a blood test in
a medical check-up, during an illness, or during pregnancy; (iii) “dyslipidaemia” included
dyslipidaemia and history of hyperlipidaemia; and (iv) “family history of DM” summarised
any predictors related to the number of parents and/or siblings with DM. All units were
converted to mmol/L for blood glucose levels, and to percentage for HbA1c for comparison
and consistency.

We applied the Clinical Prediction Rule Checklist of Critical Appraisal Skills Pro-
gramme (CASP) appraisal checklist [8] to assess the quality and risk-of-bias of the selected
studies. This review was reported in compliance with the PRISMA Checklist and PRISMA
flowchart [9].

Details of the protocol for this systematic review were registered on PROSPERO and
can be accessed at www.crd.york.ac.uk/prospero/display_record.php?RecordID=345706
(accessed on 23 August 2022).

3. Results

A total of 6398 titles were identified from the database searches. Following removal
of duplicates, 4686 articles were screened based on titles and abstracts, and 77 full texts
were then retrieved. A total of 19 studies were eligible to be included in the review. Seven
additional studies were identified through citation and internet manual searches, with five
of them meeting the inclusion criteria. Finally, 24 studies were included in our review
(Figure 1). From the 24 studies, there were a total of 28 risk prediction tools developed.
Table 1 provides a summary on the study subject characteristics and prediction tools of the
included studies.

The majority of the studies were conducted in Asia (37.5%) [7,10–17], six in the Middle
East and North Africa (25.0%) [18–23], five in Europe [24–28], three in North America [29–31],
and one in South America [32]. For the data source of the study sample, about half of the
studies (54.2%) developed their risk prediction tools using retrospective population-level
health data [7,11,12,15–18,22,25,26,28,29,31], while the remaining studies sampled their
data from community-based health surveys [10,13,14,19–21,23,24,27,30,32]. The median
development sample size was 2073 and ranged from 308 to 40,381.

3.1. Quality of Included Studies

The CASP Clinical Prediction Rule Checklist was applied to assess the quality of the
included studies (Table S2 of the Supplementary Material). The validity of the results reported
in several studies is uncertain due to the lack of external validation [7,13,16,18–21,23,28,30–32].
As a result, the applicability of the findings is compromised. Furthermore, one study used a

www.crd.york.ac.uk/prospero/display_record.php?RecordID=345706
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small external sample of 83 individuals to validate their tool [14], which could lead to poten-
tially biased results. Overall, it was found that the methods used to construct different tools
were adequately reported in nearly all of the studies. However, in a study that developed
the prediction tool by ML [22], there could be selection bias due to limited explanations
regarding how the factors were selected and weighted in the prediction algorithms. The
majority of studies reported the performance of their prediction tools by AUROC, sensitiv-
ity, specificity, PPV, and NPV. However, two did not report the AUROC [27,28], four did
not report the PPV and NPV of the tools [12,14,17,20], and two reported AUROC without
referring to any other performance measurements [10,29]. Ten studies (41.7%) sought to im-
prove the precision of the predictive performances by refining their tools with the addition
and/or elimination of predictors following the initial validation [7,12,14,20,25–29,32].
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3.2. Outcomes of Risk Prediction Tools

Eight studies (33.3%) developed tools for predicting pre-DM risk only [11–15,17,18,28]
with the remaining sixteen studies focusing on the prediction of both pre-DM and DM
risk [7,10,16,19–27,29–32]. An inconsistency in the outcome definition and measure of pre-
DM was noted among the studies. For instance, thirteen studies (54.2%) defined pre-DM
as when one of the two biochemical parameters were met (fasting/postprandial plasma
glucose level (n = 11), fasting plasma glucose level/HbA1c (n = 1), random plasma glucose
level/HbA1c (n = 1)) [7,11–14,16,17,21,22,26,27,30,32]. One third of the studies (37.5%) used
only one parameter (fasting plasma glucose level (n = 5), postprandial plasma glucose.
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Table 1. Summary of study subject characteristics and prediction tools of the included studies (n = 24).

