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Abstract: This paper investigates new feature extraction and regression methods for predicting
cuffless blood pressure from PPG signals. Cuffless blood pressure is a technology that measures
blood pressure without needing a cuff. This technology can be used in various medical applications,
including home health monitoring, clinical uses, and portable devices. The new feature extraction
method involves extracting meaningful features (time and chaotic features) from the PPG signals
in the prediction of systolic blood pressure (SBP) and diastolic blood pressure (DBP) values. These
extracted features are then used as inputs to regression models, which are used to predict cuffless
blood pressure. The regression model performances were evaluated using root mean squared error
(RMSE), R2, mean square error (MSE), and the mean absolute error (MAE). The obtained RMSE was
4.277 for systolic blood pressure (SBP) values using the Matérn 5/2 Gaussian process regression
model. The obtained RMSE was 2.303 for diastolic blood pressure (DBP) values using the rational
quadratic Gaussian process regression model. The results of this study have shown that the proposed
feature extraction and regression models can predict cuffless blood pressure with reasonable accuracy.
This study provides a novel approach for predicting cuffless blood pressure and can be used to
develop more accurate models in the future.

Keywords: hypertension; PPG; blood pressure prediction; cuffless blood pressure; regression; more
accurate models

1. Introduction

Hypertension, a severe medical condition that significantly increases the risk of heart
attack, stroke, kidney failure, and blindness and is the leading cause of premature death
worldwide, affects an estimated 1.13 billion people, with fewer than one in five having it
under control [1]. High blood pressure is responsible for approximately 54% of strokes
and 47% of coronary heart diseases worldwide [2]. It is estimated that one in three adults
has hypertension, and the prevalence is even higher among specific populations, such as
African Americans and the elderly. This essay will discuss the epidemiology of hyperten-
sion mortality, the risk factors associated with hypertension mortality, and the strategies
for its prevention. It will also explore the implications of hypertension mortality on
public health.

Hypertension, commonly known as high blood pressure, is a condition in which the
force of the blood against the artery walls is consistently too high. This increased pressure
can have serious and potentially deadly consequences, as it can damage the arteries, the
heart, and other organs in the body. It is a major risk factor for heart attack, stroke, and other
cardiovascular diseases, making it a public health concern [3]. Hypertension is classified

Diagnostics 2023, 13, 1278. https://doi.org/10.3390/diagnostics13071278 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13071278
https://doi.org/10.3390/diagnostics13071278
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0001-8461-1404
https://orcid.org/0000-0001-9610-9550
https://orcid.org/0000-0003-1728-6087
https://doi.org/10.3390/diagnostics13071278
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13071278?type=check_update&version=1


Diagnostics 2023, 13, 1278 2 of 18

into five grades, each corresponding to a different severity level. Table 1 shows blood
pressure and hypertension classes with grades [4].

Table 1. Classification of blood pressure levels of the British Hypertension Society.

Category Systolic Blood Pressure
(mmHg)

Diastolic Blood Pressure
(mmHg)

Blood pressure
Optimal <120 <80
Normal <130 <85
High normal 130–139 85–89

Hypertension
Grade 1 (Mild) 140–159 90–99
Grade 2 (Moderate) 160–179 100–109
Grade 3 (Severe) ≥180 ≥110

Isolated systolic hypertension
Grade 1 140–159 <90
Grade 2 ≥160 <90

Blood pressure is one of the most important vital signs to measure. It provides insight
into an individual’s cardiovascular health by providing information about the amount
of force exerted by the blood on the walls of the arteries. The traditional method for
measuring blood pressure uses an inflatable cuff called the sphygmomanometer. The
sphygmomanometer comprises an inflatable cuff, a bulb to inflate the cuff, a pressure
gauge, and a stethoscope. The cuff is wrapped around the arm, and the bulb is squeezed to
inflate the cuff. The pressure gauge monitors the pressure in the cuff, and the stethoscope
listens for the sound of the blood as it rushes through the arteries. When the cuff pressure
is increased beyond the systolic pressure, the sound of the turbulent blood can be heard
through the stethoscope. The pressure at which the sound is heard is known as systolic
pressure. As the cuff pressure is decreased, the sound disappears at the diastolic pressure.

Recently, cuffless blood pressure (CBP) measurement methods have been developed.
These methods use optical, electrical, acoustic, and noninvasive technologies to measure
blood pressure without an inflatable cuff [5–8]. Optical methods use fluctuations in light
absorption due to the pulsatile blood flow in the arteries. In contrast, electrical methods
rely on the electrical potentials generated by the pulsatile flow of the blood. Acoustic
methods use acoustic pulse waves generated by the pulsatile flow of the blood, and other
noninvasive methods use several technologies to measure blood pressure.

CBP measurement methods have several advantages over traditional cuff-based meth-
ods. First, they are noninvasive and thus do not require using an inflatable cuff with
the associated discomfort. Second, they are more accurate and provide more detailed
information about blood pressure. Third, they are faster since they do not require the
time-consuming process of inflating and deflating the cuff. Finally, they are less prone to
errors due to incorrect cuff placement and other user errors. Figure 1 shows cuffless blood
pressure benefits and limitations [9–11].

The use of machine learning and deep learning algorithms in healthcare has been
increasing rapidly in recent years as they are seen as essential tools to help improve patient
outcomes and reduce costs. One particular application of this technology is in the field of
CBP measurement. CBP measurement is a noninvasive technique that combines patient-
specific physiological parameters to calculate an individual’s blood pressure without the
traditional cuff. This technology has been growing in popularity due to its potential for
providing accurate and reliable readings without the need for a physical cuff. In addition,
it can be used in situations where traditional measurement techniques are not feasible
or are impractical, such as in remote or rural areas. Machine learning and deep learning
algorithms [12–15] have been used to develop automated systems for CBP measurement.
There are several different machine learning and deep learning algorithms that can be
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used to develop automated CBP measurement systems. These include supervised learning
algorithms such as support vector machines, decision trees, and random forests [16–18],
and unsupervised learning algorithms such as K-means clustering and self-organizing
maps [19–21]. Although each of these algorithms has its advantages and disadvantages,
and the choice of algorithm will depend on the specific application and the data available,
a combination of different algorithms may be needed for optimal results.

Diagnostics 2023, 13, x FOR PEER REVIEW  3  of  18 
 

 

 

Figure 1. Benefits and limitations of cuffless blood pressure (CBP) measurement. 

The use of machine  learning and deep  learning algorithms  in healthcare has been 

increasing rapidly in recent years as they are seen as essential tools to help improve pa‐

tient outcomes and reduce costs. One particular application of this technology is in the 

field of CBP measurement. CBP measurement is a noninvasive technique that combines 

patient‐specific physiological parameters to calculate an individual’s blood pressure with‐

out the traditional cuff. This technology has been growing in popularity due to its poten‐

tial for providing accurate and reliable readings without the need for a physical cuff. In 

addition, it can be used in situations where traditional measurement techniques are not 

feasible or are impractical, such as in remote or rural areas. Machine learning and deep 

learning algorithms [12–15] have been used to develop automated systems for CBP meas‐

urement. There are several different machine learning and deep learning algorithms that 

can be used to develop automated CBP measurement systems. These include supervised 

learning algorithms such as support vector machines, decision trees, and random forests 

[16–18], and unsupervised  learning algorithms such as K‐means clustering and self‐or‐

ganizing maps [19–21]. Although each of these algorithms has its advantages and disad‐

vantages, and the choice of algorithm will depend on the specific application and the data 

available, a combination of different algorithms may be needed for optimal results. 

Photoplethysmography (PPG) is a noninvasive medical technique used to measure 

various physiological parameters such as blood pressure, heart rate, and respiration rate. 

It is based on the changes in light reflection from the skin that occur because of blood flow 

in the underlying tissue. It relies on photodetector sensors, which measure changes in the 

optical properties of the skin. PPG vital signals can be used to diagnose a variety of con‐

ditions, including hypertension, arrhythmia, and sleep apnea. For example, to measure 

blood pressure, PPG vital signals measure two variables: pulse wave amplitude and tim‐

ing. Pulse wave amplitude is the magnitude of pulsation in the skin, while pulse timing 

is the duration of each pulse wave. As the blood pressure increases, the pulse wave am‐

plitude increases, and the timing of the pulse wave will also change. By measuring these 

changes, blood pressure can be accurately calculated. Some articles showing the relation‐

ship between PPG and blood pressure are given [22–26]. 

This paper proposes a new continuous blood pressure (CBP) estimation application. 

Unlike previously published articles, CBP estimation uses time and chaotic attributes. Im‐

portant information about the fluid mechanics of blood in the vessel is extracted from the 

vital PPG signal and used to estimate systolic and diastolic blood pressure values. PPG 

vital signals are preprocessed through base correction, filtering, and segmentation to pre‐

pare them for feature extraction. A total of 24 features, 17 time‐domain features, and 7 

chaotic‐domain  features were extracted and used  for blood pressure estimation. Seven 

Figure 1. Benefits and limitations of cuffless blood pressure (CBP) measurement.

Photoplethysmography (PPG) is a noninvasive medical technique used to measure
various physiological parameters such as blood pressure, heart rate, and respiration rate.
It is based on the changes in light reflection from the skin that occur because of blood
flow in the underlying tissue. It relies on photodetector sensors, which measure changes
in the optical properties of the skin. PPG vital signals can be used to diagnose a variety
of conditions, including hypertension, arrhythmia, and sleep apnea. For example, to
measure blood pressure, PPG vital signals measure two variables: pulse wave amplitude
and timing. Pulse wave amplitude is the magnitude of pulsation in the skin, while pulse
timing is the duration of each pulse wave. As the blood pressure increases, the pulse wave
amplitude increases, and the timing of the pulse wave will also change. By measuring
these changes, blood pressure can be accurately calculated. Some articles showing the
relationship between PPG and blood pressure are given [22–26].

This paper proposes a new continuous blood pressure (CBP) estimation application.
Unlike previously published articles, CBP estimation uses time and chaotic attributes.
Important information about the fluid mechanics of blood in the vessel is extracted from
the vital PPG signal and used to estimate systolic and diastolic blood pressure values.
PPG vital signals are preprocessed through base correction, filtering, and segmentation to
prepare them for feature extraction. A total of 24 features, 17 time-domain features, and
7 chaotic-domain features were extracted and used for blood pressure estimation. Seven
different regression models were used to make predictions, and the results were compared.
A 10-fold cross-validation was used to increase the reliability of the predictions in the
regression calculations.

This article has been organized as follows. Section 2 explains how PPG vital signals
are used for CBP estimation. The next chapter shows the proposed method for our work.
Section 4 explains the experimental results concerning the performance of the three meth-
ods in our work. Section 5 denotes the conducted works in the literature and gives the
superiority of our work.