Development Sample Outcome of the Tool Predictors of the Tool Article Quality

Author, Year Country/ Region n Age
(Range/Mean) Data Source Extent of

Hyperglycaemia
Outcome

Measured by Definition(s) Development
Method(s) No. of Predictors

Included
No. of CASP Criteria

Met (Out of 11)

Abbas, 2021
[18] Qatar 5814 40.6 Population-based

BioBank data PDM HbA1c 5.7-6.4% Multivariate
LR model 5

- Age
- BMI
- HTN
- Sex
- WC

8

Bahijri, 2020
[19] Saudi Arabia 1403 32.0 Cluster sampling in

healthcare centres PDM/DM
HbA1c/

FPG/
1-h PG

≥5.7%
≥6.1 mmol/L
≥8.6 mmol/L

Multivariate
LR model 5

- Age
- Sex
- WC

- Hx of HG
- Family Hx of DM

8

Barengo, 2017
[32] Colombia 2060 47.2

Age-stratified
sampling among
population-wide
insurance users

PDM/DM FPG/
2-h PG

≥5.6 mmol/L
≥7.8 mmol/L

Multivariate
LR model 4

- Age
- WC

- HTN
- Family Hx of DM

9

Dong,
2022 [7] Hong Kong 1238 40.7 Population-based

health survey data PDM/DM HbA1c/
FPG

≥5.7%
≥6.1 mmol/L

Multivariate
LR model;
Extreme
Gradient

Boosting ML
model

7; 8

LR:
- Age
- BMI

- WHR
- Smoking

- Sleep hours
- Exercise

- Fruit
consumption.

ML:
- Age
- BMI

- WHR
- SBP
- WC

- Smoking
- Sleep hours

- Exercise

10

Fu,
2014 [10] China 7953 56.4

Community-based
health screening

study
PDM/DM 2-h PG ≥7.8 mmol/L Multivariate

LR model 9

- Age
- Height

- BMI
- WC
- SBP

- Pulse
- HTN
- DLP

- Family Hx of DM

9

Fujiati, 2017
[11] Indonesia 21,720 >18 Population-based

health survey data PDM FPG/
2-h PG

5.6–6.9 mmol/L
7.8–11.0 mmol/L

Multivariate
LR model 8

- Age
- Sex

- Education level
- Family Hx of DM

- Smoking
- Exercise

- BMI
- HTN

9

Gao,
2010 [12] China 1986 52.7 Population-based

health survey data PDM FPG/
2-h PG

6.1–6.9 mmol/L
7.8–11.0 mmol/L

Multivariate
LR model 3

- Age
- WC

- Family Hx of DM
10
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Table 1. Cont.

Development Sample Outcome of the Tool Predictors of the Tool Article Quality

Author, Year Country/ Region n Age
(Range/Mean) Data Source Extent of

Hyperglycaemia
Outcome

Measured by Definition(s) Development
Method(s) No. of Predictors

Included
No. of CASP Criteria

Met (Out of 11)

Gray,
2010 [26] UK 6186 57.3 Population-based

screening study data PDM/DM FPG/
2-h PG

≥6.1 mmol/L
≥7.8 mmol/L

Multivariate
LR model 7

- Age
- Ethnicity

- WC
- BMI
- Sex

- Family Hx of DM
- HTN

10

Gray,
2012 [25] UK 6390 57.3 Population-based

screening study data PDM/DM
FPG/
2-h

PG/HbA1c

≥6.1
mmol/L≥7.8

mmol/L≥6.5% †

Multivariate
LR model 6

- Age
- Ethnicity

- BMI
- Sex

- Family Hx of DM
- HTN

10

Gray,
2013 [24] Portugal 3374 51.5 Cluster sampling in

healthcare centres PDM/DM FPG ≥5.6 mmol/L Multivariate
LR model 4

- Age
- BMI
- Sex

- HTN

9

Handlos,
2013 [20]

Middle East and
North Africa 6588 44.3

Opportunity
sampling in study

locations
PDM/DM HbA1c ≥6.0% Multivariate

LR model 7

- Age
- BMI
- Sex

- Family Hx of DM
- Family Hx of DM (2) ‡

- Hx of GDM
- Ethnicity

8

Henjum, 2022
[23] Algeria 308 ≥18

Opportunity
sampling in study

locations
PDM/DM HbA1c ≥5.7% Multivariate

LR model 3
- Age
- BMI
- WC

8

Hische,
2010 [27] Germany 1737 52.1

Opportunity
sampling in
healthcare

centres

PDM/DM FPG/
2-h PG

≥6.1 mmol/L
≥7.8 mmol/L

Decision tree
guided by ML 2 - Age

- SBP 9

Koopman,
2008 [29] USA 4045 20–64 Population-based

health survey data PDM/DM FPG ≥5.6 mmol/L Multivariate
LR model 6

- Age
- BMI
- Sex

- Family Hx of DM
- Pulse
- HTN

10

Memish,
2015 [21] Saudi Arabia 1435 ≥20

Geographically
stratified sampling

in healthcare centres
PDM/DM FPG/

2-h PG
≥5.6 mmol/L
≥7.8 mmol/L

Multivariate
LR model 4

- Age
- Hx of GDM

- HTN
- WC

7
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Table 1. Cont.

Development Sample Outcome of the Tool Predictors of the Tool Article Quality

Author, Year Country/ Region n Age
(Range/Mean) Data Source Extent of

Hyperglycaemia
Outcome

Measured by Definition(s) Development
Method(s) No. of Predictors

Included
No. of CASP Criteria

Met (Out of 11)

Rajput,
2019 [13] India 892 42.2

Opportunity
sampling in study

locations
PDM FPG/

2-h PG
5.6–6.9 mmol/L

7.8–11.0 mmol/L
Multivariate

LR model 4

- Age
- Family Hx of DM

- Waist-to-height ratio
- DBP

8

Robinson,
2011 [30] Canada 4366 40–70

Opportunity
sampling in

community clinics
PDM/DM FPG/

2-h PG
≥6.1 mmol/L
≥7.8 mmol/L

Multivariate
LR model 12

- Age
- BMI
- WC

- Exercise
- Fruit/Veg consumption.

- HTN
- Hx of HG

- Family Hx of DM
- Sex

- Ethnicity
- Macrosomia

- Education level

8

Sadek,
2022 [22] Qatar 1660 37 (median) Population-based

BioBank data PDM/DM HbA1c/
RPG

≥5.7%
≥7.8 mmol/L

Multivariate
LR model;

4 ML models
using: (1)
Random
Forest, (2)
Gradient
Boosting

Machine, (3)
XgBoost, (4)

Deep Learning

7

- Age
- Sex

- WHR
- BMI
- HTN
- DLP

- Education level

8

Stiglic,
2018 [28] Slovenia 2073 54.9

Population-wide
electronic medical

record dataset
PDM FPG 6.1–6.9 mmol/L Multivariate

LR model 6

- Age
- Sex
- WC

- Hx of HG
- Family Hx of DM

- HTN

9

Tan,
2016 [14] Japan 1054 Not reported

Community-based
health screening

study
PDM FPG/

2-h PG
6.1–6.9 mmol/L

7.8–11.0 mmol/L
Multivariate

LR model 5

- Sex
- WC

- HTN
- Hx of HG
- Exercise

9

Wang,
2015 [15] South China 6197 51.6 Population-based

health survey PDM FPG 6.1–6.9 mmol/L Multivariate
LR model 5; 4

Men:
- Age
- WC
- BMI

- Family Hx of
DM

- HTN

Women:
- Age
- WC
- BMI

- Family Hx
of DM

10
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Table 1. Cont.

Development Sample Outcome of the Tool Predictors of the Tool Article Quality

Author, Year Country/ Region n Age
(Range/Mean) Data Source Extent of

Hyperglycaemia
Outcome

Measured by Definition(s) Development
Method(s) No. of Predictors

Included
No. of CASP Criteria

Met (Out of 11)

Xin,
2010 [16] Rural China

LR:
1131
Tree:
893

52.4 Population-based
health survey PDM/DM FPG/

2-h PG
≥6.1 mmol/L
≥7.8 mmol/L

Multivariate
LR model;