2. Material and Method

Blood pressure estimation is an important part of healthcare as it indicates overall
health. Blood pressure is typically measured with a cuff; however, this is not always
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practical or comfortable. Therefore, CBP estimation has become an increasingly popular
alternative. PPG vital signals are a type of technology that can be used for CBP estimation.
PPG vital signals are noninvasive optical signals that measure the amount of light reflected
from a person’s skin. These signals are generated by changing the amount of light entering
the skin, and the changes in the amount of light are a reflection of the body’s blood flow.
This blood flow can then be used to estimate the person’s blood pressure. PPG vital signals
have several advantages over traditional cuff-based measurements. This makes them
particularly useful for remote monitoring and measuring blood pressure during physical
activities. In addition, PPG vital signals are more comfortable for patients, since no cuff
is required. This is particularly beneficial for those who cannot tolerate or have difficulty
using a cuff. To use PPG vital signals for CBP estimation, two sets of data must be collected:
the PPG vital signals and the corresponding arterial pressure waveforms. The PPG vital
signals can then be used to estimate the systolic and diastolic blood pressure values. This
is carried out by using an algorithm to match the PPG vital signals to the arterial wave-
forms. The algorithm then calculates the blood pressure values based on the differences in
the waveforms.

The study consists of four main parts. In the first part, preprocessing and segmentation
processes are applied to the PPG signals in the dataset. The features determined in the
second part are extracted from the PPG signal. In the third section, various regression
models are trained with these features. In the fourth and last section, the trained models
estimate the blood pressure as mmHg. The flow chart of the proposed model is given in
Figure 2. Each section is explained above.
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2.1. Datasets

The medical information mart for intensive care (MIMIC-III) database is a publicly
available critical care database developed by the MIT Lab for Computational Physiol-
ogy. It contains over 60,000 intensive care unit (ICU) admissions from approximately
41,000 patients collected between 2001 and 2012. The MIMIC-III database comprises mul-
tiple tables and contains over 60 million records. This includes patient demographics,
laboratory results, vital signs, medications, diagnoses, procedures, and outcomes.

The MIMIC-III database contains five major tables: admissions, patients, ICU stays,
physiological data, and clinical events. Physiological data and clinical events tables contain
information about the patient’s vital signs, laboratory tests, and clinical events during
their stay.

Vital signs are quantitative measurements that assess the function of the body’s organs
and systems. Vital signs include heart rate, respiratory rate, blood pressure, temperature,
and oxygen saturation. In MIMIC-III, the vital signs (ECG, PPG, ABP, etc.) are collected at
regular intervals and stored in a database for further analysis. The data are also used as a
tool for predictive analytics and machine learning applications. Figure 3 shows ECG, PPG,
and ABP vital signals.
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Figure 3. PPG, ECG, and ABP signals in MIMIC-III datasets.

There was a negative correlation between the PPG and atrial blood pressure signals
(ABP). El-Hajj et al. described and proved the correlation between the PPG and BP signals
in detail [6,13,23]. Based on this information, we have performed experiments to show
the relationship between the PPG signals and BP signals in our paper. As a result of
the statistical studies, it was determined that there is a correlation coefficient of “−0.279”
between the PPG signal and the ABP signal. Figure 4 shows the normalized PPG signals,
the normalized ABP signals, and the negative graph between the PPG signals and ABP
signals. Therefore, in this paper, we have used the PPG signals to predict the SBP and DBP
values using machine learning methods with statistical results from the given figures.
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Figure 4. The normalized PPG signals, the normalized ABP signals, and the negative graph between
the PPG signals and ABP signals. (The correlation coefficient between normalized PPG signals and
normalized ABP signals is −0.279).

2.2. Preprocessing Signals

Baseline wander is a preprocessing technique that normalizes and removes unwanted
noise from physiological signals. It is essential in processing PPG signals, which are used
in medical diagnostics, as the nature of the signal often contains abrupt changes, which
can result in data misinterpretation. The median filter is one of the most commonly used
methods for the baseline correction of PPG signals. The filter replaces each data point with
the median of the points surrounding it. This smooths out any sudden changes in the signal,
which can be caused by external noise or artifacts, such as body movements. This technique
helps reduce the noise and artifacts, allowing for more accurate signal interpretation. The
median filter is generally considered to be a better option than other types of filters, as it is
less prone to overfitting and does not distort the original signal too much. This makes it
more suitable for analyzing PPG signals, as it is important to maintain the signal’s integrity.

A low-pass filter is a type of filter used to remove higher-frequency components from
a signal, allowing only the lower frequencies to pass through. It is commonly used to
smooth out signals such as those derived from physiological signals, including PPG signals,
which are used to measure physiological parameters such as heart rate and blood pressure.
Low-pass filters are useful for filtering out noise or unwanted artifacts from PPG signals.
They can be used to reduce the effects of high-frequency noise from environmental sources,
such as electrical interference from other machines. Low-pass filters also help to reduce
motion artifacts from patient movements, which can be particularly problematic for PPG
signals. They can also help to reduce the effects of baseline wander, which is the slow drift
of the baseline of the PPG signal. In the case of PPG signals, a low-pass filter with a cutoff
frequency of 5 Hz can be used to remove any high-frequency noise that is present in the
signal. Similarly, for ECG signals, a low-pass filter with a cutoff frequency of 40 Hz can be
used to reduce noise.

2.3. Feature Extraction

The photoplethysmograph (PPG) signal is a noninvasive optical technique for mea-
suring the changes in the blood volume in vessels and has been used as an alternative
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for measuring CBP. This technique uses time-domain and chaotic feature extraction to
acquire the correct data. PPG signal analysis extracts features from the signal to measure
the CBP accurately. Time-domain features are essential for cuffless blood pressure estima-
tion because they give an insight into the dynamic behavior of the cardiovascular system.
These features can measure how the body responds to changes in the external environment,
such as physical activity and the intake of certain medications. Time-domain features also
provide valuable information regarding the current blood pressure level and potential risk
factors such as hypertension and cardiac arrhythmias. Time-domain features are essential
for cuffless blood pressure estimation because they can help to distinguish between differ-
ent pressure levels. Time-domain features are also helpful in detecting any conditions that
may require further investigation. For example, a patient with high mean arterial pressure
(MAP) may have an underlying condition, such as arteriosclerosis. Time-domain features
can also be used to monitor individuals over time, which can help to detect any changes in
the cardiovascular system. Time-domain features are essential for cuffless blood pressure
estimation because they give us information about the cardiovascular system. They can
help differentiate between different pressure levels, detect abnormalities, and monitor for
changes over time.

Furthermore, they can give us insight into the dynamic behavior of the cardiovascular
system, which can lead to a better understanding of the relationship between the cardio-
vascular system and external factors. Time-domain analysis extracts features from PPG
signals such as Willison amplitude, signal variance, root mean square, log detector, etc.
These features monitor blood pressure and analyze the PPG signals [8,22].

Chaotic feature extraction analyzes PPG signals and measures CBP [8,22]. Chaotic
features provide a way to capture information about the cardiovascular system in a way
that can be used to estimate blood pressure accurately. Chaotic features are used because
of their ability to capture subtle changes in cardiovascular function that are difficult to
detect with traditional methods. The chaotic features can detect and describe the complex,
nonlinear dynamics of the cardiovascular system. They are able to capture features of
the cardiovascular system that are not easily detected by traditional methods, such as the
effect of respiration on blood pressure. This information can accurately estimate blood
pressure without needing a cuff. Overall, chaotic features are used in cuffless blood pressure
estimation because of their ability to capture subtle changes in cardiovascular function,
increased accuracy and reliability, and cost-effectiveness. The use of chaotic features in
cuffless blood pressure estimation is important for providing accurate and reliable estimates
of blood pressure without the need for a traditional cuff. Entropy calculations are used to
measure the randomness and complexity of the PPG signal, while the fractal dimension
is used to measure the self-similarity of the signal. Time-domain and chaotic feature
extraction accurately measure the CBP using PPG signals. These features monitor and
analyze the PPG signal, providing a reliable and noninvasive method for measuring CBP.
In the study, 24 features were extracted from each PPG segment. While 17 of them are
time-domain features, 7 of them are chaotic features. Table 2 shows the extracted feature
and its formulas.

Table 2. The extracted features from PPG signals in the prediction of blood pressure.

Number of
Features

Domain
Information

Name of the Feature
in the Dataset Explanation of the Feature

1 Time Enhanced Mean Absolute Value EMAV = 1
L

L
∑

i=1

∣∣∣(xi)
P
∣∣∣

2 Time Enhanced Wavelength EML =
L
∑

i=2

∣∣∣∣(xi − x(i−1)

)P
∣∣∣∣
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Table 2. Cont.

Number of
Features

Domain
Information

Name of the Feature
in the Dataset Explanation of the Feature

3 Time Mean Absolute Value MAV = 1
L

L
∑

i=1
|xi |

4 Time Wavelength wL =
L
∑

i=2

∣∣∣xi − x(i−1)

∣∣∣
5 Time Zero Crossing zC =

L−1
∑

i=1
f (xi)

6 Time Slope Sign Change SSC =
L−1
∑

i=2
f (xi)

7 Time Root Mean Square RMS =

√
1
L

L
∑

i=1
(xi)

2

8 Time Average Amplitude Change AAC = 1
L

L−1
∑

i=1
|xi+1 − xi |

9 Time Difference Absolute Standard
Deviation Value DASDV =

√
∑L−1

i=1 (xi+1−xi)
2

L−1

10 Time Log Detector LD = exp
(

1
L

L
∑

i=1
log(|xi |)

)
11 Time Modified Mean Absolute Value 1 MMAV = 1

L

L
∑

i=1
wi |xi |

12 Time Modified Mean Absolute Value 2 MMAV2 = 1
L

L
∑

i=1
wi |xi |

13 Time Myopulse Percentage Rate MYOP = 1
L

L
∑

i=1
f (xi)

14 Time Simple Square Integral SSI =
L
∑

i=1
(xi)

2

15 Time Variance of Signal VAR = 1
L−1

L
∑

i=1
(xi)

2

16 Time Willison Amplitude WA =
L−1
∑

i=1
f (xi)

17 Time Maximum Fractal Length MFL = log10

(√
L−1
∑

i=1
(xi+1 − xi)

2

)

18 Chaotic Sample Entropy SampEn(m, r, N) = − log
(

N−m
∑

i=1
Ai/

N−m
∑

i=1
Bi

)
19 Chaotic Approximate Entropy ApEn(m, r, N) = − 1

N−m

N−m
∑

i=1
log
(

Ai
Bi

)
20 Chaotic Fuzzy Entropy E(A) = −k{mA(xi)logmA(xi) + (1−mA(xi)) log(1−mA(xi))}

21 Chaotic Shannon Entropy H(α) = −∑
1

Pi ∗ log pi

22 Chaotic Permutation Entropy H(n) = −
n!
∑
i

p(πi) log p(πi)

23 Chaotic Higuchi Fractal Dimension l(k) =

(
∑
[N−m/k]
i=1 |x(m+ik)−x(m+(i−1)k)|(N−1)

)
( N−m

k )k

24 Chaotic Katz Fractal Dimension FDkatz−norm =
log10(L/a)
log10(d/a) =

log10(n)
log10(

d
L )+log10(n)

2.4. Regression Models

One approach to predicting blood pressure from PPG signals is to use regression
models. Regression models use data points to estimate a linear or nonlinear relationship
between a dependent variable and one or more independent variables. In this context,
the dependent variable is the blood pressure, and the independent variables are the PPG
signals. Using regression models, it is possible to build a model that can accurately predict
blood pressure from PPG signals. In addition, recent developments in machine learning
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algorithms have enabled PPG signals to predict blood pressure accurately. By using su-
pervised learning algorithms—such as regression models—researchers have built models
that can accurately estimate blood pressure levels from PPG signals. This can revolu-
tionize blood pressure monitoring, allowing continuous real-time monitoring without
invasive methods.