Classification
tree analysis

6; 5

LR:
- Age
- BMI

- WHR
- Family Hx of

DM
- HTN

- HTN (2) §

Tree:
- WHR
- WC

- HTN
- Age

- Family Hx
of DM

8

Yu,
2010 [31] USA 3932 ≥20 Population-based

health survey PDM/DM FPG ≥5.6 mmol/L

Multivariate
LR model;

Support vector
machine by

ML

10

- Age
- Sex

- Family Hx of DM
- Ethnicity
- Weight
- Height

- WC
- BMI
- HTN

- Exercise

8

Yu,
2022 [17] China 40,381 44.0 Population-based

health survey PDM FPG/
2-h PG

6.1–6.9 mmol/L
7.8–11.0 mmol/L

Multivariate
LR model 6

- Age
- Education level

- Family Hx of DM
- WC
- BMI
- SBP

9

Note: BMI = Body Mass Index, BP = Blood Pressure, consumpt. = consumption, DBP = Diastolic Blood Pressure, DLP = Dyslipidaemia, DM = Diabetes Mellitus, FPG = Fasting Plasma
Glucose, GDM = Gestational Diabetes Mellitus, HG = Hyperglycaemia, HTN = Hypertension, Hx = History, LR = Logistic Regression, ML = Machine Learning, PDM = Prediabetes
Mellitus, RPG = Random Plasma Glucose, SBP = Systolic Blood Pressure, Veg = Vegetable, WC = Waist Circumference, WHR = Waist-Hip-Ratio, 1-h PG = 1-h Post-prandial Plasma
Glucose, 2-h PG = 2-h Post-prandial Plasma Glucose. † PDM was defined by FPG and 2-h PG while DM was defined by FPG, 2-h PG and HbA1c. ‡ The tool included two separate
predictors related to family history of diabetes, which were parental history of diabetes and number of siblings with diabetes. § The tool included two separate predictors related
to hypertension, which were history of hypertension and duration of hypertension. level (n = 1) HbA1c (n = 3) [10,15,18,20,23,24,28,29,31], and two studies defined pre-DM using
either one out of three parameters (fasting/postprandial plasma glucose level/HbA1c) [19,25]. The thresholds for defining pre-DM cases were also inconsistent, even within the same
parameter. For example, pre-DM was defined as a HbA1c of ≥5.7% (≥39 mmol/mol) in five studies [13,18,19,22,23], with one study using a definition of ≥6.0% (≥42 mmol/mol) [20].
Of the nineteen studies that used fasting plasma glucose levels as the outcome definition, twelve used 6.1 mmol/L (110 mg/dL) as the threshold [7,12,14–17,19,25–28,30], while seven
studies used 5.6 mmol/L (100 mg/dL) [11,13,21,24,29,31,32] for the diagnosis of pre-DM.



Diagnostics 2023, 13, 1294 9 of 16

3.3. Predictors for Risk Prediction Tools

Predictors among the pre-DM risk prediction tools, and their frequencies of being
included in a tool, are summarised in Figure 2. In general, non-laboratory-based pre-
DM risk prediction tools included a median of six predictors (range: two to twelve). A
total of 23 different predictors were identified among the 28 tools, including 15 clinical,
4 socio-demographic, and 4 lifestyle factors. The risk prediction tools tend to include more
clinical factors than socio-demographic and lifestyle factors. Age was the most common
predictor to predict pre-DM as it was included in all but one of the tools (96.4%) [14]. Other
commonly included factors were obesity, measured by body mass index (BMI) or waist
circumference (26 tools), family history of DM (19 tools), hypertension (18 tools), and sex
(14 tools). The most commonly included lifestyle factor among the tools was exercise. Less
common predictors included waist-to-height ratio [13], sleep duration [7], and macrosomia
(applicable to a woman who had given birth to a child with an excessive birth weight) [30].
Notably, age, family history of DM, hypertension and obesity (represented by BMI and/or
WC) were predictors included among all the tools that had been externally validated [10–
12,14,15,17,22,24–27,29], indicating their robustness and reliability.
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3.4. Methods for Tool Development