The advantage of using regression models for predicting blood pressure from PPG
signals is that they can be tailored to the individual, allowing for a more accurate prediction.
Additionally, regression models are relatively easy to use and interpret, making them highly
accessible to researchers in the field.

This paper used different tools to observe the effect of regression tools on the problem.
The regression models used are listed in Table 2. A 10-fold cross-validation was used in
training the models. Using this method, the entire data set was divided into 10 parts. Then,
models were trained and tested by turns, with 9 training datasets and 1 test dataset. Table 3
shows the regression models used.

Table 3. List of regression models.

No Model Name

1 Linear regression
2 Robust linear regression
3 Rational quadratic Gaussian process regression
4 Square exponential Gaussian process regression
5 Matérn 5/2 Gaussian process regression
6 Linear support vector machine
7 Medium Gaussian support vector machine

2.4.1. Linear Regression

Linear regression is a regression model used for linear and continuous variables. It is
generally used to predict the value of one variable with another variable. The basic model
is given in Equation (1) [27].

yi = β0 + β1xi1 + β2xi2 + . . . + βnxin + εi (1)

Here, y is the predicted variable and x is the predictive variable. β is the coefficient of
the predictor variable. ε represents the fixed error of the model.

2.4.2. Robust Linear Regression

Robust linear regression is a variant of linear regression. Robust linear regression is
less sensitive to outliers [28].

2.4.3. Rational Quadratic Gaussian Process Regression

Gaussian process regression is a Bayesian regression approach and is a nonparametric
method. The Bayesian approach extracts a probability distribution over all possible values.
In general, Bayes’ rule is expressed by Equation (2) [29].

P(w|y, X) =
P(y|X, w)P(w)

P(y|X)
(2)

Let {(xi, yi); i = 1, 2, . . . , n} be data. Where xiεRd and yiεR. The linear regression
model is y = xT β + ε.

It is commonly used to describe the statistical covariance at two points that are x units
apart. The advantage of the rational quadratic GPR algorithm is that it is less likely to
generate errors in large clusters [25]. The Rational GPR model becomes Equation (3).

k
(
xi, xj

∣∣θ) = σ2
f

(
1 +

r2

2ασ2
1

)
(3)
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where r =
√(

xi − xj
)T(xi − xj

)
, θ is posterior estimates, σ2

f is signal variance, and α is a
parameter of the covariance.

2.4.4. Square Exponential Gaussian Process Regression

The square exponential Gaussian process is a radial basis function. It is essential to
square the Euclidean distance. Square exponential Gaussian process regression formulas
are given in Equation (4) [30].

k
(

xi, xj
∣∣θ) = σ2

f exp

[
−1

2

(
xi − xj

)T(xi − xj
)

σ2
1

]
(4)

2.4.5. Matérn 5/2 Gaussian Process Regression

The Matérn 5/2 kernel takes spectral densities and creates Fourier RBF kernel trans-
forms. Functions in Matérn 5/2 |ν− 1| can be differentiated once, and the hyperparameter
ν can control the degree of smoothness. The formula is shown by Equation (5) [30].

k
(
xi, xj

∣∣θ) = σ2
f

(
1 +

√
3r

σ1

)
exp

(
−
√

3r
σ1

)
(5)

2.4.6. Linear Support Vector Machine

Linear support vector machine allows the determination of the amount of acceptable error.
A hyperplane is found to fit the data. The regression function is given by Equation (6) [31] for a
linear functional dataset.

Φ(w, ξ∗, ξ) =
1
2
||w||2 + C

[
j

∑
i=1

ξ +
j

∑
i=1

ξ∗
]

(6)

where C is a penalty value and ξ∗, ξ are slack variables.

2.4.7. Medium Gaussian Support Vector Machine

The SVM Gaussian kernel moves the data from the feature space to the higher dimen-
sional kernel space and provides nonlinear separation in the kernel space. The Gaussian
kernel function parameter k in Equation (7) takes the value r =

√
p [32]. Here, p is the

number of attributes.

k
(

xi, xj
)
= exp

(
−
∣∣∣∣xi − xj

∣∣∣∣2
2σ2

)
= exp

(
−r
∣∣∣∣xi − xj

∣∣∣∣2) (7)

3. Evaluated of Results

Applying a PPG signals regression model with CBP has been evaluated and showed
promising results. The model could accurately predict blood pressure from the PPG signals,
using both time-domain and chaotic features. The model’s evaluation showed that the
predicted blood pressure accuracy was within a clinically acceptable range for most patients.
The model’s accuracy was further improved by using the chaotic features, showing that the
chaotic features could capture more information from the PPG signals and improve the
accuracy of the predictions. Overall, the evaluation results showed that the model could
accurately predict blood pressure from PPG signals with acceptable accuracy, showing the
potential of using PPG signals to estimate blood pressure in clinical applications.

This paper proposes regression models for predicting systolic and diastolic blood
pressure values from PPG signals. We first filter and clean the PPG signals from noise and
artifacts. Then, we extract 24 features comprising the time domain and chaos from the PPG
signals. These features are given as inputs to the regression models. After training and
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testing the regression models using 5-fold cross-validation, we can predict systolic and
diastolic blood pressure values.

This paper uses the performance criteria to evaluate the proposed methods. These
performance metrics are the mean square error (MSE), mean absolute error (MAE), root
mean square error (RMSE), R2, mean absolute percentage error (MAPE), box plots of
the predicted values, and the Bland–Altman plot. The performance metric formulas are
given below:

MSE =
1
N ∑N

i=1(yi − ŷi)
2 (8)

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2 (9)

MAPE =
1
N ∑N

i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (10)

MAE =
1
N ∑N

i=1|yi − ŷi| (11)

R2 = 1− MSE
MSE

(12)

In these equations, yi is the actual value, ŷi is the predicted value, and y is the mean
of yi. Moreover, N is the number of observations. The optimum value is 0 for MSE,
MAPE, RMSE, and MAE. R2 takes a value of between –∞ and 1. Negative values indicate
worse predictions.

Using the overall scores from all of the methods, we have given all of the obtained SBP
and DBP prediction performance results values from three different methods, as shown in
Tables 4 and 5.

The comparison between regression model prediction and actual values for CBP
prediction is important in determining the model’s efficacy. The correlation coefficient
and Bland–Altman plots are ideal methods for assessing the accuracy of the regression
models. The correlation coefficient measures the degree of linear correlation between two
variables. At the same time, the Bland–Altman plot compares the differences between the
predicted and the actual values over a range of data points. The correlation coefficient
between the predicted and actual values for CBP prediction can be calculated using the
Pearson correlation coefficient, which measures the degree of linear correlation between two
variables. The correlation coefficient is a measure of the strength of the linear relationship
between the two variables. A high correlation coefficient indicates that the two variables
are strongly correlated, while a low correlation indicates that the two variables are weakly
correlated. The Bland–Altman plot is an excellent way to compare the differences between
the predicted and the actual values of CBP prediction. The Bland–Altman plot is a graphical
representation of the differences between the two variables over a range of data points.
The plot measures the variability in the differences between the two variables and is used
to identify any outliers or patterns in the data. The Bland–Altman plot is a useful tool for
assessing the accuracy of the regression models. Using these two methods to compare the
regression model’s prediction and actual values makes it possible to assess the accuracy
and reliability of the model. Correlation plots and the Bland–Altman plot are used for the
best prediction model of SBP values using the Matérn 5/2 Gaussian process regression
method, as shown in Figure 5.
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Table 4. The obtained SBP prediction metric rates in our study using three different machine
learning methods.

Regression Methods RMSE R2 MSE MAE

Linear regression 4.893 0.470 20.195 3.272

Robust linear regression 4.557 0.450 20.767 3.227

Rational quadratic Gaussian process regression 4.279 0.520 18.318 3.069

Square exponential Gaussian process regression 4.305 0.510 18.318 3.090

Matérn 5/2 Gaussian Process Regression 4.277 0.52 18.297 3.073

Linear support vector machine 4.527 0.46 20.494 3.267

Medium Gaussian support vector machine 4.399 0.490 19.353 3.107

Table 5. The obtained DBP prediction metric rates in our study using three different machine
learning methods.

Regression Methods RMSE R2 MSE MAE

Linear regression 2.463 0.228 6.071 1.872

Robust linear regression 2.244 0.386 5.035 1.861

Rational quadratic Gaussian process regression 2.303 0.330 5.306 1.721

Square exponential Gaussian process regression 2.325 0.310 5.409 1.736

Matérn 5/2 Gaussian process regression 2.309 0.320 5.335 1.724

Linear support vector machine 2.514 0.200 6.321 1.857

Medium Gaussian support vector machine 2.328 0.310 5.420 1.732
Diagnostics 2023, 13, x FOR PEER REVIEW  13  of  18 
 

 

 
(a)  (b) 

Figure 5. Predicted SBP for the Matérn 5/2 Gaussian process regression method: (a) the plot of the 

correlation and (b) the Bland–Altman Plot. 

Correlation plots and the Bland–Altman plot were used for the best prediction model 

of DBP values using the rational quadratic Gaussian process regression method, as shown 

in Figure 6. 

 
(a)  (b) 

Figure 6. Predicted DBP for the rational quadratic Gaussian process regression method: (a) correla‐

tion plot and (b) the Bland–Altman Plot. 

The  time series changes  in  the actual and estimated  (Matérn 5/2 Gaussian process 

regression method) SBP values are shown in Figure 7. It can be seen that the SBP estima‐

tions made with the Matérn 5/2 Gaussian process regression method were successful. It 

has been observed  that  the performance of  the predictions decreased with  sudden  in‐

creases and decreases in SBP. 

Figure 5. Predicted SBP for the Matérn 5/2 Gaussian process regression method: (a) the plot of the
correlation and (b) the Bland–Altman Plot.

Correlation plots and the Bland–Altman plot were used for the best prediction model
of DBP values using the rational quadratic Gaussian process regression method, as shown
in Figure 6.
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The time series changes in the actual and estimated (Matérn 5/2 Gaussian process
regression method) SBP values are shown in Figure 7. It can be seen that the SBP estimations
made with the Matérn 5/2 Gaussian process regression method were successful. It has
been observed that the performance of the predictions decreased with sudden increases
and decreases in SBP.

Diagnostics 2023, 13, x FOR PEER REVIEW  14  of  18 
 

 

 

Figure 7. The  target and predicted values  in  the prediction of SBP values using  the Matérn 5/2 

Gaussian process regression method (blue mark: actual SBP values; orange mark: the predicted SBP 

values). 

The time series changes in the actual and estimated (rational quadratic Gaussian pro‐

cess regression method) DBP values are shown in Figure 8. It can be seen that the DBP 

estimations made with the rational quadratic Gaussian process regression method were 

successful. However,  it has been observed  that  the performance of  the predictions de‐

creased with sudden increases and decreases in SBP. 