Logistic regression (LR) was used to develop the prediction tool in all but one of
the studies [27]. Of the four studies (16.7%) that applied more than one development
method (other than logistic regression) [7,16,22,31], all used machine learning (ML). No
studies reported a significant difference in predictive performances in the tools developed
by different methods. For instance, Dong et al. (2022) [7] developed two pre-DM and
DM risk prediction models using LR and ML methods, and found similar performance
results (AUROC: 0.81 and 0.82, respectively). Another study reported a slightly inferior
performance of the classification tree model (AUROC: 0.69) when compared with the LR
model (AUROC: 0.72) [16].
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3.5. Performance of Risk Prediction Tools

Performances of the risk prediction tools, when validated internally or externally,
are summarised in Table 2. It was found that half of the studies validated their risk
prediction tools using an external dataset [10–12,14,15,17,22,24–27,29], with three such
studies having validated the tools with two or more external datasets [15,17,24]. Eight
studies (33.3%) had validated their tools internally [7,16,18,20,21,23,30,31]. Among them,
five studies used a proportionated dataset derived from the same source as the development
dataset [7,16,18,30,31], two studies validated using bootstrapping methods [20,23] and one
study randomly removed fifty participants from their development dataset in order to serve
it as their validation sample [21]. The sample size of the validation dataset ranged from
50 to 66,108, with a median of 1987. Four studies (16.7%) did not perform any validation and
only reported the tool performances that were generated during development [13,19,28,32].

The most frequently reported prediction performance measure was AUROC, but two
studies did not report this for pre-DM prediction [14,27]. Existing tools showed mostly
fair performances in internal validation, two studies that performed internal validation
using the split-sample method yielded AUROCs above 0.8 [7,18]. On the other hand, the
performance of the tools in external validation when available was more variable, with
AUROCs ranging from 0.31 to 0.79, and mostly between 0.6 and 0.8. The prediction models
developed by Wang et al. (2015) [15] performed poorly (AUROC: 0.31 and 0.50) when
they were validated in an external dataset that was demographically different from the
development dataset. It has been noted that the 95% confidence interval for AUROC was
not reported in nine of the included studies (37.5%) [10,13,14,16,24,25,27,29,31], with two
of the nine studies not presenting any information on AUROC [14,27].

Finally, sensitivities and specificities of the tools, acquired either during development
or as a result of validation, together with their corresponding risk thresholds or cut-offs,
were reported among all studies. Only around half of the studies reported assessment
on the prediction tools’ goodness-of-fit, or the accuracy of the predicted risk against the
observed risk, [7,11,12,15,17–19,21–25,30,32], by calibration plots or the Hosmer–Lemeshow
test [33]. Furthermore, only one study [17] evaluated their prediction tools using more
recent performance measures, such as the decision-curve analysis [34].
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Table 2. Summary of validation performance of the pre-DM prediction tools reported by the included studies (n = 24).

Author, Year Types of Validation
(“I”/“E”) Source of Validation Sample Sample Size Discriminative Performance

(AUROC (95% CI))

Predictive Power
(Sen. (95% CI), Spe. (95% CI),
PPV (95% CI), NPV (95% CI))

Abbas, 2021
(LR Model) [18] I Same dataset as development data

(20/80 split) 1454 0.80 (0.78, 0.83) 0.86 (0.83, 0.89), 0.58 (0.55, 0.61),
0.50 (0.46, 0.53), 0.90 (0.87, 0.92)

Bahijri, 2020 [19] NA No validation performed; performance
data is from model development - 0.76 (0.73, 0.79) 0.69, 0.69,

0.40, 0.88

Barengo, 2017
(IGR model) [32] NA No validation performed; performance

data is from model development - 0.72 (0.69, 0.74) 0.57, 0.73,
0.58, 0.76

Dong, 2022 [7] I Same dataset as development data
(33/66 split) 619 LR: 0.81 (0.77, 0.85)

ML: 0.82 (0.78, 0.86)

LR:
0.89, 0.62
0.31, 0.97

ML:
0.79, 0.74
0.36, 0.95

Fu, 2014
(Non-invasive model) [10] E External community-based health

survey dataset 1455 0.65 None reported for the non-invasive model

Fujiati, 2017 [11] E External population-based health
survey dataset 6933 0.65 (0.62, 0.67) 0.55 (0.51, 0.59), 0.66 (0.65, 0.67),