 

Figure 8. The target and predicted values in the prediction of DBP values using the rational quad‐

ratic Gaussian process  regression method  (blue mark: actual DBP values; orange mark:  the pre‐

dicted DBP values). 

Figure 7. The target and predicted values in the prediction of SBP values using the Matérn 5/2
Gaussian process regression method (blue mark: actual SBP values; orange mark: the predicted
SBP values).



Diagnostics 2023, 13, 1278 14 of 18

The time series changes in the actual and estimated (rational quadratic Gaussian
process regression method) DBP values are shown in Figure 8. It can be seen that the
DBP estimations made with the rational quadratic Gaussian process regression method
were successful. However, it has been observed that the performance of the predictions
decreased with sudden increases and decreases in SBP.
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4. Discussion

This paper presents a novel CBP prediction method based on regression models. As a
noninvasive alternative to traditional methods of measuring blood pressure, this method is
of particular importance for those with existing medical conditions or for those who are in
remote locations. This paper details the preprocessing, feature extraction, and regression
models used in the prediction process. This paper also demonstrates the performance of the
regression methods used in the prediction process using the mean absolute error (RMSE,
R2, MSE, and MAE) as the evaluation metric. The MAE values obtained for systolic and
diastolic blood pressure are 3.073 and 1.721, respectively. The MAE values obtained by
the authors are comparable to those obtained in other studies using the same dataset. In
addition, this paper provides a clear description of the preprocessing, feature extraction,
and regression models used in the prediction process—a compelling case for the efficacy of
our proposed method. Table 6 shows a performance comparison of the conducted works
in the literature and our proposed method for predicting SBP and DBP concerning the
obtained MAE values.

Blood pressure estimation is an essential medical task studied extensively over the
past few decades. In particular, the development of cuffless blood pressure estimation
(CBPE) algorithms has enabled accurate and continuous blood pressure monitoring without
needing any external device. While deep learning approaches have been successfully
applied to this task, they have drawbacks. This article discusses the advantages of using
regression models for CBPE over deep learning models. The first advantage of using
regression models for CBPE is the model’s simplicity. Regression models are based on
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linear models and are easy to understand, interpret, and implement. They also require
fewer parameters to be tuned, making them less computationally expensive compared to
deep learning models.

Table 6. The performance comparison of the conducted works in the literature and our proposed
method in predicting SBP and DBP concerning the obtained MAE values.

Compared Methods Systolic
MAE (mmHg)

Diastolic
MAE (mmHg) Ref.

Generalized deep neural network model 3.21 2.23 [33]

Spectro-temporal deep neural network 9.43 6.88 [34]

Fully convolutional neural networks 5.73 3.45 [35]

Machine learning model 9.54 5.48 [36]

Deep learning model 4.51 2.6 [13]

Regression by MARS (dynamical approach) 7.83 4.86 [37]

Tree-based pipeline optimization tool 6.52 4.19 [38]

CNN representations of PPG 4.48 2.19 [39]

Matérn 5/2 Gaussian process regression and feature extraction 3.073 1.724

Proposed MethodsRational quadratic Gaussian process regression
and feature extraction 3.069 1.721

Furthermore, they are less prone to overfitting, which can be a problem with deep learn-
ing models. Second, regression models can capture the underlying relationship between
the input and output variables more accurately than deep learning models. Regression
models can identify nonlinear relationships between the variables, whereas deep learning
models may struggle to capture these relationships accurately. As a result, regression
models are less prone to making erroneous predictions than deep learning models. The
third advantage of using regression models for CBPE is that they are easily scalable. They
can be easily applied to larger datasets and used in various contexts and settings.

In contrast, deep learning models require a lot of data in order to be effective and
are more difficult to scale up. Finally, regression models can be used to identify and
diagnose errors in the CBPE system. This is because the model’s parameters are easy to
interpret and can be used to identify the sources of errors and misclassifications. In contrast,
deep learning models are more difficult to interpret and diagnose, making it difficult to
identify errors.

In conclusion, regression models have many advantages over deep learning models
regarding CBPE. They are simple to understand and interpret, require fewer parameters
to be tuned, can capture nonlinear relationships between the variables, are easily scalable,
and it is easier to diagnose errors in the CBPE system. For these reasons, regression
models are a viable alternative for CBPE. As shown in Table 6, regression models produced
advantageous MAE values of 3.069 and 1.721 for SBP and DBP, respectively, in predicting
blood pressure, resulting in higher performance.

5. Conclusions

The CBP measurement method is highly accurate and is much more comfortable for the
user than the traditional cuff method. It is also much more cost-effective, as purchasing an
arm cuff is unnecessary. This method is also very convenient as it does not require physical
contact between the user and the device and can be performed quickly and easily. As a
result, the CBP measurement method is becoming increasingly popular among healthcare
professionals and patients. This method is particularly beneficial for those unable to use a
traditional arm cuff due to disability or other health reasons. In addition, this method is
becoming increasingly accessible as technology becomes more widely available. Ultimately,
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the CBP measurement method can provide accurate and reliable blood pressure readings
and is an excellent alternative to the traditional cuff method.

This study concludes that a novel CBP prediction method using regression models is
viable for accurately predicting systolic and diastolic blood pressures. This method uses
preprocessing feature extraction and regression models to predict blood pressure. The
preprocessing involved baseline wandering, filtering, and segmentation. Feature extraction
involved both time domain and chaotic features. The regression models used were Matérn
5/2 Gaussian process regression, rational quadratic Gaussian process regression, and five
different models for SBP and DBP. The results of this study show that the novel CBP
prediction method is a viable option for accurately predicting systolic and diastolic blood
pressures. The Matérn 5/2 Gaussian process regression method had a mean absolute
error of 3.073, and the rational quadratic Gaussian process regression method had a mean
absolute error of 1.721. This shows that the novel CBP prediction method can predict
systolic and diastolic blood pressures with an accuracy comparable to other methods. The
results of this study have implications for the medical industry. This method could be used
to accurately predict blood pressure without needing a cuff, reducing the cost of medical
care, and allowing patients to monitor their blood pressure more efficiently and accurately
at home. In addition, this method could be used to monitor the blood pressure of patients
with hypertension or hypotension, allowing for more accurate diagnoses and treatments.
This study demonstrates that the novel CBP prediction method using regression models is
viable for accurately predicting systolic and diastolic blood pressures. The results show
that this method has a level of accuracy comparable to other methods and can be used
to reduce the cost of medical care and more accurately diagnose and treat patients with
hypertension or hypotension. This method is a promising step forward for the medical
industry and could lead to more accurate and cost-effective treatments for patients.
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22. Şentürk, Ü.; Polat, K.; Yücedağ, İ. Towards wearable blood pressure measurement systems from biosignals: A review. Turk. J.
Electr. Eng. Comput. Sci. 2019, 27, 3259–3281. [CrossRef]

23. El-Hajj, C.; Kyriacou, P.A. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less
measurement of blood pressure. Biomed. Signal Process. Control 2020, 58, 101870. [CrossRef]

24. Khalid, S.G.; Liu, H.; Zia, T.; Zhang, J.; Chen, F.; Zheng, D. Cuffless blood pressure estimation using single channel photoplethys-
mography: A two-step method. IEEE Access 2020, 8, 58146–58154. [CrossRef]

25. Hosanee, M.; Chan, G.; Welykholowa, K.; Cooper, R.; Kyriacou, P.A.; Zheng, D.; Allen, J.; Abbott, D.; Menon, C.; Lovell, N.H.; et al.
Cuffless single-site photoplethysmography for blood pressure monitoring. J. Clin. Med. 2020, 9, 723. [CrossRef] [PubMed]

26. Hsu, Y.-C.; Li, Y.-H.; Chang, C.-C.; Harfiya, L.N. Generalized deep neural network model for cuffless blood pressure estimation
with photoplethysmogram signal only. Sensors 2020, 20, 5668. [CrossRef]

27. Zurada, J.; Levitan, A.; Guan, J. A Comparison of Regression and Artificial Intelligence Methods in a Mass Appraisal Context.
J. Real Estate Res. 2011, 33, 349–388. [CrossRef]

28. Yu, C.; Yao, W.; Bai, X. Robust Linear Regression: A Review and Comparison. Commun. Stat. -Simul. Comput. 2014, 46, 6261–6282.
[CrossRef]

29. Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; The MIT Press: Cambridge, MA, USA, 2006;
ISBN 026218253X.

30. Zhang, N.; Xiong, J.; Zhong, J.; Leatham, K. Gaussian Process Regression Method for Classification for High-Dimensional Data
with Limited Samples. In Proceedings of the 2018 Eighth International Conference on Information Science and Technology
(ICIST), Cordoba, Granada, and Seville, Spain, 30 June–6 July 2018; pp. 358–363. [CrossRef]

31. Okwuashi, O.; Ndehedehe, C. Tide modelling using support vector machine regression. J. Spat. Sci. 2017, 62, 29–46. [CrossRef]
32. Nogueira, M.S.; Maryam, S.; Amissah, M.; Lu, H.; Lynch, N.; Killeen, S.; O’Riordain, M.; Andersson-Engels, S. Improving

colorectal cancer detection by extending the near-infrared wavelength range and tissue probed depth of diffuse reflectance
spectroscopy: A support vector machine approach. In Proceedings of the Optical Biopsy XX: Toward Real-Time Spectroscopic
Imaging and Diagnosis, San Francisco, CA, USA, 25–27 January 2022; Volume 11954.

33. Haque, C.A.; Kwon, T.H.; Kim, K.D. Cuffless blood pressure estimation based on Monte Carlo simulation using photoplethys-
mography signals. Sensors 2022, 22, 1175. [CrossRef]

http://doi.org/10.1016/j.compositesb.2021.109365
http://doi.org/10.1016/j.apacoust.2020.107534
http://doi.org/10.1093/ajh/hpac017
http://doi.org/10.2215/CJN.03680320
http://doi.org/10.1038/s41569-022-00690-0
http://doi.org/10.3390/s20195606
http://doi.org/10.1016/j.bspc.2021.102984
http://doi.org/10.1109/ACCESS.2019.2960844
http://doi.org/10.1016/j.bspc.2020.101942
http://doi.org/10.3390/s20113127
http://doi.org/10.1038/s41598-021-03612-1
http://doi.org/10.1155/2022/3549238
http://doi.org/10.3390/jsan9030034
http://doi.org/10.3906/elk-1812-121
http://doi.org/10.1016/j.bspc.2020.101870
http://doi.org/10.1109/ACCESS.2020.2981903
http://doi.org/10.3390/jcm9030723
http://www.ncbi.nlm.nih.gov/pubmed/32155976
http://doi.org/10.3390/s20195668
http://doi.org/10.1080/10835547.2011.12091311
http://doi.org/10.1080/03610918.2016.1202271
http://doi.org/10.1109/ICIST.2018.8426077
http://doi.org/10.1080/14498596.2016.1215272
http://doi.org/10.3390/s22031175


Diagnostics 2023, 13, 1278 18 of 18
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