0.12 (0.11, 0.13), 0.94 (0.94, 0.95)

Gao, 2010
(PDM as the model outcome)

[12]
E External population-based health

survey dataset 4336 Men: 0.61 (0.58, 0.65)
Women: 0.63 (0.61, 0.66)

Men:
0.86 (0.84, 0.87),
0.21 (0.19, 0.23),

No PPV and NPV

Women:
0.76 (0.74, 0.77),
0.44 (0.42, 0.46),

No PPV and NPV

Gray, 2010 [26] E External population-based screening
study dataset 3171 0.72 (0.69, 0.74) 0.81 (0.78, 0.84), 0.45 (0.43, 0.47),

0.29 (0.27, 0.31), 0.90 (0.88, 0.91)

Gray, 2012
(Validated by 2 definitions of

outcome) [25]
E External population-based screening

study dataset 3004 OGTT † as outcome: 0.69
HbA1c ‡ as outcome: 0.67

OGTT as outcome:
0.75 (0.71, 0.78),
0.52 (0.50, 0.54),
0.29 (0.26, 0.31),
0.89 (0.87, 0.91)

HbA1c as outcome:
0.75 (0.72, 0.78),
0.50 (0.48, 0.52),
0.37 (0.35, 0.40),
0.83 (0.81, 0.85)

Gray, 2013 [24] E

(1) External sampling by city-wide
random digit dialling

(2) External prospective 1-year
follow-up data on the city-wide cohort

2131
1304

(1) 0.69
(2) 0.72

(1):
0.73 (0.69, 0.78),
0.56 (0.53, 0.58),
0.27 (0.24, 0.30),
0.90 (0.88, 0.92)

(2):
0.69 (0.63, 0.74),
0.63 (0.60, 0.67),
0.38 (0.34, 0.42),
0.86 (0.83, 0.89)

Handlos, 2013 [20] I
Same dataset as development data

(split into 3 datasets based on original
country)

(1) 2155;
(2) 2446;
(3) 1987

(1) 0.70 (0.67,0.72)
(2) 0.70 (0.67,0.72)
(3) 0.70 (0.67,0.73)

(1):
0.76 (0.72, 0.80),
0.50 (0.48, 0.52)

(2):
0.74 (0.70, 0.79),
0.54 (0.52, 0.57)

(3):
0.76 (0.72, 0.80),
0.52 (0.49, 0.54)

No PPV and NPV No PPV and NPV No PPV and NPV

Henjum, 2022 [23] I Same dataset as development data 308 0.81 0.89, 0.65,
0.28, 0.97

Hische, 2010 [27] E External opportunity sampling in
healthcare centres in another city 1998 None reported 0.90, 0.32,

0.44, 0.85

Koopman, 2008 [29] E External population-based health
survey data None reported 0.74 None reported for the external validation
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Table 2. Cont.

Author, Year Types of Validation
(“I”/“E”) Source of Validation Sample Sample Size Discriminative Performance

(AUROC (95% CI))

Predictive Power
(Sen. (95% CI), Spe. (95% CI),
PPV (95% CI), NPV (95% CI))

Memish, 2015
(Dysglycemia model) [21] I Same dataset as development data 50 0.68 (0.54, 0.82) 0.76 (0.55, 0.90), 0.68 (0.47, 0.84)

No PPV and NPV

Rajput, 2019 [13] NA No validation performed; performance
data is from model development - 0.79 0.84 (0.78, 0.90), 0.58 (0.55, 0.62)

0.31 (0.27, 0.34), 0.94 (0.92, 0.96)

Robinson, 2011 [30] I Same dataset as development data
(30/70 split) 1857 0.75 (0.73, 0.78) 0.70, 0.67,

0.35, 0.90

Sadek, 2022
(IGM model) [22] E External population-based

BioBank dataset 930

LR: 0.77 (0.74, 0.81)
ML (1): 0.79
ML (2): 0.78
ML (3): 0.77
ML (4): 0.78

LR:
0.78, 0.69
0.45, 0.91

(from Supplementary
Materials)

ML (1–4):
None reported

Stiglic, 2018
(IFG model) [28] NA No validation performed; performance

data is from model development - 0.84 (0.81, 0.87)
0.73 (0.68, 0.79), 0.81 (0.74, 0.86),
0.60 (0.53, 0.67), 0.89 (0.87, 0.91)

(from Supplementary Materials)

Tan, 2016
(PDM model) [14] E External opportunity sampling of

individuals in the same region 83 None reported 0.92, 0.66
No PPV and NPV

Wang, 2015 [15] E
3 External population-based health

survey datasets from different regions
of China

(1) 1186;
(2) 3162;
(3) 1289

(1)
Men: 0.75 (0.67, 0.83) Women:

0.77 (0.71, 0.83)
(2)

Men: 0.74 (0.61, 0.86)
Women: 0.72 (0.65, 0.78)

(3)
Men: 0.31 (0.20, 0.43)

Women: 0.50 (0.38, 0.61)

(1)
Men:

0.73, 0.64,
0.13, 0.97
Women:

0.81, 0.60,
0.19, 0.96

(2)
Men:

0.79, 0.51,
0.06, 0.99
Women:

0.89, 0.42,
0.05, 0.99

(3)
Men:

0.31, 0.49,
0.02, 0.96
Women:

0.42, 0.59,
0.04, 0.96

Xin, 2010
(PDM and T2DM model) [16] I Same dataset as development data

(50/50 split) 1130 LR: 0.72
Tree: 0.69

LR:
None reported

Tree:
0.65, 0.73,
0.33, 0.91

Yu, 2010
(Classification scheme II) [31] I Same dataset as development data

(20/80 split) 983 LR: 0.73
SVM: 0.73

LR:
None reported

SVM:
0.74, 0.63,
0.51, 0.82

Yu, 2022 [17] E 2 External population-based health
survey datasets

(1) 1525;
(2) 66,108

(1) 0.71 (0.63, 0.79)
(2) 0.73 (0.73, 0.74) None reported for the external validation

Note: AUROC = Area Under the Receiver Operating Characteristic curve, “E” = External, IFG = Impaired Fasting Glucose, IGM = Impaired Glucose Metabolism, IGR = Impaired Glucose
Regulation, “I” = Internal, LR = Logistic Regression, ML = Machine Learning, NA = Not applicable, NPV = Negative predictive value, PDM = Prediabetes, PPV = Positive predictive
value, Sen. = Sensitivity, Spe. = Specificity, SVM = Support vector machines, T2DM = Type 2 Diabetes Mellitus. † = DM/PDM defined by FPG: ≥6.1 mmol/L or 2-h PG: ≥7.8 mmol/L,
‡ = DM/PDM defined by HbA1c: ≥6.0%
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4. Discussion

This review identified 28 risk prediction tools that used only non-laboratory predictors
to detect individuals with pre-DM from 24 published studies. The published prediction
tools included similar predictors such as age, family history of DM, hypertension and
obesity (represented by BMI and/or WC), despite the potential cultures and lifestyles
differences of subjects from different study locations, supporting their robustness and
reliability. The majority of existing non-laboratory-based tools (n = 26) had fair to good
discrimination in case finding of pre-DM in the population that they were developed for.
It was found that existing logistic regression (LR) and machine learning (ML) risk tools
offered similar performance. However, pre-DM was inconsistently defined and the external
validity of most tools was unclear.

It should be noted that these factors were also predictors of T2DM risks [35]. A
family history of DM is a well-established risk factor for developing pre-DM [36], while
associations between the age and DM risks have also been widely reported [37], but
unfortunately these are not modifiable. Modifiable clinical factors (e.g., BMI, waist-to-hip
ratio (WHR)) and lifestyle factors (e.g., number of hours of sleep and duration of physical
activity) are particularly important because they offer potentials for intervention to prevent
pre-DM and T2DM. It helps patient activation to emphasise the reversibility of pre-DM
through healthy lifestyles. Interestingly, sleep hours was an important predictor in predictor
tools published in recent years [7], but it was not considered in most studies, probably
because the data were not available. Inadequate sleep duration has been associated with
increased T2DM risks, which is likely due to the influence that sleep has on regulating
endogenous hormones, such as testosterone and cortisol [6,38]. Indeed, by incorporating
sleep hours as one of the predictors but without the inclusion of family history of DM,
Dong et al. were able to obtain AUROCs over 0.8 for their tools in internal validation [7].
It is important to note that without a head-to-head comparison between existing tools, it
is difficult to determine whether tools that include particular predictors offer statistically
better predictions.

Although theoretically ML can develop more accurate prediction models by the
inclusion of more complex parameter interactions, our review indicated that prediction tools
developed by traditional LR and novel ML methods offered similar predictive performances
in detecting pre-DM individuals. Sadek et al. further showed that ML models that were
developed by different ML techniques offered no statistically significant difference in
performance in an external dataset [22]. Consistent with the literature [39], the ML pre-
DM prediction tools found in our review did not provide the weights that govern the
interactions between predictors [22], while traditional LR models offered a comparatively
higher interpretability on the interactions between predictors. Therefore, LR models could
be more suitable for pre-DM risks prediction in real-world clinical practice, whilst ML
approaches might be better suited for exploring and identifying novel predictors [40,41].

The majority of existing non-laboratory-based risk prediction tools for case finding
of pre-DM showed satisfactory internal discrimination. As only half of the studies had
validated their tools in an external dataset, the external performance of most existing tools
could not be established. In general, a lower discriminatory ability was found in external
validation. Notably, the Southern Chinese pre-DM risk prediction tool developed by Wang
et al. showed good internal and external discrimination among datasets that shared similar
socioeconomical characteristics as the development dataset, but not when their tools were
applied to an external dataset that comprised Chinese people from Western China [15].
Such results suggest that the performance of a risk predication tool can be compromised
when it is applied to a population living in a different environment to that of the devel-
opment population. In order to offer an insightful evaluation on the tools’ performance,
the validity and reliability in the population which they are intended to be used in as well
as the appropriateness and representativeness of the dataset for external validation are
important factors to be considered [42].
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It was noted that some reporting inconsistency was found among the studies on
non-laboratory-based pre-DM prediction tools. First, and most importantly, the case-
definition of pre-DM was inconsistent among the studies, possibly due to a change in
pre-DM definition by the American Diabetes Association in 2009 [43]. As a result, several
studies used a fasting plasma glucose level of ≥6.1 mmol/L to define pre-DM/DM [44],
while other studies used ≥5.6 mmol/L [45]. The case definition can have a significant
effect on the discriminatory ability, sensitivity and specificity of the prediction tool. Second,
the indictors of prediction performance varied widely among the studies. Although most
of the studies reported the discriminatory ability by AUROC, many did not provide
information on calibration. To focus only on discrimination could produce misleading
predictions and potentially be detrimental during clinical decision-making processes [46].
In addition, a lack of 95% confidence intervals on the performance measures (e.g., AUROC,
sensitivity, specificity, PPV, NPV) of existing tools was also noted. Overall, these reporting
inconsistencies could hinder the generalisability and applicability of existing tools.

The strength of this review is that it included an up-to-date synthesis of the results
from studies that used traditional and novel strategies for prediction tool development. Our
findings also provide evidence to support the feasibility and efficacy of using only readily
available non-laboratory predictors to facilitate case finding of pre-DM. Furthermore,
the findings on the importance of sleep hours and duration of exercise can inform the
development of interventions for the prevention and treatment of pre-DM. However, there
are several limitations regarding our review that must be acknowledged. A meta-analysis
was not performed on the included studies due to the large heterogeneity among the
outcome measures and the reported performance indices. In addition, the inclusion of only
studies published in the English language could have introduced bias and resulted in some
pre-DM risk prediction tools being missed.

5. Conclusions

This systematic review of 24 studies identified 28 non-laboratory-based pre-DM pre-
diction tools. The most common predictors were age, family history of DM, hypertension
and obesity measured by BMI and/or WC. Sleep hours and exercise duration were found
to be important lifestyle predictors of pre-DM in more recent studies. Despite the difference
in development methods, existing non-laboratory-based tools were mostly effective in the
population that they were developed for. The generalisability of these tools was unclear as
most of them had not been validated externally. External validation using datasets obtained
from the intended target population should always be performed before application to
practice for case-finding of pre-DM individuals.
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